Skip to content
2000
Volume 1, Issue 2
  • ISSN: 2665-9972
  • E-ISSN: 2665-9964

Abstract

In the last few decades, Information and Communication Technology (ICT) has been introduced aiming to bring more comfort to human life by integrating smartness into daily objects, resulting in the idea of the smart city. Guaranteeing the well-being of residents and assessing industry and urban planning from an ecological and sustainable perspective are the main goals for the smart city. Great potentials are brought to the public and civil areas by the Aerial Ad Hoc Network (AANET) concept, especially in applications that are risky to human lives. AANET, like any emerging technology, comes with many challenges that have to be overcome to be employed efficiently. In this paper, we make a detailed survey on current literature, standards, and projects of self-organizing AANET in smart cities. Also, we intend to present a profound knowledge of this active research area by identifying features, design characteristics, architectures, routing protocols, and security aspects for the design and implementation of self-organizing AANET. Furthermore, we discuss existing solutions, indicate assessment metrics along with current applications, and highlight the main research scope for further developments. This article surveys the work done toward AANET-related outstanding issues, intending to encourage further research in this field.

Loading

Article metrics loading...

/content/journals/cccs/10.2174/2665997201666210218232040
2021-10-01
2025-01-14
Loading full text...

Full text loading...

References

  1. United NationsThe world’s cities in 2016 Available from: http://www.un.org/
    [Google Scholar]
  2. Sánchez-CorcueraR. Nuñez-MarcosA. Sesma-SolanceJ. Bilbao-JayoA. MuleroR. ZulaikaU. Smart cities survey: Technologies, application domains and challenges for the cities of the future.Int. J. Distrib. Sens. Netw.151550147719853984201910.1177/1550147719853984
    [Google Scholar]
  3. CameroA. AlbaE. Smart City and information technology: A review", cities9384942019
    [Google Scholar]
  4. AlbinoV. BerardiU. DangelicoR.M. Smart cities: Definitions, dimensions, performance, and initiatives.J. Urban Technol.20152232110.1080/10630732.2014.942092
    [Google Scholar]
  5. YanJ. LiuJ. TsengF-M. An evaluation system based on the self-organizing system framework of smart cities: A case study of smart transportation systems in China.Technol. Forecast. Soc. Change153, 119371.202010.1016/j.techfore.2018.07.009
    [Google Scholar]
  6. ZanellaA. BuiN. CastellaniA. VangelistaL. ZorziM. Internet of things for smart cities", IEEE Inter. Thing. j122322014
    [Google Scholar]
  7. DanielK. RohdeS. GoddemeierN. WietfeldC. Cognitive agent mobility for aerial sensor networks.IEEE Sens. J.2011112671268210.1109/JSEN.2011.2159489
    [Google Scholar]
  8. BekmezciI. SahingozO.K. TemelŞ. Flying ad-hoc networks (FANETs): A survey.Ad Hoc Netw.2013111254127010.1016/j.adhoc.2012.12.004
    [Google Scholar]
  9. GuptaL. JainR. VaszkunG. Survey of important issues in UAV communication networks.IEEE Comm. Surv. and Tutor.2015181123115210.1109/COMST.2015.2495297
    [Google Scholar]
  10. CustersB. Drones here, there and everywhere introduction and overview", The Future of Drone Use, pp. 3-20, 2016.10.1007/978‑94‑6265‑132‑6_1
    [Google Scholar]
  11. KimK-I. HyeonS. YangS. YiJ. Development of simulator for aircraft ad hoc networks 011 IEEE/AIAA 30th Digital AvionicsSystems Conference, 201110.1109/DASC.2011.6096075
    [Google Scholar]
