Skip to content
2000
Volume 1, Issue 2
  • ISSN: 2665-9972
  • E-ISSN: 2665-9964

Abstract

Genome-wide Association Studies (GWAS) give special insight into genetic differences and environmental influences that are part of different human disorders and provide prognostic help to increase the survival of patients. Lung diseases such as lung cancer, asthma, and tuberculosis are detected by analyzing Single Nucleotide Polymorphism (SNP) genetic variations. The key causes of lung-related diseases are genetic factors, environmental and social behaviors.

The epistasis effects act as a blueprint for the researchers to observe the genetic variation associated with lung diseases. The manual examination of the enormous genetic interactions is complicated to detect the lung syndromes for diagnosis of acute respiratory diseases. Due to its importance, several computational approaches have been modeled to infer epistasis effects. This article includes a comprehensive and multifaceted review of all the relevant genetic studies published between 2006 and 2020. In this critical review, various computational approaches are extensively discussed in detecting respondent epistasis effects for various lung diseases such as asthma, tuberculosis, lung cancer, and nicotine drug dependence.

The analysis shows that different computational models identified candidate genes such as CHRNA4, CHRNB2, BDNF, TAS2R16, TAS2R38, BRCA1, BRCA2, RAD21, IL4Ra, IL-13 and IL-1β, have important causes for genetic variants linked to pulmonary disease. These computational approaches' strengths and limitations are described. The issues behind the computational methods while identifying the lung diseases through epistasis effects and the parameters used by various researchers for their evaluation are also presented.

Loading

Article metrics loading...

/content/journals/cccs/10.2174/2665997201666210125091915
2021-10-01
2025-01-14
Loading full text...

Full text loading...

References

  1. National Institute of Environmental Science, "Lung Diseases", National Institute of Environmental ScienceAvaiable from: www.niehs.nih.gov/health/topics/conditions/lung-disease/index.cfm
  2. PetersM.H. An extended liouville equation for variable particle number systems"avxiv, 1998
    [Google Scholar]
  3. UppuS. KrishnaA. GopalanR. “A review of machine learning and statistical approaches for detecting SNP interactions in high-dimensional genomic data”, IEEE/ACM Trans.Comput. Biol. Bioinforma.20161199
    [Google Scholar]
  4. VisscherP.M. BrownM.A. McCarthyM.I. YangJ. Five years of GWAS discovery.Am. J. Hum. Genet.201290172410.1016/j.ajhg.2011.11.029 22243964
    [Google Scholar]
  5. AltshulerD. Integrating common and rare genetic variation in diverse human populations.Nature2010467525810.1038/nature09298 20811451
    [Google Scholar]
  6. RitchieM.D. Reducing Dimensionality in the Search for Gene-Gene Interactions.Elsevier Inc.201410.1016/B978‑0‑12‑397017‑6.00002‑7
    [Google Scholar]
  7. MooreJ.H. WilliamsS.M. New strategies for identifying gene-gene interactions in hypertension.Ann. Med.2002342889510.1080/07853890252953473 12108579
    [Google Scholar]
  8. "Genetics Home reference, “What Are Single Nucleotide Polymorphisms (SNPs)?", Avaiable from: ghr.nlm.nih.gov/primer/genomicresearch/snp
  9. VanderWeeleT.J. Epistatic interactions.Stat. Appl. Genet. Mol. Biol.20109110.2202/1544‑6115.1517 20196744
    [Google Scholar]
  10. NielC. SinoquetC. DinaC. RocheleauG. A survey about methods dedicated to epistasis detection.Front. Genet.2015628510.3389/fgene.2015.00285 26442103
    [Google Scholar]
  11. RitchieM.D. HahnL.W. RoodiN. BaileyL.R. DupontW.D. ParlF.F. MooreJ.H. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer.Am. J. Hum. Genet.200169113814710.1086/321276 11404819
    [Google Scholar]
  12. MooreJ.H. GilbertJ.C. TsaiC.T. ChiangF.T. HoldenT. BarneyN. WhiteB.C. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility.J. Theor. Biol.2006241225226110.1016/j.jtbi.2005.11.036 16457852
