Skip to content
2000
Volume 1, Issue 2
  • ISSN: 2665-9972
  • E-ISSN: 2665-9964

Abstract

In many applications of image processing, the enhancement of images is often a step necessary for their preprocessing. In general, for an enhanced image, the visual contrast as a whole and its refined local details are both crucial for achieving accurate results for subsequent classification or analysis.

This paper proposes a new approach for image enhancement such that the global and local visual effects of an enhanced image can both be significantly improved.

The approach utilizes the normalized incomplete Beta transform to map pixel intensities from an original image to its enhanced one. An objective function that consists of two parts is optimized to determine the parameters in the transform. One part of the objective function reflects the global visual effects in the enhanced image and the other one evaluates the enhanced visual effects on the most important local details in the original image. The optimization of the objective function is performed with an optimization technique based on the particle swarm optimization method.

Experimental results show that the approach is suitable for the automatic enhancement of images.

The proposed approach can significantly improve both the global and visual contrasts of the image.

Loading

Article metrics loading...

/content/journals/cccs/10.2174/2665997201666210203094041
2021-10-01
2025-01-15
Loading full text...

Full text loading...

References

  1. JiT.L. SundareshanM.K. RoehrigH. Adaptive image contrast enhancement based on human visual properties.IEEE Trans. Med. Imaging199413457358610.1109/42.363111 18218535
    [Google Scholar]
  2. TubbsJ.D. A note on parametric image enhancement.Pattern Recognit.198720661762110.1016/0031‑3203(87)90031‑8
    [Google Scholar]
  3. AgaianS.S. PanettaK. GrigoryanA.M. Transform-based image enhancement algorithms with performance measure.IEEE Trans. Image Process.200110336738210.1109/83.908502 18249627
    [Google Scholar]
  4. SuX. FangW. ShenQ. HaoX. An image enhancement method using the quantum-behaved particle swarm optimization with an adaptive strategy.Math. Probl. Eng.2013824787201310.1155/2013/824787
    [Google Scholar]
  5. JayaV.L. GopikakumariR. IEM: a new image enhancement metric for contrast and sharpness measurements.Int. J. Comput. Appl. 79938916202013
    [Google Scholar]
  6. WanM. GuG. QianW. RenK. ChenQ. MaldagueX. Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement.Infrared Phys. Technol.20189116418110.1016/j.infrared.2018.04.003
    [Google Scholar]
  7. GharbiM. ChenJ. BarronJ.T. HasinoffS.W. DurandF. Deep bilateral learning for real-time image enhancement.ACM Trans. Graph.201736411810.1145/3072959.3073592
    [Google Scholar]
  8. LoreK.G. AkintayoA. SarkarS. LLNet: a deep autoencoder approach to natural low-light image enhancement.Pattern Recognit.20176165066210.1016/j.patcog.2016.06.008
    [Google Scholar]
  9. TaoL. ZhuC. SongJ. LuT. JiaH. XieX. Low-light image enhancement using CNN and bright channel priorIEEE International Conference on Image Processing20173215322910.1109/ICIP.2017.8296876
    [Google Scholar]
  10. TaoL. ZhuC. XiangG. LiY. JiaH. XieX. LLCNN: a convolutional neural network for low-light image enhancement.IEEE visual communications and image processing, pp. 1-4, 201710.1109/VCIP.2017.8305143
    [Google Scholar]
  11. GuoXiaojie LiYu LingHaibin LIME: low-light image enhancement via illumination Map Estimation.IEEE Trans. Image Process.201726298299310.1109/TIP.2016.2639450 28113318
    [Google Scholar]
  12. LiG. RanaM.N.A. SunJ. SongY. QuJ. Real-time image enhancement with efficient dynamic programming.Multimedia Tools Appl.202010.1007/s11042‑020‑09586‑y
    [Google Scholar]
  13. TangJ. PeliE. ActonS. Image enhancement using a contrast measure in the compressed domain.IEEE Signal Process. Lett.2003101028929210.1109/LSP.2003.817178
    [Google Scholar]
  14. ChenS.D. RamliA.R. Minimum mean brightness error bi-histogram equalization in contrast enhancement.IEEE Trans. Consum. Electron.20034941310131910.1109/TCE.2003.1261234
    [Google Scholar]
  15. HummelR.A. Histogram modification techniques.Comput. Graph.197543209224
    [Google Scholar]
  16. WatsonA.B. Digital Images and Human Vision.Massachusetts, Mass, USAThe MIT Press1993
    [Google Scholar]
  17. ToetA. Multiscale color image enhancement.Pattern Recognit. Lett.199213316717410.1016/0167‑8655(92)90056‑6
    [Google Scholar]
  18. TrahaniasP.E. VenetsanopoulosA.N. Color image enhancement through 3-D histogram equalizationProceedings of the 11th IAPR International Conference on Pattern Recognition199254554810.1109/ICPR.1992.202045
    [Google Scholar]
  19. LiQ. WuH. XuL. WangL. LvY. KangX. Low-light image enhancement based on deep symmetric encoder–decoder convolutional Networks.Symmetry (Basel)20201244610.3390/sym12030446
    [Google Scholar]
  20. LiM. LiuJ. YangW. SunX. GuoZ. Structure-revealing low-light image enhancement via robust retinex model.IEEE Trans. Image Process.20182762828284110.1109/TIP.2018.2810539 29570085
    [Google Scholar]
  21. AiS. KwonJ. Extreme low-light image enhancement for surveillance cameras using attention u-net.Sensors (Basel)202020249510.3390/s20020495 31952325
    [Google Scholar]
  22. KimJ. LeeJ.K. LeeK.M. Accurate image super-resolution using very deep convolutional networksProceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)20161646165410.1109/CVPR.2016.182
    [Google Scholar]
  23. KennedyJ. EberhartR. Particle swarm optimizationProceedings of the 1995 IEEE International Conference on Neural Networks 1995194419421948
    [Google Scholar]
  24. EberhartR.C. ShiY. Particle swarm optimization: developments, applications and resourcesProceedings of the IEEE Conference on Evolutionary Computation2001818610.1109/CEC.2001.934374
    [Google Scholar]
  25. ArbeláezP. MaireM. FowlkesC. MalikJ. Contour detection and hierarchical image segmentation.IEEE Trans. Pattern Anal. Mach. Intell.201133589891610.1109/TPAMI.2010.161 20733228
    [Google Scholar]
/content/journals/cccs/10.2174/2665997201666210203094041
Loading
/content/journals/cccs/10.2174/2665997201666210203094041
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test