  12. KumarV. RanaA. KumarS. Aircraft Ad-hoc Network (AANET)"Int. J. Adv. Res.Comp. and Comm. Eng., vol. 3, 2014.
    [Google Scholar]
  13. GianniniC. ShaabanA.A. BurattiC. VerdoneR. Delay Tolerant Networking for smart city through drones2016 International Symposium on Wireless Communication Systems (ISWCS)201660360710.1109/ISWCS.2016.7600975
    [Google Scholar]
  14. WonJ. SeoS-H. BertinoE. Certificateless cryptographic protocols for efficient drone-based smart city applications.IEEE Access201753721374910.1109/ACCESS.2017.2684128
    [Google Scholar]
  15. "Nokia", Gartner Symposium/ITxpo 2018., 2018. Available from: https://www.nokia.com/about-us/news-and-events/events-calendar/gartner-symposium-itxpo-2018/
  16. "PrecisionHawk", Enriching Data, Empowering Action., 2020. Available from: https://www.precisionhawk.com/
  17. KumarD. VermaP. Routing protocols for MANET, VANET and AANET: a survey.Int. J. Innov. Tech. and Res.2015319531956
    [Google Scholar]
  18. MotlaghN.H. BagaaM. TalebT. UAV-based IoT platform: A crowd surveillance use case.IEEE Commun. Mag.20175512813410.1109/MCOM.2017.1600587CM
    [Google Scholar]
  19. AdministrationF.A. FAA Releases 2016 to 2036 Aerospace Forecast., 2016 Available from: https://www.faa.gov/news/updates/?newsId=85227&cid=TW414
  20. QiF. ZhuX. MangG. KadochM. LiW. UAV network and IoT in the sky for future smart cities.IEEE Netw.2019339610110.1109/MNET.2019.1800250
    [Google Scholar]
  21. GiyenkoA. Im ChoY. Intelligent UAV in smart cities using IoT 2016 16th International Conference on Control, Automation and Systems (ICCAS), 2016pp. 207-21010.1109/ICCAS.2016.7832322
    [Google Scholar]
  22. ChaoH. CaoY. ChenY. Autopilots for small fixed-wing unmanned air vehicles: A survey2007 International Conference on Mechatronics and Automation20073144314910.1109/ICMA.2007.4304064
    [Google Scholar]
  23. MorseB.S. EnghC.H. GoodrichM.A. UAV video coverage quality maps and prioritized indexing for wilderness search and rescue2010 5th ACM/IEEE Inter. Conf. Human-Robot Interaction (HRI)2010227234
    [Google Scholar]
  24. YanmazE. CostanzoC. BettstetterC. ElmenreichW. A discrete stochastic process for coverage analysis of autonomous UAV networks”, 2010.IEEE Globecom Workshops201017771782
    [Google Scholar]
  25. ToL. BatiA. HilliardD. Radar cross section measurements of small unmanned air vehicle systems in non-cooperative field environments2009 3rd European Conference on Antennas and Propagation200936373641
    [Google Scholar]
  26. AthreyaA.P. TagueP. Network self-organization in the Internet of Things 2013 IEEE international workshop of internet-of-things networking and control. (IoT-NC)25332013
    [Google Scholar]
  27. SharnyaP. RajJ.S. Self organizing wireless mesh network.International Journal of Innovation and Applied Studies20133486492
    [Google Scholar]
  28. FrewE.W. BrownT.X. Networking issues for small unmanned aircraft systems.J. Intell. Robot. Syst.200954213710.1007/s10846‑008‑9253‑2
    [Google Scholar]
  29. BaillieulJ. AntsaklisP.J. Control and communication challenges in networked real-time systems.Proc. IEEE20079592810.1109/JPROC.2006.887290
    [Google Scholar]
  30. PurohitA. MokayaF. ZhangP. Demo abstract: Collaborative indoor sensing with the SensorFly aerial sensor network", 2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN), 2012pp. 145-14610.1109/IPSN.2012.6920938
    [Google Scholar]
  31. QuaritschM. KrugglK. Wischounig-StruclD. BhattacharyaS. ShahM. RinnerB. Networked UAVs as aerial sensor network for disaster management applications", e & i Elektrotechnik und Informationstechnik1275663201010.1007/s00502‑010‑0717‑2
    [Google Scholar]
  32. BellurB. LewisM. TemplinF. An ad-hoc network for teams of autonomous vehiclesProceedings of the First Annual Symposium on Autonomous Intelligence Networks and Systems200216
