Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Background

Anthracycline-based chemotherapy, such as Doxorubicin (DOX), often induces cardiotoxicity in cancer patients, which compromises their health and quality of life.

Objective

This study aimed to verify the effects of exercise concomitant with prolonged administration of DOX on improving cardiotoxicity.

Methods

A systematic literature search in MedLine, PubMed, Web of Science, and Scopus databases was performed from inception until November 2023, strictly following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement. Preclinical randomized controlled trials related to exercise, cardiotoxicity, and DOX were included.

Results

Eight studies were included in the systematic review and 7 were selected for meta-analysis. By evaluating the Fractional Shortening (FS), it was possible to verify that exercise as complementary therapy provided a cardioprotective effect when compared to DOX combined with sedentary behavior (heterogeneity: I2 = 53%; tau2 = 0.19; 0.03; overall effect: z = 2.69; 0.01). However, no additional benefits were observed for the Left Ventricular Ejection Fraction (LVEF) (heterogeneity: I2 = 82%; tau2 = 1.43; 0.01; overall effect: z = 1.42; 0.15).

Conclusion

The included studies demonstrated exercise to have a cardioprotective effect on rodents, mainly on FS. However, there is a lack of high-level evidence to guide exercise prescription in clinical practice to improve cardiotoxicity associated with DOX administration.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X328856241219114652
2025-02-10
2025-07-15
Loading full text...

Full text loading...

References

  1. JeyaprakashP. SanghaS. EllenbergerK. SivapathanS. PathanF. NegishiK. Cardiotoxic effect of modern anthracycline dosing on left ventricular ejection fraction: A systematic review and meta‐analysis of placebo arms from randomized controlled trials.J. Am. Heart Assoc.2021106e01880210.1161/JAHA.120.01880233660514
    [Google Scholar]
  2. LotrionteM. Biondi-ZoccaiG. AbbateA. LanzettaG. D’AscenzoF. MalavasiV. PeruzziM. FratiG. PalazzoniG. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity.Am. J. Cardiol.2013112121980198410.1016/j.amjcard.2013.08.02624075281
    [Google Scholar]
  3. XingM. YanF. YuS. ShenP. Efficacy and cardiotoxicity of liposomal doxorubicin-based chemotherapy in advanced breast cancer: A meta-analysis of ten randomized controlled trials.PLoS One2015107e013356910.1371/journal.pone.013356926204517
    [Google Scholar]
  4. ConwayA. McCarthyA.L. LawrenceP. ClarkR.A. The prevention, detection and management of cancer treatment-induced cardiotoxicity: A meta-review.BMC Cancer201515136610.1186/s12885‑015‑1407‑625948399
    [Google Scholar]
  5. PetoR. DaviesC. GodwinJ. GrayR. PanH.C. ClarkeM. CutterD. DarbyS. McGaleP. TaylorC. WangY.C. BerghJ. Di LeoA. AlbainK. SwainS. PiccartM. PritchardK. Comparisons between different polychemotherapy regimens for early breast cancer: Meta-analyses of long-term outcome among 100 000 women in 123 randomised trials.Lancet2012379981443244410.1016/S0140‑6736(11)61625‑522152853
    [Google Scholar]