    [Google Scholar]
  13. LiY. WuB. XiongH. ZhuC. ZhangL. Polymorphisms of STAT-6, STAT-4 and IFN-γ genes and the risk of asthma in Chinese population.Respir. Med.200710191977198110.1016/j.rmed.2007.04.006 17532201
    [Google Scholar]
  14. CaoG. LuH. FengJ. ShuJ. ZhengD. HouY. Lung cancer risk associated with Thr495Pro polymorphism of GHR in Chinese population.Jpn. J. Clin. Oncol.200838430831610.1093/jjco/hyn007 18299312
    [Google Scholar]
  15. SuM.W. TungK.Y. LiangP.H. TsaiC.H. KuoN.W. LeeY.L. Gene-gene and gene-environmental interactions of childhood asthma: a multifactor dimension reduction approach.PLoS One72e30694201210.1371/journal.pone.0030694 22355322
    [Google Scholar]
  16. CollinsR.L. HuT. WejseC. SirugoG. WilliamsS.M. MooreJ.H. Multifactor dimensionality reduction reveals a three-locus epistatic interaction associated with susceptibility to pulmonary tuberculosis.BioData Min.201361410.1186/1756‑0381‑6‑4 23418869
    [Google Scholar]
  17. MeenakshiP. RamyaS. ShruthiT. LavanyaJ. MohammedH.H. MohammedS.A. VijayalakshmiV. SumanlathaG. Association of IL-1β +3954 C/T and IL-10-1082 G/A cytokine gene polymorphisms with susceptibility to tuberculosis.Scand. J. Immunol.2013781929710.1111/sji.12055 23654353
    [Google Scholar]
  18. SinghA. SinghN. BeheraD. SharmaS. Association and multiple interaction analysis among five XRCC1 polymorphic variants in modulating lung cancer risk in North Indian population.DNA Repair (Amst.)201647304110.1016/j.dnarep.2016.09.006 27707541
    [Google Scholar]
  19. MarcusM.W. RajiO.Y. DuffyS.W. YoungR.P. HopkinsR.J. FieldJ.K. Incorporating epistasis interaction of genetic susceptibility single nucleotide polymorphisms in a lung cancer risk prediction model.Int. J. Oncol.201649136137010.3892/ijo.2016.3499 27121382
    [Google Scholar]
  20. ZhangM. WangJ. WangY. WuS. SandfordA.J. LuoJ. HeJ.Q. Association of the TLR1 variant rs5743557 with susceptibility to tuberculosis.J. Thorac. Dis.201911258359410.21037/jtd.2019.01.74 30963003
    [Google Scholar]
  21. LouX.Y. ChenG.B. YanL. MaJ.Z. ZhuJ. ElstonR.C. LiM.D. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence.Am. J. Hum. Genet.20078061125113710.1086/518312 17503330
    [Google Scholar]
  22. LiM.D. LouX.Y. ChenG. MaJ.Z. ElstonR.C. Gene-gene interactions among CHRNA4, CHRNB2, BDNF, and NTRK2 in nicotine dependence.Biol. Psychiatry2008641195195710.1016/j.biopsych.2008.04.026 18534558
    [Google Scholar]
  23. ChenG.B. LiuN. KlimentidisY.C. ZhuX. ZhiD. WangX. LouX.Y. A unified GMDR method for detecting gene-gene interactions in family and unrelated samples with application to nicotine dependence.Hum. Genet.2014133213915010.1007/s00439‑013‑1361‑9 24057800
    [Google Scholar]
  24. LouX.Y. ChenG.B. YanL. MaJ.Z. MangoldJ.E. ZhuJ. ElstonR.C. LiM.D. A combinatorial approach to detecting gene-gene and gene-environment interactions in family studies.Am. J. Hum. Genet.200883445746710.1016/j.ajhg.2008.09.001 18834969
    [Google Scholar]
  25. ChenG.B. ZhuJ. LouX.Y. A faster pedigree-based generalized multifactor dimensionality reduction method for detecting gene-gene interactions.Stat. Interface20114329530410.4310/SII.2011.v4.n3.a4 21927640
    [Google Scholar]
  26. XuH.M. SunX.W. QiT. LinW.Y. LiuN. LouX.Y. Multivariate dimensionality reduction approaches to identify gene-gene and gene-environment interactions underlying multiple complex traits.PLoS One99e108103201410.1371/journal.pone.0108103 25259584
    [Google Scholar]
  27. LouX.Y. UGMDR: a unified conceptual framework for detection of multifactor interactions underlying complex traits.Heredity2015114325526110.1038/hdy.2014.94 25335557
    [Google Scholar]
  28. LuyapanJ. JiX. ZhuD. MackenzieT.A. AmosC.I. GuiJ. An efficient survival multifactor dimensionality reduction method for detecting gene-gene interactions of lung cancer onset ageProc. 2018 IEEE Int. Conf. Bioinforma. Biomed. BIBM, vol. 2019, pp. 2779-2781, 2019.