    [Google Scholar]
  33. AltawyR. YoussefA.M. Security, privacy, and safety aspects of civilian drones: A survey.ACM Transactions on Cyber-Physical Systems2016112510.1145/3001836
    [Google Scholar]
  34. MarshallD.M. BarnhartR.K. ShappeeE. MostM.T. Introduction to unmanned aircraft systems.Crc Press2015
    [Google Scholar]
  35. HayatS. YanmazE. MuzaffarR. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint.IEEE Comm. Surv. and Tutor.2016182624266110.1109/COMST.2016.2560343
    [Google Scholar]
  36. FrewE.W. BrownT.X. Airborne communication networks for small unmanned aircraft systemsProceedings of the IEEE, vol. 96200810.1109/JPROC.2008.2006127
    [Google Scholar]
  37. LiJ. ZhouY. LamontL. "Communication architectures and protocols for networking unmanned aerial vehicles",In: 2013 IEEE Globecom Workshops(GC Wkshps).201314151420
    [Google Scholar]
  38. WatkinsF.J. HinojosaR.A. OddershedeA.M. Alternative wireless network technology implementation for rural zones.Int. J. Comput. Commun. Control2012816116510.15837/ijccc.2013.1.180
    [Google Scholar]
  39. WangY. ZhaoY.J. Fundamental issues in systematic design of airborne networks for aviation2006 IEEE Aerospace Conference200610.1109/AERO.2006.1655882
    [Google Scholar]
  40. XieJ. WanY. KimJ.H. FuS. NamuduriK. A survey and analysis of mobility models for airborne networks.IEEE Comm. Surv. and Tutor.2013161221123810.1109/SURV.2013.111313.00138
    [Google Scholar]
  41. MorgenthalerS. BraunT. ZhaoZ. StaubT. AnwanderM. UAVNet: A mobile wireless mesh network using unmanned aerial vehicles”, 2012.IEEE Globecom Workshops201216031608
    [Google Scholar]
  42. RosatiS. KrużeleckiK. TraynardL. MobileB.R. “Speed aware routing for UAV ad-hoc networks”, 2013 IEEE Globecom Workshops (GC Wkshps)GC Wkshps136713732013
    [Google Scholar]
  43. SaifullahK. KimK-I. A new geographical routing protocol for heterogeneous aircraft ad hoc networks Speed-aware routing for UAV ad-hoc networks,” in 2013 IEEE Globecom Workshops GC Wkshps2012
    [Google Scholar]
  44. MahmoudM.S.B. LarrieuN. An ADS-B based secure geographical routing protocol for aeronautical ad hoc networks2013 IEEE 37th Annual Computer Software and Applications Conference Workshops, 201310.1109/COMPSACW.2013.74
    [Google Scholar]
  45. VeyQ. PirovanoA. RadzikJ. Performance analysis of routing algorithms in AANET with realistic access layerInternational Workshop on Communication Technologies for Vehicles201617518610.1007/978‑3‑319‑38921‑9_18
    [Google Scholar]
  46. KarpB. KungH-T. GPSR: Greedy perimeter stateless routing for wireless networksProceedings of the 6th annual international conference on Mobile computing and networking200024325410.1145/345910.345953
    [Google Scholar]
  47. IordanakisM. YannisD. KarrasK. BogdosG. DilintasG. AmirfeizM. Ad-hoc routing protocol for aeronautical mobile ad-hoc networksFifth International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)200615
    [Google Scholar]
  48. MedinaD. HoffmannF. AyazS. RokitanskyC-H. Feasibility of an aeronautical mobile ad hoc network over the north atlantic corridor2008 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 200810.1109/SAHCN.2008.23
    [Google Scholar]
  49. TurnadereliI. BekmezciI. Performance comparison of MANET routing protocols for UAV ad hoc networks2013International Symposium on Computing in Science & Engineering. Proceedings, 2013p. 169
    [Google Scholar]
  50. ChroboczekJ. The babel routing protocol10.17487/rfc6126
    [Google Scholar]
  51. ChanK. NirmalU. CheawW. Progress on drone technology and their applications: A comprehensive review", AIP Conference Proceedings
    [Google Scholar]
  52. LiuZ. LiZ. LiuB. FuX. RaptisI. RenK. Rise of mini-drones: Applications and issuesProceedings of the 2015 Workshop on Privacy-Aware Mobile Computing201571210.1145/2757302.2757303