  6. LinschotenM. KamphuisJ.A.M. van RhenenA. BosmanL.P. CramerM.J. DoevendansP.A. TeskeA.J. AsselbergsF.W. Cardiovascular adverse events in patients with non-Hodgkin lymphoma treated with first-line cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP with rituximab (R-CHOP): A systematic review and meta-analysis.Lancet Haematol.202074e295e30810.1016/S2352‑3026(20)30031‑432135128
    [Google Scholar]
  7. LennemanC.G. SawyerD.B. Cardio-oncology.Circ. Res.201611861008102010.1161/CIRCRESAHA.115.30363326987914
    [Google Scholar]
  8. OechsleK. BokemeyerC. Kardiotoxizitäten bei chemo- und radiotherapie.Onkologe200915215716210.1007/s00761‑008‑1546‑3
    [Google Scholar]
  9. HenriksenP.A. Anthracycline cardiotoxicity: An update on mechanisms, monitoring and prevention.Heart20181041297197710.1136/heartjnl‑2017‑31210329217634
    [Google Scholar]
  10. CardinaleD. ColomboA. BacchianiG. TedeschiI. MeroniC.A. VegliaF. CivelliM. LamantiaG. ColomboN. CuriglianoG. FiorentiniC. CipollaC.M. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy.Circulation2015131221981198810.1161/CIRCULATIONAHA.114.01377725948538
    [Google Scholar]
  11. SwainS.M. WhaleyF.S. EwerM.S. Congestive heart failure in patients treated with doxorubicin.Cancer200397112869287910.1002/cncr.1140712767102
    [Google Scholar]
  12. BrandãoS.R. CarvalhoF. AmadoF. FerreiraR. CostaV.M. Insights on the molecular targets of cardiotoxicity induced by anticancer drugs: A systematic review based on proteomic findings.Metabolism202213415525010.1016/j.metabol.2022.15525035809654
    [Google Scholar]
  13. HuW. SongM. LiL. Grading evaluation of cardiotoxicity in patients with breast cancer treated with adjuvant paclitaxel anthracycline/cyclophosphamide chemotherapy: A meta-analysis.Comput. Math. Methods Med.202220221910.1155/2022/796314635979049
    [Google Scholar]
  14. OlivaS. PuzzovivoA. GerardiC. AllocatiE. De SanctisV. MinoiaC. SkrypetsT. GuariniA. GiniG. Late cardiological sequelae and long-term monitoring in classical hodgkin lymphoma and diffuse large B-cell lymphoma survivors: A systematic review by the fondazione italiana linfomi.Cancers (Basel)20211416110.3390/cancers1401006135008222
    [Google Scholar]
  15. DobsonR. WrightD.J. Cancer and the heart.Br. J. Gen. Pract.20186867022022110.3399/bjgp18X69586129700020
    [Google Scholar]
  16. HabibG. Bucciarelli-DucciC. CaforioA.L.P. CardimN. CharronP. CosynsB. DehaeneA. DerumeauxG. DonalE. DweckM.R. EdvardsenT. ErbaP.A. ErnandeL. GaemperliO. GalderisiM. GrapsaJ. JacquierA. KlingelK. LancellottiP. NegliaD. PepeA. Perrone-FilardiP. PetersenS.E. PleinS. PopescuB.A. ReantP. SadeL.E. SalaunE. SlartR.H.J.A. TribouilloyC. ZamoranoJ. DelgadoV. HaugaaK. VijayaraghavanG. Multimodality imaging in restrictive cardiomyopathies: An EACVI expert consensus document in collaboration with the “Working Group on myocardial and pericardial diseases” of the european society of cardiology endorsed by the indian academy of echocardiography.Eur. Heart J. Cardiovasc. Imaging201718101090112110.1093/ehjci/jex03428510718
    [Google Scholar]
  17. KrishnamoorthyV.K. SenguptaP.P. GentileF. KhandheriaB.K. History of echocardiography and its future applications in medicine.Crit. Care Med.2007358(Suppl.)S309S31310.1097/01.CCM.0000270240.97375.DE17667454
    [Google Scholar]
  18. EdlerI. LindströmK. The history of echocardiography.Ultrasound Med. Biol.200430121565164410.1016/S0301‑5629(99)00056‑315617829