    [Google Scholar]
  29. LuyapanJ. JiX. LiS. XiaoX. ZhuD. DuellE.J. ChristianiD.C. SchabathM.B. ArnoldS.M. ZienolddinyS. BrunnströmH. MelanderO. ThornquistM.D. MacKenzieT.A. AmosC.I. GuiJ. A new efficient method to detect genetic interactions for lung cancer GWAS.BMC Med. Genomics202013116210.1186/s12920‑020‑00807‑9 33126877
    [Google Scholar]
  30. MusaniS.K. ShrinerD. LiuN. FengR. CoffeyC.S. YiN. TiwariH.K. AllisonD.B. Detection of gene x gene interactions in genome-wide association studies of human population data.Hum. Hered.2007632678410.1159/000099179 17283436
    [Google Scholar]
  31. MillsteinJ. ContiD.V. GillilandF.D. GaudermanW.J. A testing framework for identifying susceptibility genes in the presence of epistasis.Am. J. Hum. Genet.2006781152710.1086/498850 16385446
    [Google Scholar]
  32. BoulesteixA.L. StroblC. WeidingerS. WichmannH.E. WagenpfeilS. Multiple testing for SNP-SNP interactions.Stat. Appl. Genet. Mol. Biol.61e37200710.2202/1544‑6115.1315 18171321
    [Google Scholar]
  33. ShabalinA.A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations.Bioinformatics201228101353135810.1093/bioinformatics/bts163 22492648
    [Google Scholar]
  34. ZhuR. ZhaoH. MaS. Identifying gene-environment and gene-gene interactions using a progressive penalization approach.Genet. Epidemiol.201438435336810.1002/gepi.21807 24723356
    [Google Scholar]
  35. WangD. YangY. XuJ. ZhouZ-K. YuH-Y. Association of CD14 -159 (-260C/T) polymorphism and asthma risk: an updated genetic meta-analysis study.Medicine (Baltimore)20169539e4959e495910.1097/MD.0000000000004959 27684840
    [Google Scholar]
  36. LinJ. Genetic polymorphisms in the apoptosis-associated gene casp3 and the risk of lung cancer in chinese population.PLoS One1110, e0164358.201610.1371/journal.pone.0164358
    [Google Scholar]
  37. YucesoyB. KashonM.L. JohnsonV.J. LummusZ.L. FluhartyK. GautrinD. CartierA. BouletL.P. SastreJ. QuirceS. TarloS.M. CruzM.J. MunozX. LusterM.I. BernsteinD.I. Genetic variants in TNFα, TGFB1, PTGS1 and PTGS2 genes are associated with diisocyanate-induced asthma.J. Immunotoxicol.201613111912610.3109/1547691X.2015.1017061 25721048
    [Google Scholar]
  38. LiL. LiY. ZengX.C. LiJ. DuX.Y. Role of interleukin-4 genetic polymorphisms and environmental factors in the risk of asthma in children.Genet. Mol. Res.201615410.4238/gmr15048873 27819719
    [Google Scholar]
  39. LauM.Y. DharmageS.C. BurgessJ.A. WinA.K. LoweA.J. LodgeC. PerretJ. HuiJ. ThomasP.S. MorrisonS. GilesG.G. HopperJ. AbramsonM.J. WaltersE.H. MathesonM.C. The interaction between farming/rural environment and TLR2, TLR4, TLR6 and CD14 genetic polymorphisms in relation to early- and late-onset asthma.Sci. Rep.201774368110.1038/srep43681 28262750
    [Google Scholar]
  40. FornoE. SordilloJ. BrehmJ. ChenW. BenosT. YanQ. AvilaL. Soto-QuirósM. CloutierM.M. Colón-SemideyA. AlvarezM. Acosta-PérezE. WeissS.T. LitonjuaA.A. CaninoG. CeledónJ.C. Genome-wide interaction study of dust mite allergen on lung function in children with asthma.J. Allergy Clin. Immunol.201714049961003.e710.1016/j.jaci.2016.12.967 28167095