    [Google Scholar]
  53. YaacoubJ-P. SalmanO. Security Analysis of Drones Systems: Attacks, Limitations, and RecommendationsInternet of Things2020
    [Google Scholar]
  54. GuoW. DevineC. WangS. Performance analysis of micro unmanned airborne communication relays for cellular networks014 9th international symposium on communication systems, networks & digital sign (CSNDSP), 201410.1109/CSNDSP.2014.6923909
    [Google Scholar]
  55. HenriksenS. Unmanned aircraft system control and ATC communications bandwidth requirements.NASA2008
    [Google Scholar]
  56. SaleemY. RehmaniM.H. ZeadallyS. Integration of cognitive radio technology with unmanned aerial vehicles: issues, opportunities, and future research challenges.J. Netw. Comput. Appl.201550153110.1016/j.jnca.2014.12.002
    [Google Scholar]
  57. CoifmanB. McCordM. MishalaniR.G. RedmillK. Surface transportation surveillance from unmanned aerial vehiclesProc. of the 83rd Annual Meeting of the Transportation Research Board200428
    [Google Scholar]
  58. JavaidA.Y. SunW. AlamM. “UAVSim: A simulation testbed for unmanned aerial vehicle network cyber security analysis”, 2013 IEEE Globecom Workshops (GC Wkshps).GC Wkshps143214362013
    [Google Scholar]
  59. Federal Aviation AdministrationRegulations & PoliciesAvailable from: https://www.faa.gov/regulations_policies/
    [Google Scholar]
  60. JuulM. Civil drones in the European Union
    [Google Scholar]
  61. StopforthR. Drone licenses-neccesities and requirements.II Ponte201773149156
    [Google Scholar]
  62. CamposV.S. European union policies and civil dronesEthics and Civil Drones.ChamSpringer2018
    [Google Scholar]
  63. MiahA. Regulating dronesDrones: The Brilliant, the Bad and the Beautiful.Emerald Publishing Limited202010.1108/978‑1‑83867‑985‑920201003
    [Google Scholar]
  64. WrightS. Ethical and safety implications of the growing use of civilian drone, UK Parliament Website.Science and Technology Committee2020
    [Google Scholar]
  65. BBC NEWSAre drones dangerous or harmless fun?2015Available from: https://www.bbc.com/news/uk-england-34269585
    [Google Scholar]
  66. AckermanEvan Concept Art Hints at the Awesome Future of Drones.2014Available from: https://spectrum.ieee.org/automaton/robotics/drones/concept-art-hints-at-the-awesome-future-of-drones
    [Google Scholar]
  67. AdamsA.L. SchmidtT.A. NewgardC.D. FederiukC.S. ChristieM. ScorvoS. DeFreestM. Search is a time-critical event: when search and rescue missions may become futile.Wilderness Environ. Med.20071829510110.1580/06‑WEME‑OR‑035R1.117590071
    [Google Scholar]
  68. Sánchez-GarcíaJ. García-CamposJ. ArzamendiaM. ReinaD.G. ToralS. GregorD. A survey on unmanned aerial and aquatic vehicle multi-hop networks: Wireless communications, evaluation tools and applications.Comput. Commun.2018119436510.1016/j.comcom.2018.02.002
    [Google Scholar]
  69. VeyQ. PirovanoA. PuechmorelS. RadzikJ. Performance Assessment of a New Routing Protocol in AANETInternational Workshop on Communication Technologies for Vehicles201731410.1007/978‑3‑319‑56880‑5_1
    [Google Scholar]
  70. RiveraH. Urquiza-AguiarL. CalderónX. ZambranoA. Performance Evaluation of an AANET in Quito’s Control AreaInternational Workshop on Communication Technologies for Vehicles2019738510.1007/978‑3‑030‑25529‑9_7
    [Google Scholar]
  71. GrodiR. RawatD.B. BajracharyaC. Performance evaluation of unmanned aerial vehicle ad hoc networks.SoutheastCon201510.1109/SECON.2015.7133020
    [Google Scholar]
  72. KorneevD. LeonovA. LitvinovG. Estimation of mini-UAVs network parameters for search and rescue operation scenario with Gauss-Markov mobility model 2018 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO)201810.1109/SYNCHROINFO.2018.8457047
    [Google Scholar]
  73. Paul Budde Communication Pty LtdGlobal Smart Infrastructure - Smart Cities and Artificial Intelligence the Way Forward