    [Google Scholar]
  19. StypmannJ. EngelenM.A. TroatzC. RothenburgerM. EckardtL. TiemannK. Echocardiographic assessment of global left ventricular function in mice.Lab. Anim.200943212713710.1258/la.2007.06001e19237453
    [Google Scholar]
  20. VinhasM. AraújoA.C. RibeiroS. RosárioL.B. BeloJ.A. Transthoracic echocardiography reference values in juvenile and adult 129/Sv mice.Cardiovasc. Ultrasound20131111210.1186/1476‑7120‑11‑1223634975
    [Google Scholar]
  21. PacileoG. Di SalvoG. LimongelliG. MieleT. CalabròR. Echocardiography in congenital heart disease: Usefulness, limits and new techniques.J. Cardiovasc. Med. (Hagerstown)200781172210.2459/01.JCM.0000247430.36581.c217255811
    [Google Scholar]
  22. FraserA.G. MonaghanM.J. van der SteenA.F.W. SutherlandG.R. A concise history of echocardiography: Timeline, pioneers, and landmark publications.Eur. Heart J. Cardiovasc. Imaging20222391130114310.1093/ehjci/jeac11135762885
    [Google Scholar]
  23. RussellR.R. Cardiovascular complications of chemotherapy: Anthracycline cardiotoxicity.Evidence-Based Cardiology Consult.LondonSpringer London201439139710.1007/978‑1‑4471‑4441‑0_26
    [Google Scholar]
  24. JonesL.W. DouglasP.S. KhouriM.G. MackeyJ.R. WojdylaD. KrausW.E. WhellanD.J. O’ConnorC.M. Safety and efficacy of aerobic training in patients with cancer who have heart failure: An analysis of the HF-ACTION randomized trial.J. Clin. Oncol.201432232496250210.1200/JCO.2013.53.572425002717
    [Google Scholar]
  25. SlamaM. Transthoracic echocardiography: Technical aspects.Echocardiography in ICU.ChamSpringer International Publishing20208385
    [Google Scholar]
  26. AssiM. DufresneS. RébillardA. Exercise shapes redox signaling in cancer.Redox Biol.20203510143910.1016/j.redox.2020.10143931974046
    [Google Scholar]
  27. KirkhamA.A. PatersonD.I. PradoC.M. MackeyJ.M. CourneyaK.S. PituskinE. ThompsonR.B. Rationale and design of the caloric restriction and exercise protection from anthracycline toxic effects (CREATE) study: A 3-arm parallel group phase II randomized controlled trial in early breast cancer.BMC Cancer201818186410.1186/s12885‑018‑4778‑730176834
    [Google Scholar]
  28. ScottJ.M. KhakooA. MackeyJ.R. HaykowskyM.J. DouglasP.S. JonesL.W. Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: Current evidence and underlying mechanisms.Circulation2011124564265010.1161/CIRCULATIONAHA.111.02177421810673
    [Google Scholar]
  29. ChenJ.J. WuP.T. MiddlekauffH.R. NguyenK.L. Aerobic exercise in anthracycline-induced cardiotoxicity: A systematic review of current evidence and future directions.Am. J. Physiol. Heart Circ. Physiol.20173122H213H22210.1152/ajpheart.00646.201627923793
    [Google Scholar]
  30. SheibaniM. AziziY. ShayanM. NezamoleslamiS. EslamiF. FarjooM.H. DehpourA.R. Doxorubicin-induced cardiotoxicity: An overview on pre-clinical therapeutic approaches.Cardiovasc. Toxicol.202222429231010.1007/s12012‑022‑09721‑135061218
    [Google Scholar]
  31. HardawayB.W. Adriamycin-associated cardiomyopathy.Curr. Opin. Cardiol.201934328929510.1097/HCO.000000000000061730973398
    [Google Scholar]