    [Google Scholar]
  41. WuM. HuangJ. MaS. Identifying gene-gene interactions using penalized tensor regression.Stat. Med.201837459861010.1002/sim.7523 29034516
    [Google Scholar]
  42. OsmanA. AminM. MohamedH. AbdelazizO. IbrahimM. Genetic Susceptibility to Asthma and Genetic Interactions in the 5q31- q33 and 16p11 Regions in sudanese families immunome research.Immunome Res.201814313410.4172/1745‑7580.1000151
    [Google Scholar]
  43. LiJ. LiH. LvX. YangZ. GaoM. BiY. ZhangZ. WangS. CuiZ. ZhouB. YinZ. Polymorphism in lncRNA AC016683.6 and its interaction with smoking exposure on the susceptibility of lung cancer.Cancer Cell Int.2018189110.1186/s12935‑018‑0591‑2 29997452
    [Google Scholar]
  44. GaertnerV.D. MichelS. CurtinJ.A. PulkkinenV. AcevedoN. SöderhällC. von BergA. BufeA. LaubO. RietschelE. HeinzmannA. SimmaB. VogelbergC. PershagenG. MelénE. SimpsonA. CustovicA. KereJ. KabeschM. Nocturnal asthma is affected by genetic interactions between RORA and NPSR1.Pediatr. Pulmonol.201954684785710.1002/ppul.24292 30927345
    [Google Scholar]
  45. ShaoJ. YangX. RenD. LuoY. LaiW. A genetic variation in CHI3L1 is associated with bronchial asthma.Arch. Physiol. Biochem.2019Jul1610.1080/13813455.2019.1634737 31295039
    [Google Scholar]
  46. JinH-S. ChoJ-E. ParkS. Association between CD53 genetic polymorphisms and tuberculosis cases.Genes Genomics201941438939510.1007/s13258‑018‑0764‑3 30506122
    [Google Scholar]
  47. UhS-T. ParkJ.S. KooS.M. KimY.K. KimK.U. KimM.A. ShinS.W. SonJ.H. ParkH.W. ShinH.D. ParkC.S. ChangH.S. Association of genetic variants of NLRP4 with exacerbation of asthma: The effect of smoking.DNA Cell Biol.2019381768410.1089/dna.2018.4433 30526007
    [Google Scholar]
  48. LiW. JiaM.X. WangJ.H. LuJ.L. DengJ. TangJ.X. LiuC. Association of MMP9-1562C/T and MMP13-77A/G Polymorphisms with Non-small cell lung cancer in southern chinese population.Biomolecules93, E107.201910.3390/biom9030107 30889876
    [Google Scholar]
  49. Sastre TomasJ. CardenasJ. Heine SuñerD. CapriottiE. Detecting cancer-associated epistatic gene variants in lung adenocarcinoma.IWBBIO20182521
    [Google Scholar]
  50. LiY. XiaoX. BosséY. GorlovaO. GorlovI. HanY. ByunJ. LeighlN. JohansenJ.S. BarnettM. ChenC. GoodmanG. CoxA. TaylorF. WollP. WichmannH.E. ManzJ. MuleyT. RischA. RosenbergerA. HanJ. SiminovitchK. ArnoldS.M. HauraE.B. BolcaC. HolcatovaI. JanoutV. KonticM. LissowskaJ. MukeriaA. OgnjanovicS. OrlowskiT.M. SceloG. SwiatkowskaB. ZaridzeD. BakkeP. SkaugV. ZienolddinyS. DuellE.J. ButlerL.M. HoulstonR. ArtigasM.S. GrankvistK. JohanssonM. ShepherdF.A. MarcusM.W. BrunnströmH. ManjerJ. MelanderO. MullerD.C. OvervadK. TrichopoulouA. TuminoR. LiuG. BojesenS.E. WuX. Le MarchandL. AlbanesD. BickeböllerH. AldrichM.C. BushW.S. TardonA. RennertG. TeareM.D. FieldJ.K. KiemeneyL.A. LazarusP. HaugenA. LamS. SchabathM.B. AndrewA.S. BertazziP.A. PesatoriA.C. ChristianiD.C. CaporasoN. JohanssonM. McKayJ.D. BrennanP. HungR.J. AmosC.I. Genetic interaction analysis among oncogenesis-related genes revealed novel genes and networks in lung cancer development.Oncotarget201910191760177410.18632/oncotarget.26678 30956756