    [Google Scholar]
  74. YangT. FohC.H. HeliotF. LeowC.Y. ChatzimisiosP. Self-organization drone-based unmanned aerial vehicles (uav) networksICC 2019-2019 IEEE International Conference on Communications (ICC), 201910.1109/ICC.2019.8761876
    [Google Scholar]
  75. GoodchildA. ToyJ. Delivery by drone: An evaluation of unmanned aerial vehicle technology in reducing CO2 emissions in the delivery service industry.Transp. Res. Part D Transp. Environ.201861586710.1016/j.trd.2017.02.017
    [Google Scholar]
  76. CookK.L. The silent force multiplier: The history and role of UAVs in warfare 2007 IEEE Aerospace Conference172007
    [Google Scholar]
  77. LaftaR. Al-NuaimiM.A. BurnhamG. Injury and death during the ISIS occupation of Mosul and its liberation: Results from a 40-cluster household survey.PLoS Med.155 e1002567201810.1371/journal.pmed.100256729763433
    [Google Scholar]
  78. MohammedF. IdriesA. MohamedN. Al-JaroodiJ. JawharI. Opportunities and challenges of using UAVs for dubai smart city6th International Conference on New Technologies, Mobility and Security (NTMS)201410.1109/NTMS.2014.6814041
    [Google Scholar]
  79. ChmajG. SelvarajH. Distributed processing applications for UAV/drones: a survey.Systems Engineering.Springer201510.1007/978‑3‑319‑08422‑0_66
    [Google Scholar]
  80. ViserasA. WiedemannT. ManssC. KaroljV. And Juan MarchalD.S. MarchalJ. Beehive-Inspired Information Gathering with a Swarm of Autonomous Drones.Sensors (Basel)20191919434910.3390/s1919434931597338
    [Google Scholar]
  81. PatrikA. UtamaG. GunawanA.A.S. ChowandaA. SurosoJ.S. ShofiyantiR. GNSS-based navigation systems of autonomous drone for delivering items.J. Big Data201965310.1186/s40537‑019‑0214‑3
    [Google Scholar]
  82. KurdiH.A. AloboudE. AlalwanM. AlhassanS. AlotaibiE. BautistaG. Autonomous task allocation for multi-UAV systems based on the locust elastic behavior.Appl. Soft Comput.20187111012610.1016/j.asoc.2018.06.006
    [Google Scholar]
  83. COMETS ProjectReal-time coordination and control of multiple heterogeneous unmanned aerial vehicles Available from: http://www.comets-uavs.org/
    [Google Scholar]
  84. Suaave.org, The SUAAVE consortium., 2020. 2020Available from: http://web4.cs.ucl.ac.uk/research/suaave/
  85. MairajA. BabaA.I. JavaidA.Y. Application specific drone simulators: Recent advances and challenges.Simul. Model. Pract. Theory20199410011710.1016/j.simpat.2019.01.004
    [Google Scholar]
  86. ARCASThe ARCAS project.2020Available from: http://www.arcas-project.eu/
    [Google Scholar]
  87. WillmannJ. AugugliaroF. CadalbertT. D’AndreaR. GramazioF. KohlerM. Aerial robotic construction towards a new field of architectural research.Int. J. Archit. Comput.20121043945910.1260/1478‑0771.10.3.439
    [Google Scholar]
  88. CORDISCLOSE-SEARCH: Accurate and safe EGNOS-SoL navigation for UAV-based low-cost SAR operations", Available from: https://cordis.europa.eu/project/id/248137
    [Google Scholar]
  89. MarconiL. MelchiorriC. BeetzM. PangercicD. SiegwartR. LeuteneggerS. The SHERPA project: Smart collaboration between humans and ground-aerial robots for improving rescuing activities in alpine environments2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)20121410.1109/SSRR.2012.6523905
    [Google Scholar]
  90. ITEC - Institute of Information Technology, SINUS: Selforganizing Intelligent Network of UAVs., 2020. Available from: https://itec.aau.at/item/sinus/
  91. CORDISPortable Kit for Detecting Trapped and Buried People in Ruins and Avalanches.2020 Available from: https://cordis.europa.eu/project/id/315007
    [Google Scholar]
  92. YanmazE. KuschnigR. BettstetterC. Achieving air-ground communications in 802.11 networks with three-dimensional aerial mobility2013 Proceedings IEEE INFOCOM., pp. 120-124, 2013.