  32. BhagatA. KleinermanE.S. Anthracycline-induced cardiotoxicity: Causes, mechanisms, and prevention.Current Advances in Osteosarcoma: Clinical Perspectives: Past, Present and Future.ChamSpringer International Publishing202018119210.1007/978‑3‑030‑43032‑0_15
    [Google Scholar]
  33. AscensãoA. OliveiraP.J. MagalhãesJ. Exercise as a beneficial adjunct therapy during Doxorubicin treatment—Role of mitochondria in cardioprotection.Int. J. Cardiol.2012156141010.1016/j.ijcard.2011.05.06021636148
    [Google Scholar]
  34. AscensãoA. Lumini-OliveiraJ. MachadoN.G. FerreiraR.M. GonçalvesI.O. MoreiraA.C. MarquesF. SardãoV.A. OliveiraP.J. MagalhãesJ. Acute exercise protects against calcium-induced cardiac mitochondrial permeability transition pore opening in doxorubicin-treated rats.Clin. Sci. (Lond)20111201374910.1042/CS2010025420666733
    [Google Scholar]
  35. AscensãoA. FerreiraR. OliveiraP.J. MagalhãesJ. Effects of endurance training and acute Doxorubicin treatment on rat heart mitochondrial alterations induced by in vitro anoxia-reoxygenation.Cardiovasc. Toxicol.200663-415917210.1385/CT:6:3:15917347527
    [Google Scholar]
  36. JensenB.T. LienC.Y. HydockD.S. SchneiderC.M. HaywardR. Exercise mitigates cardiac doxorubicin accumulation and preserves function in the rat.J. Cardiovasc. Pharmacol.201362326326910.1097/FJC.0b013e3182982ce023644988
    [Google Scholar]
  37. HydockD.S. LienC.Y. JensenB.T. SchneiderC.M. HaywardR. Exercise preconditioning provides long-term protection against early chronic doxorubicin cardiotoxicity.Integr. Cancer Ther.2011101475710.1177/153473541039257721382960
    [Google Scholar]
  38. HydockD.S. LienC.Y. SchneiderC.M. HaywardR. Exercise preconditioning protects against doxorubicin-induced cardiac dysfunction.Med. Sci. Sports Exerc.200840580881710.1249/MSS.0b013e318163744a18408619
    [Google Scholar]
  39. HydockD.S. WondersK.Y. SchneiderC.M. HaywardR. Voluntary wheel running in rats receiving doxorubicin: effects on running activity and cardiac myosin heavy chain.Anticancer Res.200929114401440720032385
    [Google Scholar]
  40. Marques-AleixoI. Santos-AlvesE. OliveiraP.J. MoreiraP.I. MagalhãesJ. AscensãoA. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy.Biochim. Biophys. Acta Rev. Cancer20181869218919910.1016/j.bbcan.2018.01.00229408395
    [Google Scholar]
  41. MurrayJ. BennettH. BezakE. PerryR. The role of exercise in the prevention of cancer therapy-related cardiac dysfunction in breast cancer patients undergoing chemotherapy: Systematic review.Eur. J. Prev. Cardiol.202229346347210.1093/eurjpc/zwab00633693524
    [Google Scholar]
  42. von MinckwitzG. LoiblS. Evolution of adjuvant chemotherapy for breast cancer.Lancet201538599801812181410.1016/S0140‑6736(14)62348‑525740287
    [Google Scholar]
  43. GhignattiP.V.C. NogueiraL.J. LehnenA.M. LeguisamoN.M. Cardioprotective effects of exercise training on doxorubicin-induced cardiomyopathy: A systematic review with meta-analysis of preclinical studies.Sci. Rep.2021111633010.1038/s41598‑021‑83877‑833737561
    [Google Scholar]
  44. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials.Lancet200536594721687171710.1016/S0140‑6736(05)66544‑015894097
    [Google Scholar]
  45. ClarkeM. CoatesA.S. DarbyS.C. DaviesC. GelberR.D. GodwinJ. GoldhirschA. GrayR. PetoR. PritchardK.I. WoodW.C. Adjuvant chemotherapy in oestrogen-receptor-poor breast cancer: Patient-level meta-analysis of randomised trials.Lancet20083719606294010.1016/S0140‑6736(08)60069‑018177773