    [Google Scholar]
  51. TylerA. MahoneyJ. CarterG. Genetic interactions affect lung function in patients with systemic sclerosis G3-Genes Genomes Genet11511632020
    [Google Scholar]
  52. TangD. Genetic variants of BIRC3 and NRG1 in the NLRP3 inflammasome pathway are associated with non-small cell lung cancer survival", Am. J. Cancer Res., vol. 10, 2020 no. 8, pp. 2582-2595, 2020. https://pubmed.ncbi.nlm.nih.gov/32905523
    [Google Scholar]
  53. WuY. Novel genetic variants of KIR3DL2 and PVR involved in immunoregulatory interactions are associated with non-small cell lung cancer survival.American j. Cancer Res.202010617701784 http://europepmc.org/abstract/MED/32642289
    [Google Scholar]
  54. MagañaJ. ContrerasM.G. KeysK.L. Risse-AdamsO. GoddardP.C. ZeigerA.M. MakA.C.Y. ElhawaryJ.R. Samedy-BatesL.A. LeeE. ThakurN. HuD. EngC. SalazarS. HuntsmanS. HuT. BurchardE.G. WhiteM.J. An epistatic interaction between pre-natal smoke exposure and socioeconomic status has a significant impact on bronchodilator drug response in African American youth with asthma.BioData Min.202013710.1186/s13040‑020‑00218‑7 32636926
    [Google Scholar]
  55. MagañaJ. Pairwise and higher-order epistatic interactions have a significant impact on bronchodilator drug response in african american youth with asthma.bioRxiv2020
    [Google Scholar]
  56. KudhairB.K. AlabidN.N. ZayedK.S. LaftaI.J. Taheri-KafraniA. The correlation of combined OGG1, CYP1A1 and GSTP1 gene variants and risk of lung cancer of male Iraqi waterpipe tobacco smokers.Mol. Biol. Rep.20204775155516310.1007/s11033‑020‑05589‑y 32577993
    [Google Scholar]
  57. AkparovaA. AripovaA. AbishevM. KazhiyakhmetovaB. PirmanovaA. BersimbaevR. An investigation of the association between ADRB2 gene polymorphisms and asthma in Kazakh population.Clin. Respir. J.202014651452010.1111/crj.13160 32034992
    [Google Scholar]
  58. SuC. AndrewA. KaragasM.R. BorsukM.E. Using Bayesian networks to discover relations between genes, environment, and disease.BioData Min.201361610.1186/1756‑0381‑6‑6 23514120
    [Google Scholar]
  59. WakefieldJ. De VochtF. HungR.J. Bayesian mixture modeling of gene-environment and gene-gene interactions.Genet. Epidemiol.2010341162510.1002/gepi.20429 19492346
    [Google Scholar]
  60. QinX. MaS. WuM. Gene-gene interaction analysis incorporating network information via a structured Bayesian approach", avxiv2021 http://arxiv.org/abs/2010.10960
    [Google Scholar]
  61. AssarehA. VolkertL.G. LiJ. Interaction Trees: Optimizing Ensembles of Decision Trees for Gene-Gene Interaction Detections 201211th International Conference on Machine Learning and Applications2012 161662110.1109/ICMLA.2012.114
    [Google Scholar]