    [Google Scholar]
  93. Google project wing., "Project wing", Available from: https://sites.google.com/site/googprojectwing/
  94. AckermanE. Amazon Promises Package Delivery By Drone: Is It for Real?.", Available from https://spectrum.ieee.org/automaton/robotics/drones/amazon-prime-air-package-drone-delivery
    [Google Scholar]
  95. Ackerman E.Matternet Wants to Deliver Meds with a Network of Quadrotors. 2020Available from: https://spectrum.ieee.org/automaton/robotics/medical-robots/mini-uavs-could-be-the-cheapest-way-to-deliver-medicine
    [Google Scholar]
  96. BernardM. KondakK. Generic slung load transportation system using small size helicopters2009 IEEE International Conference on Robotics and Automation>20093258326410.1109/ROBOT.2009.5152382
    [Google Scholar]
  97. YenneB. Attack of the drones: A history of unmanned aerial combat.Zenith Imprint2004
    [Google Scholar]
  98. ClarkeR. Understanding the drone epidemic.Comput. Law Secur. Rev.20143023024610.1016/j.clsr.2014.03.002
    [Google Scholar]
  99. BrownT.X. DoshiS. JadhavS. HenkelD. ThekkekunnelR-G. A full scale wireless ad hoc network test bed.Proceedings of ISART2005055160
    [Google Scholar]
  100. JohnsonD.B. MaltzD.A. Dynamic source routing in ad hoc wireless networksMobile computing.Springer199610.1007/978‑0‑585‑29603‑6_5
    [Google Scholar]
  101. KhareV.R. WangF.Z. WuS. DengY. ThompsonC. Ad-hoc network of unmanned aerial vehicle swarms for search & destroy tasks2008 4th International IEEE Conference Intelligent Systems200810.1109/IS.2008.4670440
    [Google Scholar]
  102. HylandM. MullinsB.E. BaldwinR.O. TempleM.A. Simulation-based performance evaluation of mobile ad hoc routing protocols in a swarm of unmanned aerial vehicles21st International Conference on Advanced Information Networking and Applications Workshops (AINAW’07)200724925610.1109/AINAW.2007.336
    [Google Scholar]
  103. ShiraniR. St-HilaireM. KunzT. ZhouY. LiJ. LamontL. The performance of greedy geographic forwarding in unmanned aeronautical ad-hoc networks 2011 Ninth Annual Communication Networks and Services Research Conference201116116610.1109/CNSR.2011.31
    [Google Scholar]
  104. HadiwardoyoS.A. DricotJ-M. CalafateC.T. CanoJ-C. Hernandez-OralloE. ManzoniP. Uav mobility model for dynamic uav-to-car communications", Proceedings of the 16th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, 2019pp. 1-6 10.1145/3345860.3361517
    [Google Scholar]
  105. NawazH. AliH.M. A study of mobility models for UAV communication networks"3C Tecnología. Glosas de innovación aplicadas a la pyme, 201910.17993/3ctecno.2019.specialissue2.276‑297
    [Google Scholar]
  106. BettstetterC. HartensteinH. Pérez-CostaX. Stochastic properties of the random waypoint mobility model.Wirel. Netw.20041055556710.1023/B:WINE.0000036458.88990.e5
    [Google Scholar]
  107. BiomoJ-D.M.M. KunzT. St-HilaireM. An enhanced Gauss-Markov mobility model for simulations of unmanned aerial ad hoc networks7th IFIP Wireless and Mobile Networking Conference (WMNC)201410.1109/WMNC.2014.6878879
    [Google Scholar]
  108. BouachirO. AbrassartA. GarciaF. LarrieuN. “A mobility model for UAV ad hoc network”, 2014 international conference on unmanned aircraft systems.ICUAS3833882014
    [Google Scholar]
  109. KuiperE. Nadjm-TehraniS. Mobility models for UAV group reconnaissance applications2006 International Conference on Wireless and Mobile Communications (ICWMC’06)2006333310.1109/ICWMC.2006.63
    [Google Scholar]
  110. Sanchez-GarciaJ. Garcia-CamposJ. ToralS. ReinaD. BarreroF. A self organising aerial ad hoc network mobility model for disaster scenarios2015 International Conference on Developments of E-Systems Engineering (DeSE)2015354010.1109/DeSE.2015.12
    [Google Scholar]
  111. ShahB. KimK-I. A survey on three-dimensional wireless ad hoc and sensor networks.Int. J. Distrib. Sens. Netw.10616014201410.1155/2014/616014
