Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2665-9972
  • E-ISSN: 2665-9964

Abstract

The purpose of this study is to analyze the performance of a one-megawatt photovoltaic power plant in Arak-Iran, according to IEC-61724 standard, using data recorded over a year. The photovoltaic plant of Arak is located at coordinates 34.0954° N and 49.7013° E. This power plant is the first-megawatt photovoltaic power plant in Iran which two types of modules are used and it was constructed by the New Energy Agency and the Power Research Center under the supervision of the Ministry of Energy in 2016. In this plant, a combination of monocrystal and polycrystalline modules is used, and the annual output is 1756 MWh.

The combination of modules is based on the 1920 modules of 250 W of polycrystalline and 260 modules of 260 W of monocrystal in the construction of the power plant. There are also 4 inverters and a 1250 KVA dry power trans-former. The plant has suitable productivity, with a performance ratio equal to 0.8 and a final yield of 4.57.

Ultimately the PV plant is simulated by PVsyst and the results are compared with monitored records which indi-cated the appropriate accuracy of the collected data. The calculated performance ratio for the power plant by PVsyst is 81.2% and has a 1.5% difference with the monitored totals. The energy supplied during one year by the power plant is 1756 MWh, whereas the prediction of annual energy yield that entered to the grid is equal to 1757 MWh.

Loading

Article metrics loading...

/content/journals/cccs/10.2174/2665997201999200511083228
2021-04-01
2024-11-22
Loading full text...

Full text loading...