  62. De LobelL. GeurtsP. BaeleG. Castro-GinerF. KogevinasM. Van SteenK. A screening methodology based on Random Forests to improve the detection of gene-gene interactions.Eur. J. Hum. Genet.201018101127113210.1038/ejhg.2010.48 20461113
    [Google Scholar]
  63. BaryshnikovaA. CostanzoM. MyersC.L. AndrewsB. BooneC. Genetic interaction networks: toward an understanding of heritability.Annu. Rev. Genomics Hum. Genet.20131411113310.1146/annurev‑genom‑082509‑141730 23808365
    [Google Scholar]
  64. MairB. MoffatJ. BooneC. AndrewsB.J. Genetic interaction networks in cancer cells.Curr. Opin. Genet. Dev.201954647210.1016/j.gde.2019.03.002 30974317
    [Google Scholar]
  65. MontojoJ. ZuberiK. RodriguezH. BaderG.D. MorrisQ. GeneMANIA: Fast gene network construction and function prediction for Cytoscape.F1000 Res.2014315310.12688/f1000research.4572.1 25254104
    [Google Scholar]
  66. AutonA. BrooksL.D. DurbinR.M. GarrisonE.P. KangH.M. KorbelJ.O. MarchiniJ.L. McCarthyS. McVeanG.A. AbecasisG.R. A global reference for human genetic variation.Nature20155267571687410.1038/nature15393 26432245
    [Google Scholar]
  67. AflakparastM. SalimiH. GeramiA. DubéM.P. VisweswaranS. Masoudi-NejadA. Cuckoo search epistasis: a new method for exploring significant genetic interactions.Heredity2014112666667410.1038/hdy.2014.4 24549111
    [Google Scholar]
  68. YuanL. YuanC.A. HuangD.S. FAACOSE: A fast adaptive ant colony optimization algorithm for detecting SNP EpistasisComplexity, vol. 2017, 2017.10.1155/2017/5024867
    [Google Scholar]
  69. ShenY. LiuZ. OttJ. Detecting gene-gene interactions using support vector machines with L 1 penalty2010 IEEE Int. Conf. Bioinforma. Biomed. Work. BIBMW, 2010, pp. 309-311.10.1109/BIBMW.2010.5703819
    [Google Scholar]
  70. MarzoukiB. Belkahla DrissO. GhédiraK. Multi-agent model based on combination of chemical reaction optimisation metaheuristic with Tabu search for flexible job shop scheduling problem.Int. J. Intell. Eng. Informatics2018624210.1504/IJIEI.2018.091875
    [Google Scholar]
  71. CaoX. YuG. LiuJ. JiaL. WangJ. ClusterMI: Detecting high-order SNP interactions based on clustering and mutual information.Int. J. Mol. Sci.198E2267201810.3390/ijms19082267 30072632
    [Google Scholar]
  72. Ou-YangF. LinY.D. ChuangL.Y. ChangH.W. YangC.H. HouM.F. The combinational polymorphisms of orai1 gene are associated with preventive models of breast cancer in the taiwanese.BioMed Res. Int. vol. 2015, 281263.201510.1155/2015/281263 26380267
    [Google Scholar]
  73. LiuJ. YuG. JiangY. WangJ. HiSeeker: Detecting high-order SNP interactions based on pairwise SNP combinations.Genes (Basel)20178621910.3390/genes8060153 28561745
    [Google Scholar]
/content/journals/cccs/10.2174/2665997201666210125091915
Loading
/content/journals/cccs/10.2174/2665997201666210125091915
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Epistasis; genes; genetic interactions; GWAS; lungs diseases; SNPs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test