    [Google Scholar]
  112. GhoshS. NayakA. ACPM: An associative connectivity prediction model for AANET2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN)201660561010.1109/ICUFN.2016.7537104
    [Google Scholar]
  113. ShenC. ChangT-H. GongJ. ZengY. ZhangR. Multi-UAV interference coordination via joint trajectory and power control.IEEE Trans. Signal Process.20206884385810.1109/TSP.2020.2967146
    [Google Scholar]
  114. AlejoD. CobanoJ.A. HerediaG. OlleroA. Collision-free 4D trajectory planning in Unmanned Aerial Vehicles for assembly and structure construction.J. Intell. Robot. Syst.20147378379510.1007/s10846‑013‑9948‑x
    [Google Scholar]
  115. SrinivasanS. LatchmanH. SheaJ. WongT. McNairJ. Airborne traffic surveillance systems: video surveillance of highway trafficProceedings of the ACM 2nd international workshop on Video surveillance & sensor networks, 2004pp. 131-13510.1145/1026799.1026821
    [Google Scholar]
  116. RoK. OhJ-S. DongL. Lessons learned: Application of small uav for urban highway traffic monitoring45th AIAA aerospace sciences meeting and exhibit, 200710.2514/6.2007‑596
    [Google Scholar]
  117. GranlundG. NordbergK. WiklundJ. DohertyP. SkarmanE. SandewallE. Witas: An intelligent autonomous aircraft using active visionUAV 2000 International Technical Conference and Exhibition 2000
    [Google Scholar]
  118. YanmazE. GucluH. Stationary and mobile target detection using mobile wireless sensor networks2010 2010 INFOCOM IEEE Conference on Computer Communications Workshops20101510.1109/INFCOMW.2010.5466620
    [Google Scholar]
  119. GilA.E. PassinoK.M. CruzJ.B.Jr Stable cooperative surveillance with information flow constraints.IEEE Trans. Contr. Syst. Technol.20081685686810.1109/TCST.2007.916329
    [Google Scholar]
  120. OlssonP-M. KvarnströmJ. DohertyP. BurdakovO. HolmbergK. Generating UAV communication networks for monitoring and surveillance 2010 11th international conference on control automation robotics & vision, 201010.1109/ICARCV.2010.5707968
    [Google Scholar]
  121. SchleichJ. PanchapakesanA. DanoyG. BouvryP. UAV fleet area coverage with network connectivity constraintProceedings of the 11th ACM international symposium on Mobility management and wireless access201313113810.1145/2508222.2508225
    [Google Scholar]
  122. CorcoranM. Drone Journalism: Newsgathering applications of Unmanned Aerial Vehicles (UAVs) in covering conflict, civil unrest and disaster., vol.AdelaideFlinders University2014 201202014
    [Google Scholar]
  123. AbdelkaderM. ShaquraM. ClaudelC.G. GueaiebW. A UAV based system for real time flash flood monitoring in desert environments using Lagrangian microsensors2013 International Conference on Unmanned Aircraft Systems (ICUAS)2013253410.1109/ICUAS.2013.6564670
    [Google Scholar]
  124. CasbeerD.W. BeardR.W. McLainT.W. LiS-M. MehraR.K. Forest fire monitoring with multiple small UAVs", Proceedings of the 2005, 2005American Control Conference20053530353510.1109/ACC.2005.1470520
    [Google Scholar]
  125. ZengY. XuJ. ZhangR. Energy minimization for wireless communication with rotary-wing UAV.IEEE Trans. Wirel. Commun.2019182329234510.1109/TWC.2019.2902559
    [Google Scholar]
  126. AugugliaroF. MirjanA. GramazioF. KohlerM. D’AndreaR. Building tensile structures with flying machines 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems20133487349210.1109/IROS.2013.6696853
    [Google Scholar]
  127. LindseyQ. MellingerD. KumarV. Construction with quadrotor teams.Auton. Robots20123332333610.1007/s10514‑012‑9305‑0
    [Google Scholar]
  128. TomicT. SchmidK. LutzP. DomelA. KasseckerM. MairE. Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue.IEEE Robot. Autom. Mag.201219465610.1109/MRA.2012.2206473
    [Google Scholar]