References

  1. CanaleM. FagianoL. MilaneseM. KiteGen: A revolution in wind energy generation.Energy2009343355361
    [Google Scholar]
  2. KalogirouS. The potential of solar industrial process heat applications.Appl. Energy2003764337361
    [Google Scholar]
  3. TsaiW-T. KuoK-C. An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan.Energy2010351248244830
    [Google Scholar]
  4. MercureJ-F. SalasP. An assessement of global energy resource economic potentials.Energy2012461322336
    [Google Scholar]
  5. ZareeiS. Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran.Renew. Energy2018118351356
    [Google Scholar]
  6. Jara-SamaniegoJ. Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suitability of the obtained composts for seedling production.J. Clean. Prod.201714113491358
    [Google Scholar]
  7. EhyaeiM.A. FarshinB. Optimization of photovoltaic thermal (PV/T) hybrid collectors by genetic algorithm in Iran’s residential areas.Adv. Energ. Res2017513155
    [Google Scholar]
  8. KumarR. A review status on alternative arrangements of power generation energy resources and reserve in India.Int. J. Low Carbon Technol.2003
    [Google Scholar]
  9. AhmadiA. EsmaeilionF. EsmaeilionA. EhyaeiM. A. SilveiraJ. L. Benefits and limitations of Waste-to-energy conversion in IranRenewable Energy Research and Application, Aug2019
    [Google Scholar]
  10. EsmaeilionF. Hybrid renewable energy systems for desalination.Appl. Water Sci.202010384
    [Google Scholar]
  11. EdalatiS. AmeriM. IranmaneshM. TarmahiH. Technical and economic assessments of grid-connected photovoltaic power plants : Iran case study.Energy2016114923934
    [Google Scholar]
  12. KhanJ. ArsalanM.H. Solar power technologies for sustainable electricity generation–A review.Renew. Sustain. Energy Rev.201655414425
    [Google Scholar]
  13. LiZ.X. EhyaeiM.A. KasmaeiH.K. AhmadiA. CostaV. "Thermodynamic modeling of a novel solar powered quad generation system to meet electrical and thermal loads of residential building and syngas production"Energy Convers. Manage.1992019111982
    [Google Scholar]
  14. ShayganM. EhyaeiM.A. AhmadiA. AssadM.E.H. SilveiraJ.L. Energy, exergy, advanced exergy and economic analyses of hybrid polymer electrolyte membrane (PEM) fuel cell and photovoltaic cells to produce hydrogen and electricity.J. Clean. Prod.201923410821093
    [Google Scholar]
  15. KoskelaJ. RautiainenA. JärventaustaP. Using electrical energy storage in residential buildings–Sizing of battery and photovoltaic panels based on electricity cost optimization.Appl. Energy201923911751189
    [Google Scholar]
  16. KumaresanG. SridharR. VelrajR. Performance studies of a solar parabolic trough collector with a thermal energy storage system.Energy2012471395402
    [Google Scholar]
  17. RazmjooA. Implementation of energy sustainability using hybrid power systems, a case study.Energy Sources A Recovery Util. Environ. Effects2019114
    [Google Scholar]
  18. EhyaeiM.A. AhmadiA. AssadM.E.H. SalamehT. Optimization of parabolic through collector (PTC) with multi objective swarm optimization (MOPSO) and energy, exergy and economic analyses.J. Clean. Prod.2019
    [Google Scholar]
  19. LiW. LingY. LiuX. HaoY. Performance analysis of a photovoltaic-thermochemical hybrid system prototype.Appl. Energy2017204939947
    [Google Scholar]
  20. LewisN.S. Introduction: solar energy conversion.ACS Publications2015
    [Google Scholar]
  21. GaneshI. Solar fuels vis-a-vis electricity generation from sunlight: the current state-of-the-art (a review).Renew. Sustain. Energy Rev.201544904932
    [Google Scholar]
  22. ColangeloG. FavaleE. MigliettaP. de RisiA. Innovation in flat solar thermal collectors: A review of the last ten years experimental results.Renew. Sustain. Energy Rev.20165711411159
    [Google Scholar]
  23. PichelN. VivarM. FuentesM. Performance analysis of a solar photovoltaic hybrid system for electricity generation and simultaneous water disinfection of wild bacteria strains.Appl. Energy2016171103112
    [Google Scholar]
  24. PurohitI. PurohitP. Performance assessment of grid-interactive solar photovoltaic projects under India’s national solar mission.Appl. Energy20182222541
    [Google Scholar]
  25. OrucM.E. DesaiA.V. KenisP.J.A. NuzzoR.G. Comprehensive energy analysis of a photovoltaic thermal water electrolyzer.Appl. Energy2016164294302
    [Google Scholar]
  26. RajaeiG. AtabiF. EhyaeiM.A. Feasibility of using biogas in a micro turbine for supplying heating, cooling and electricity for a small rural building.Advances in Energy Research201752129
    [Google Scholar]