    [Google Scholar]
  46. NikolaevichN.S. VasilevichK.S. Why do we need irradiation of internal mammary lymph nodes in patients with breast cancer: Analysis of lymph flow and radiotherapy studies.Rep. Pract. Oncol. Radiother.2017221374110.1016/j.rpor.2016.09.01227818615
    [Google Scholar]
  47. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.BMJ202137271n7110.1136/bmj.n7133782057
    [Google Scholar]
  48. BramerW.M. Reference checking for systematic reviews using Endnote.J. Med. Libr. Assoc.2018106454254610.5195/jmla.2018.48930271303
    [Google Scholar]
  49. DolinskyV.W. RoganK.J. SungM.M. ZordokyB.N. HaykowskyM.J. YoungM.E. JonesL.W. DyckJ.R.B. Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice.Am. J. Physiol. Endocrinol. Metab.20133052E243E25310.1152/ajpendo.00044.201323695218
    [Google Scholar]
  50. Gomes-SantosI.L. JordãoC.P. PassosC.S. BrumP.C. OliveiraE.M. ChammasR. CamargoA.A. NegrãoC.E. Exercise training preserves myocardial strain and improves exercise tolerance in doxorubicin-induced cardiotoxicity.Front. Cardiovasc. Med.2021860599310.3389/fcvm.2021.60599333869297
    [Google Scholar]
  51. HydockD.S. LienC.Y. JensenB.T. ParryT.L. SchneiderC.M. HaywardR. Rehabilitative exercise in a rat model of doxorubicin cardiotoxicity.Exp. Biol. Med. (Maywood)2012237121483149210.1258/ebm.2012.01213723354407
    [Google Scholar]
  52. SturgeonK. SchadlerK. MuthukumaranG. DingD. BajulaiyeA. ThomasN.J. FerrariV. RyeomS. LibonatiJ.R. Concomitant low-dose doxorubicin treatment and exercise.Am. J. Physiol. Regul. Integr. Comp. Physiol.20143076R685R69210.1152/ajpregu.00082.201425009215
    [Google Scholar]
  53. HooijmansC.R. RoversM.M. de VriesR.B.M. LeenaarsM. Ritskes-HoitingaM. LangendamM.W. SYRCLE’s risk of bias tool for animal studies.BMC Med. Res. Methodol.20141414310.1186/1471‑2288‑14‑4324667063
    [Google Scholar]
  54. BahorZ. LiaoJ. CurrieG. AyderC. MacleodM. McCannS.K. Bannach-BrownA. WeverK. SolimanN. WangQ. Doran-ConstantL. YoungL. SenaE.S. SenaC. Development and uptake of an online systematic review platform: The early years of the CAMARADES systematic review facility (SyRF).BMJ Open Sci.202151e10010310.1136/bmjos‑2020‑10010335047698
    [Google Scholar]
  55. GuyattG.H. OxmanA.D. MontoriV. VistG. KunzR. BrozekJ. Alonso-CoelloP. DjulbegovicB. AtkinsD. Falck-YtterY. WilliamsJ.W.Jr MeerpohlJ. NorrisS.L. AklE.A. SchünemannH.J. GRADE guidelines: 5. Rating the quality of evidence—publication bias.J. Clin. Epidemiol.201164121277128210.1016/j.jclinepi.2011.01.01121802904
    [Google Scholar]
  56. HigginsJ.P.T. ThomasJ. ChandlerJ. CumpstonM. LiT. PageM.J. Cochrane handbook for systematic reviews of interventions.Wiley201910.1002/9781119536604
    [Google Scholar]
  57. SterneJ.A.C. SuttonA.J. IoannidisJ.P.A. TerrinN. JonesD.R. LauJ. CarpenterJ. RückerG. HarbordR.M. SchmidC.H. TetzlaffJ. DeeksJ.J. PetersJ. MacaskillP. SchwarzerG. DuvalS. AltmanD.G. MoherD. HigginsJ.P.T. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials.BMJ2011343jul22 1d400210.1136/bmj.d400221784880
    [Google Scholar]