  129. WaharteS. TrigoniN. JulierS. Coordinated search with a swarm of UAVs6th IEEE annual communications society conference on sensor, mesh and ad hoc communications and networks workshops, 200910.1109/SAHCNW.2009.5172925
    [Google Scholar]
  130. BergerJ. HappeJ. Co-evolutionary search path planning under constrained information-sharing for a cooperative unmanned aerial vehicle teamIEEE Congress on Evolutionary Computation20101810.1109/CEC.2010.5586369
    [Google Scholar]
  131. GoodrichM.A. MorseB.S. GerhardtD. CooperJ.L. QuigleyM. AdamsJ.A. Supporting wilderness search and rescue using a camera‐equipped mini UAV.J. Field Robot.2008258911010.1002/rob.20226
    [Google Scholar]
  132. GhafoorS. SuttonP.D. SreenanC.J. BrownK.N. Cognitive radio for disaster response networks: survey, potential, and challenges.IEEE Wirel. Commun.201421708010.1109/MWC.2014.6940435
    [Google Scholar]
  133. PuriA. A survey of unmanned aerial vehicles (UAV) for traffic surveillance.Department of computer science and engineering.University of South Florida2005129
    [Google Scholar]
  134. HormigoT. AraújoJ. A micro-UAV system for forest management.Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci201340211216[ISPRS Archives10.5194/isprsarchives‑XL‑1‑W2‑211‑2013
    [Google Scholar]
  135. ZhaoN. LuW. ShengM. ChenY. TangJ. YuF.R. UAV-assisted emergency networks in disasters.IEEE Wirel. Commun.201926455110.1109/MWC.2018.1800160
    [Google Scholar]
  136. SchererJ. YahyanejadS. HayatS. YanmazE. AndreT. KhanA. An autonomous multi-UAV system for search and rescueProceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use2015333810.1145/2750675.2750683
    [Google Scholar]
  137. SujitP. GhoseD. Search using multiple UAVs with flight time constraints.IEEE Trans. Aerosp. Electron. Syst.20044049150910.1109/TAES.2004.1310000
    [Google Scholar]
  138. Berger Ronald CARGO DRONES: THE FUTURE OF PARCEL DELIVERY", Available from: https://www.rolandberger.com/en/Point-of-View/Cargo-drones-The-future-of-parcel-delivery.html
    [Google Scholar]
  139. DHL, "UNMANNED AERIAL VEHICLES Ready for Take-off?",Available from: https://www.dhl.com/global-en/home/insights-and-innovation/thought-leadership/trend-reports/unmanned-aerial-vehicles.html
    [Google Scholar]
  140. CargoUnmanned Pizza Pie in the Sky! – A Brief History of the Goal to Use Drones to Deliver Pizzas", Available from: http://unmannedcargo.org/pizza-pie-in-the-sky-the-use-of-drones-to-deliver-pizzas-commercially/
    [Google Scholar]
  141. THE MORNING ADVERTISER"BrewDog ‘exploring drone delivery’ in UK"Available from: https://www.morningadvertiser.co.uk/Article/2020/06/17/BrewDog-exploring-drone-delivery-in-UK
    [Google Scholar]
  142. D’AndreaR. Guest editorial can drones deliver?IEEE Trans. Autom. Sci. Eng.20141164764810.1109/TASE.2014.2326952
    [Google Scholar]
  143. KuruK. AnsellD. KhanW. YetginH. Analysis and optimization of unmanned aerial vehicle swarms in logistics: An intelligent delivery platform. IEEE Access 71580415831201910.1109/ACCESS.2019.2892716
    [Google Scholar]
  144. Boletín Oficial del Estado (BOE)"Royal Decree-Law 8/2014, of July 4, approving urgent measures for growth, competitiveness and efficiency",Available from: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2014-7064
    [Google Scholar]
  145. HayatS. YanmazE. BettstetterC. Experimental analysis of multipoint-to-point UAV communications with IEEE 802.11 n and 802.11 ac2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015pp. 1991-1996
    [Google Scholar]
/content/journals/cccs/10.2174/2665997201666210218232040
Loading
/content/journals/cccs/10.2174/2665997201666210218232040
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AANET; aircraft; drones; FANET; self-organizing; Smart city; UAV
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test