  27. LiC. WangH. MiaoH. YeB. The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China.Appl. Energy2017190204212
    [Google Scholar]
  28. IEAInternational energy agency2019http://www.iea.org/stats/index.asp
    [Google Scholar]
  29. DevabhaktuniV. AlamM. DepuruS. S. S. R. GreenR. C. NimsD. NearC. Solar energy: trends and enabling technologies.Renewable Sustainable Energy Rev.201319555564
    [Google Scholar]
  30. SinghG.K. Solar power generation by PV (photovoltaic) technology : A review.Energy201353113
    [Google Scholar]
  31. RomeroM. MartinezD. ZarzaE. Terrestrial solar thermal power plants: on the verge of commercializationSolar Power from Space-SPS’04200456781
    [Google Scholar]
  32. FernaA. "Parabolic-trough solar collectors and their applications"Renewable and Sustainable Energy Rev.20101416951721
    [Google Scholar]
  33. HeimsathA. CuevasF. HoferA. NitzP. PlatzerW.J. Linear Fresnel collector receiver: heat loss and temperatures.Energy Procedia201449386397
    [Google Scholar]
  34. MorinG. DerschJ. PlatzerW. EckM. HäberleA. Comparison of linear Fresnel and parabolic trough collector power plants.Sol. Energy201286112
    [Google Scholar]
  35. DesideriU. ZepparelliF. MorettiniV. GarroniE. Comparative analysis of concentrating solar power and photovoltaic technologies: technical and environmental evaluations.Appl. Energy2013102765784
    [Google Scholar]
  36. NRELNational Renewable Energy Laboratory, Best Research Cell-efficiencies2016http://www.nrel.gov/ncpv/images/efficiency_
    [Google Scholar]
  37. JewellW.T. UnruhT.D. Limits on cloud-induced fluctuation in photovoltaic generation.IEEE Trans. Energ. Convers.19905814
    [Google Scholar]
  38. BoxwellM. The Solar Electricity Handbook- A simple, practical guide to solar energy–designing and installing solar photovoltaic systems.Greenstream Publishing2017
    [Google Scholar]
  39. ChemisanaD. LamnatouC. Photovoltaic-green roofs: An experimental evaluation of system performance.Appl. Energy2014119246256
    [Google Scholar]
  40. EnslinJ.H.R. SnymanD.B. Combined low-cost, high-efficient inverter, peak power tracker and regulator for PV applications.IEEE Trans. Power Electron.199167382
    [Google Scholar]
  41. PiegariL. RizzoR. Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking.IET Renew. Power Gener.20104317328
    [Google Scholar]
  42. NguyenD.D. LehmanB. Modeling and simulation of solar PV arrays under changing illumination conditions2006 IEEE Workshops on Computers in Power Electronics2006295299
    [Google Scholar]
  43. SalamehZ.M. DagherF. LynchW.A. Step-down maximum power point tracker for photovoltaic systems.Sol. Energy199146279282
    [Google Scholar]
  44. SiriK. CaliskanV.A. LeeC.Q. AgarwalG.C. Peak power tracking in parallel connected converters1992 IEEE International Conference on Systems, Man, and Cybernetics199214011406
    [Google Scholar]
  45. RauthH.U. DressA. PruschekR. WeideleT. Annually generated electricity of one and two axes solar tracking systemsProc. 13th European PV Solar Energy Conference199510151018Nice
    [Google Scholar]
  46. PoulekV. LibraM. A new low-cost tracking ridge concentrator.Sol. Energy Mater. Sol. Cells200061199202
    [Google Scholar]
  47. Martín-MartínezS. Cañas-CarretónM. Honrubia-EscribanoA. Gómez-LázaroE. Performance evaluation of large solar photovoltaic power plants in Spain.Energy Convers. Manage.2019183515528
    [Google Scholar]
  48. LibraM. DanečekM. LešetickýJ. PoulekV. SedláčekJ. BeránekV. Monitoring of Defects of a Photovoltaic Power Plant Using a Drone.Energies201912795
    [Google Scholar]
  49. ChoiJ. ChoiM. ShinY. LeeI-W. Design of Web-based Monitoring System for Solar Photovoltaic Power Plants2020 International Conference on Information Networking (ICOIN)2020784786
    [Google Scholar]
  50. BlaesserG. PV system measurements and monitoring the European experienceSol. Energy Mater. Sol. Cells47, 1-41997167176
    [Google Scholar]
  51. PietruszkoS. M. GradzkiM. Performance of a grid connected small PV system in Poland.742003177184
    [Google Scholar]
  52. International Standard IEC 61724. Photovoltaic system performance monitoring-guidelines for measurement, data exchange, and analysis.2013
    [Google Scholar]
  53. BayrakG. Monitoring A Grid Connected PV Power Generation System with LabviewInt. Conference on Renewable Energy Research and Applications (ICRERA)October20132023
    [Google Scholar]
  54. ForeroN. "Development of a monitoring system for a PV solar plant"Energy Conversion and Management47200623292336
    [Google Scholar]