  58. HaywardR. LienC.Y. JensenB.T. HydockD.S. SchneiderC.M. Exercise training mitigates anthracycline‐induced chronic cardiotoxicity in a juvenile rat model.Pediatr. Blood Cancer201259114915410.1002/pbc.2339222052855
    [Google Scholar]
  59. WangF. ChandraJ. KleinermanE.S. Exercise intervention decreases acute and late doxorubicin‐induced cardiotoxicity.Cancer Med.202110217572758410.1002/cam4.428334523825
    [Google Scholar]
  60. WangF. IskraB. KleinermanE. Alvarez-FlorezC. AndrewsT. ShawA. ChandraJ. SchadlerK. AuneG.J. Aerobic exercise during early murine doxorubicin exposure mitigates cardiac toxicity.J. Pediatr. Hematol. Oncol.201840320821510.1097/MPH.000000000000111229557918
    [Google Scholar]
  61. YangH.L. HsiehP.L. HungC.H. ChengH.C. ChouW.C. ChuP.M. ChangY.C. TsaiK.L. Early moderate intensity aerobic exercise intervention prevents doxorubicin-caused cardiac dysfunction through inhibition of cardiac fibrosis and inflammation.Cancers (Basel)2020125110210.3390/cancers1205110232354131
    [Google Scholar]
  62. GarberC.E. BlissmerB. DeschenesM.R. FranklinB.A. LamonteM.J. LeeI.M. NiemanD.C. SwainD.P. American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise.Med. Sci. Sports Exerc.20114371334135910.1249/MSS.0b013e318213fefb21694556
    [Google Scholar]
  63. PollickC. HaleS.L. KlonerR.A. Echocardiographic and cardiac doppler assessment of mice.J. Am. Soc. Echocardiogr.19958560261010.1016/S0894‑7317(05)80373‑69417202
    [Google Scholar]
  64. ThavendiranathanP. GrantA.D. NegishiT. PlanaJ.C. PopovićZ.B. MarwickT.H. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: Application to patients undergoing cancer chemotherapy.J. Am. Coll. Cardiol.2013611778410.1016/j.jacc.2012.09.03523199515
    [Google Scholar]
  65. StokkeT.M. HasselbergN.E. SmedsrudM.K. SarvariS.I. HaugaaK.H. SmisethO.A. EdvardsenT. RemmeE.W. Geometry as a confounder when assessing ventricular systolic function: Comparison between ejection fraction and strain.J. Am. Coll. Cardiol.201770894295410.1016/j.jacc.2017.06.04628818204
    [Google Scholar]
  66. McGowanJ.V. ChungR. MaulikA. PiotrowskaI. WalkerJ.M. YellonD.M. Anthracycline chemotherapy and cardiotoxicity.Cardiovasc. Drugs Ther.2017311637510.1007/s10557‑016‑6711‑028185035
    [Google Scholar]
  67. CarvalhoF.S. BurgeiroA. GarciaR. MorenoA.J. CarvalhoR.A. OliveiraP.J. Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy.Med. Res. Rev.201434110613510.1002/med.2128023494977
    [Google Scholar]
  68. KanterM.M. HamlinR.L. UnverferthD.V. DavisH.W. MerolaA.J. Effect of exercise training on antioxidant enzymes and cardiotoxicity of doxorubicin.J. Appl. Physiol.198559412981303
    [Google Scholar]
  69. FanG.C. ZhouX. WangX. SongG. QianJ. NicolaouP. ChenG. RenX. KraniasE.G. Heat shock protein 20 interacting with phosphorylated Akt reduces doxorubicin-triggered oxidative stress and cardiotoxicity.Circ. Res.2008103111270127910.1161/CIRCRESAHA.108.18283218948619
    [Google Scholar]
  70. KavazisA.N. SmuderA.J. MinK. TümerN. PowersS.K. Short-term exercise training protects against doxorubicin-induced cardiac mitochondrial damage independent of HSP72.Am. J. Physiol. Heart Circ. Physiol.20102995H1515H152410.1152/ajpheart.00585.201020833957
    [Google Scholar]
  71. SchönfeldP. WojtczakL. Fatty acids as modulators of the cellular production of reactive oxygen species.Free Radic. Biol. Med.200845323124110.1016/j.freeradbiomed.2008.04.02918482593