  55. JiangY. QahouqJ.A.A. BatarsehI. Improved solar PV cell Matlab simulation model and comparisonProceedings of 2010 IEEE International Symposium on Circuits Syst.2010, 27702773
    [Google Scholar]
  56. ChowdhuryS. ChowdhuryS.P. TaylorG.A. SongY.H. Mathematical modelling and performance evaluation of a stand-alone polycrystalline PV plant with MPPT facility2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century200817
    [Google Scholar]
  57. IshaqueK. SalamZ. TaheriH. Accurate MATLAB simulink PV system simulator based on a two-diode model.2011
    [Google Scholar]
  58. IshaqueK. SalamZ. A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model.Sol. Energy20118522172227
    [Google Scholar]
  59. González-LongattF.M. Model of photovoltaic module in Matlab.Ii Cibelec2005200515
    [Google Scholar]
  60. MotahhirS. HammoumiA.E.L. GhzizalA.E.L. DerouichA. Open hardware/software test bench for solar tracker with virtual instrumentation.Sustainable Energy Technologies and Assessments201931916
    [Google Scholar]
  61. KimJ-Y. JeonG-Y. HongW-H. The performance and economical analysis of grid-connected photovoltaic systems in Daegu, Korea.Appl. Energy200986265272
    [Google Scholar]
  62. SharmaV. ChandelS.S. Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India.Energy201355476485
    [Google Scholar]
  63. KoubliE. PalmerD. RowleyP. GottschalgR. Inference of missing data in photovoltaic monitoring datasets.IET Renew. Power Gener.201610434439
    [Google Scholar]
  64. Triki-LahianiA. AbdelghaniA.B-B. Slama-BelkhodjaI. Fault detection and monitoring systems for photovoltaic installations: A review.Renew. Sustain. Energy Rev.20188226802692
    [Google Scholar]
  65. MadetiS.R. SinghS.N. Monitoring system for photovoltaic plants: A review.Renew. Sustain. Energy Rev.20176711801207
    [Google Scholar]
  66. ChiH.B. TajuddinM.F.N. GhazaliN.H. AzmiA. MaazM.U. Internet of things (IoT) based iv curve tracer for photovoltaic monitoring systems.Indonesian J. Electrical Engineering Comp. Sci.20191310221030
    [Google Scholar]
  67. OrtegaE. ArangurenG. JimenoJ.C. New monitoring method to characterize individual modules in large photovoltaic systems.Sol. Energy2019193906914
    [Google Scholar]
  68. AyompeL.M. DuffyA. MccormackS.J. ConlonM. Measured performance of a 1. 72 kW rooftop grid connected photovoltaic system in Ireland.Energy Convers. Manage.201152816825
    [Google Scholar]
  69. DeckerB. JahnU. Performance of 170 grid connected PV plants in northern Germany-analysis of yields and optimization potentialsSol. Energy1997594-6127133
    [Google Scholar]
  70. KymakisE. KalykakisS. PapazoglouT.M. Performance analysis of a grid connected photovoltaic park on the island of Crete.Energy Convers. Manage.200950433438
    [Google Scholar]
  71. BaltusC. W. A. EikelboomJ. A. Van ZolingenR. J. C. Analytical Monitoring Losses PV Syst.1997
    [Google Scholar]
  72. StegnerC. DalsassM. LuchscheiderP. BrabecC.J. Monitoring and assessment of PV generation based on a combination of smart metering and thermographic measurement.Sol. Energy20181631624
    [Google Scholar]
  73. MondolJ.D. YohanisY. SmythM. NortonB. Long term performance analysis of a grid connected photovoltaic system in Northern IrelandEnergy Convers. Manage.20064718-1929252947
    [Google Scholar]
  74. CucumoM. De RosaA. FerraroV. KaliakatsosD. MarinelliV. Performance analysis of a 3 kW grid-connected photovoltaic plant.Renew. Energy20063111291138
    [Google Scholar]
  75. PadmavathiK. DanielS.A. Performance analysis of a 3 MWp grid connected solar photovoltaic power plant in India.Energy Sustain. Dev.201317615625
    [Google Scholar]
  76. JahnU. NasseW. “Performance analysis and reliability of grid-connected PV systems in IEA countries,” in 3rd World Conference on Photovoltaic Energy Conversion, 2003.Proceedings of2003321482151
    [Google Scholar]
  77. JahnU. "International energy agency PVPS Task 2: analysis of the operational performance of the IEA database PV systems"16th European Photovoltaic Solar Energy Conference ExhibitionGlasgow, United Kingdom20005
    [Google Scholar]
  78. ChokmavirojS. WattanapongR. SuchartY. Performance of a 500 kWP grid connected photovoltaic system at Mae Hong Son Province, Thailand.Renew. Energy2006311928
    [Google Scholar]
  79. RehmanS. El-aminI. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia"Energy201246451458
    [Google Scholar]
  80. Sidrach-de-CardonaM. LopezL.M. Performance analysis of a grid-connected photovoltaic system.Energy19992493102
    [Google Scholar]
  81. DrifM. Univer Project. A grid connected photovoltaic system of 200kWp at Jaén University. Overview and performance analysis.Sol. Energy Mater. Sol. Cells200791670683
    [Google Scholar]
  82. AyompeL.M. DuffyA. MccormackS.J. ConlonM. Measured performance of a 1. 72 kW rooftop grid connected photovoltaic system in Ireland.Energy Convers. Manage.201152816825
    [Google Scholar]
  83. ŠályV. RužinskýM. BaratkaS. Photovoltaics in Slovakia—status and conditions for development within integrating Europe.Renew. Energy200631865875
    [Google Scholar]
  84. AgnolucciP. Renewable electricity policies in The Netherlands.Renew. Energy200732868883
    [Google Scholar]
  85. RuizB.J. Rodríguez-PadillaV. MartínezJ.H. Renewable energy sources in the Mexican electricity sector.Renew. Energy20083313461353
    [Google Scholar]
  86. MarkvartT. BogusK. Solar electricity.John Wiley & Sons20006
    [Google Scholar]
  87. The world fact bookhttps://www.cia.gov/library/publications/theworldfactbook/geos/ir.html
    [Google Scholar]
  88. BesaratiS.M. PadillaR.V. GoswamiD.Y. StefanakosE. The potential of harnessing solar radiation in Iran: Generating solar maps and viability study of PV power plants.Renew. Energy201353193199
    [Google Scholar]
  89. NajafiG. GhobadianB. MamatR. YusafT. AzmiW.H. Solar energy in Iran: Current state and outlook.Renew. Sustain. Energy Rev.201549931942
    [Google Scholar]
  90. HosseiniR. SoltaniM. ValizadehG. Technical and economic assessment of the integrated solar combined cycle power plants in Iran.Renew. Energy20053015411555
    [Google Scholar]
  91. TsikalakisA. Review of best practices of solar electricity resources applications in selected Middle East and North Africa (MENA) countries.Renew. Sustain. Energy Rev.20111528382849
    [Google Scholar]
  92. FattouhB. El-katiriL. Energy subsidies in the Middle East and North Africa.Energy Strategy Reviews20132108115
    [Google Scholar]
  93. IranRenewableEnergyOrganization(SUNA)http://www.suna.org.ir/home-en. html
  94. MirzahosseiniA.H. TaheriT. Environmental, technical and financial feasibility study of solar power plants by RETScreen, according to the targeting of energy subsidies in Iran.Renew. Sustain. Energy Rev.20121628062811
    [Google Scholar]
  95. FazelpourF. SoltaniN. RosenM.A. Economic analysis of standalone hybrid energy systems for application in Tehran, Iran.Int. J. Hydrogen Energy2016411977327743
    [Google Scholar]
  96. Renewable Energy and Energy Efficiency Organization of the Ministry of Energy2017http://www.satba.gov.ir/en/home[Online] available from http://www.satba.gov.ir/en/home
    [Google Scholar]
  97. Renewable Energy and Energy Efficiency Organization of the Ministry of Energy2018
    [Google Scholar]
  98. ChandlerW. WhitlockC. StackhouseP.Jr Surface meteorology and solar energy. A renewable energy resource web site (release 6.0)http://eosweb.larc.nasa.gov/sse/
    [Google Scholar]
  99. World Bank GroupGLOBAL SOLAR ATLAS2016 https://globalsolaratlas.info/downloads/iran?c=32.62087,45.087891,5 [Online]. Available.
    [Google Scholar]
  100. HafezniaH. YouseH. AstaraeiF. R. A novel framework for the potential assessment of utility-scale photovoltaic solar energy, application to eastern Iran2017, August151240258
    [Google Scholar]
  101. http://www.satba.gov.ir/
  102. IsabellaO. SmetsA. JägerK. ZemanM. van SwaaijR. Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems.UIT Cambridge Limited2016
    [Google Scholar]
  103. FalkA. DurschnerC. RemmersK-H. Photovoltaics for professionals: solar electric systems marketing, design and installation.Routledge2013
    [Google Scholar]
  104. Jäger-WaldauA. EUR 24344 PV Status Report 2010; 3: 22, European Commission, DG Joint Research CentreInstitute for Energy, Renewable Energy Unit
    [Google Scholar]
  105. MohammadnezamiM.H. EhyaeiM.A. RosenM.A. AhmadiM.H. Meeting the electrical energy needs of a residential building with a wind-photovoltaic hybrid system.Sustainability2015725542569
    [Google Scholar]
  106. KisanM. SangathanS. NehruJ. BS EN 61724:1998 Photovoltaic System Performance Monitoring-Guidelines for MeasurementData Exchange and Analysis1998
    [Google Scholar]
  107. StandardB. Photovoltaic system performance monitoring-Guidelines for measurement, data exchange and analysis.,BS EN1998Vol. 61724
    [Google Scholar]
  108. MilneM. Climate Consultant Software.Los Angeles, CA, USAUniversity of California1991
    [Google Scholar]
/content/journals/cccs/10.2174/2665997201999200511083228
Loading
/content/journals/cccs/10.2174/2665997201999200511083228
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Grid-connected; Photovoltaic; PVsyst; Renewable Energy; Simulation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test