    [Google Scholar]
  72. BullF.C. Al-AnsariS.S. BiddleS. BorodulinK. BumanM.P. CardonG. CartyC. ChaputJ.P. ChastinS. ChouR. DempseyP.C. DiPietroL. EkelundU. FirthJ. FriedenreichC.M. GarciaL. GichuM. JagoR. KatzmarzykP.T. LambertE. LeitzmannM. MiltonK. OrtegaF.B. RanasingheC. StamatakisE. TiedemannA. TroianoR.P. van der PloegH.P. WariV. WillumsenJ.F. World health organization 2020 guidelines on physical activity and sedentary behaviour.Br. J. Sports Med.202054241451146210.1136/bjsports‑2020‑10295533239350
    [Google Scholar]
  73. IdornM. thor StratenP. Exercise and cancer: From “healthy” to “therapeutic”?Cancer Immunol. Immunother.201766566767110.1007/s00262‑017‑1985‑z28324125
    [Google Scholar]
  74. ForteL.D.M. RodriguesN.A. CordeiroA.V. de FanteT. SiminoL.A.P. TorsoniA.S. TorsoniM.A. GobattoC.A. Manchado-GobattoF.B. Periodized versus non-periodized swimming training with equal total training load: Physiological, molecular and performance adaptations in Wistar rats.PLoS One2020159e023987610.1371/journal.pone.023987632997706
    [Google Scholar]
  75. Villelabeitia-JaureguizarK. Vicente-CamposD. SenenA.B. JiménezV.H. Garrido-LestacheM.E.B. ChicharroJ.L. Effects of high-intensity interval versus continuous exercise training on post-exercise heart rate recovery in coronary heart-disease patients.Int. J. Cardiol.2017244172310.1016/j.ijcard.2017.06.06728648356
    [Google Scholar]
  76. MacInnisM.J. GibalaM.J. Physiological adaptations to interval training and the role of exercise intensity.J. Physiol.201759592915293010.1113/JP27319627748956
    [Google Scholar]
  77. BryantJ. PicotJ. BaxterL. LevittG. SullivanI. CleggA. Use of cardiac markers to assess the toxic effects of anthracyclines given to children with cancer: A systematic review.Eur. J. Cancer200743131959196610.1016/j.ejca.2007.06.01217689066
    [Google Scholar]
  78. KhanA.A. AshrafA. SinghR. RahimA. RostomW. HussainM. RennerI. CollinsN.J. Incidence, time of occurrence and response to heart failure therapy in patients with anthracycline cardiotoxicity.Intern. Med. J.201747110410910.1111/imj.1330527800661
    [Google Scholar]
  79. PlanaJ.C. GalderisiM. BaracA. EwerM.S. KyB. Scherrer-CrosbieM. GanameJ. SebagI.A. AglerD.A. BadanoL.P. BanchsJ. CardinaleD. CarverJ. CerqueiraM. DeCaraJ.M. EdvardsenT. FlammS.D. ForceT. GriffinB.P. JerusalemG. LiuJ.E. MagalhãesA. MarwickT. SanchezL.Y. SicariR. VillarragaH.R. LancellottiP. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.J. Am. Soc. Echocardiogr.201427991193910.1016/j.echo.2014.07.01225172399
    [Google Scholar]
  80. LinharesBG LinharesDG BoppreG ZaccaR. New insights into cardioprotection in breast cancer patients undergoing physical exercise during chemotherapy: A systematic review and metaanalysis.Curr Probl Cardiol2024491010274310.1016/j.cpcardiol.2024.10274339053681
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X328856241219114652
Loading
/content/journals/ccr/10.2174/011573403X328856241219114652
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): cancer; cardiotoxicity; Chemotherapy; doxorubicin; fractional shortening; quality of life
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test