Skip to content
2000
Volume 2, Issue 2
  • ISSN: 2666-0016
  • E-ISSN: 2666-0008

Abstract

A photoremovable protecting group (PRPG) is an organic molecular framework that may be cleaved when exposed to light. It allows spatial as well as temporal control over the release of various substances such as neurotransmitters, cell signalling molecules, acids, bases, Ca2+ ions, oxidants, insecticides, pheromones, and perfumes, This mini-review highlights the history and current state of the art of several PRPGs in organic chemistry. Synthesis, application and mechanism of cleavage process of PRPGs were also discussed thoroughly in this article.

Loading

Article metrics loading...

/content/journals/ccchem/10.2174/2666001602666220202142858
2022-03-24
2025-03-15
Loading full text...

Full text loading...

References

  1. CodyW.L. Greene’s Protective Groups in Organic Synthesis, Fourth; WutsPeter G. M.GreeneTheodora W.Hoboken, NJJohn Wiley & Sons, Inc.2006
    [Google Scholar]
  2. KlánP. ŠolomekT. BochetC.G. BlancA. GivensR. RubinaM. PopikV. KostikovA. WirzJ. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy.Chem. Rev.2013113111919110.1021/cr300177k23256727
    [Google Scholar]
  3. BarltropJ.A. PlantP.J. SchofieldP. Photosensitive protective groups.Chem. Commun.19662282282310.1039/c19660000822
    [Google Scholar]
  4. PelliccioliA.P. WirzJ. Photoremovable protecting groups: reaction mechanisms and applications.Photochem. Photobiol. Sci.20021744145810.1039/b200777k12659154
    [Google Scholar]
  5. Il’ichevY.V. SchwörerM.A. WirzJ. Photochemical reaction mechanisms of 2-nitrobenzyl compounds: methyl ethers and caged ATP.J. Am. Chem. Soc.2004126144581459510.1021/ja039071z15070376
    [Google Scholar]
  6. AdamS.R. KaoJ.P.Y. TsienR.Y. Biologically useful chelators that take up Ca2+ upon illumination.J. Am. Chem. Soc.19891117957796810.1021/ja00202a042
    [Google Scholar]
  7. WalkerJ.W. ReidG.P. James McCrayA. TrenthamD.R. Photolabile 1-(2-Nitropheny1)ethyl phosphate esters of adenine nucleotide analogues. Synthesis and mechanism of photolysis.J. Am. Chem. Soc.19881107170717710.1021/ja00229a036
    [Google Scholar]
  8. GeisslerD. KresseW. WiesnerB. BendigJ. KettenmannH. HagenV. DMACM-caged adenosine nucleotides: ultrafast phototriggers for ATP, ADP, and AMP activated by long-wavelength irradiation.ChemBioChem200342-316217010.1002/cbic.20039002712616629
    [Google Scholar]
  9. ChengQ. SteinmetzM.G. JayaramanV. Photolysis of γ -(α-carboxy-2-nitrobenzyl)-L-glutamic acid investigated in the mcrosecond time scale by time-resolved FTIR.J. Am. Chem. Soc.2002124267676767710.1021/ja025998812083919
    [Google Scholar]
  10. KaplanJ.H. ForbushB.III HoffmanJ.F. Rapid photolytic release of adenosine 5-triphosphate from a protected analogue: utilization by the Na:K pump of human red blood cell ghosts.Biochemistry197817101929193510.1021/bi00603a020148906
    [Google Scholar]
  11. NandyS.K. AgnesR.S. LawrenceD.S. Photochemically-activated probes of protein-protein interactions.Org. Lett.20079122249225210.1021/ol070238t17506572
    [Google Scholar]
  12. SoellerC. JacobsM.D. JonesK.T. Ellis-DaviesG.C. DonaldsonP.J. CannellM.B. Application of two-photon flash photolysis to reveal intercellular communication and intracellular Ca2+ movements.J. Biomed. Opt.20038341842710.1117/1.158246812880347
    [Google Scholar]
  13. OttlJ. GabrielD. MarriottG. Preparation and photoactivation of caged fluorophores and caged proteins using a new class of heterobifunctional, photocleavable cross-linking reagents.Bioconjug. Chem.19989214315110.1021/bc970147o9548528
    [Google Scholar]
  14. SheehanJ.C. WilsonR.M. Photolysis of desyl compounds: a new photolytic cyclization.J. Am. Chem. Soc.1964865277528110.1021/ja01077a046
    [Google Scholar]
  15. CorrieJ.E.T. TrenthamD.R. Synthetic, mechanistic and photochemical studies of phosphate esters of substituted benzoins.J. Chem. Soc., Perkin Trans. 119922409241710.1039/p19920002409
    [Google Scholar]
  16. GivensR.S. AtheyP.S. KueperL.W.I. MatuszewskiB. XueJ.Y. Photochemistry of α–keto phosphate esters: photorelease of a caged cAMP.J. Am. Chem. Soc.19921148708871010.1021/ja00048a059
    [Google Scholar]
  17. GivensR.S. AtheyP.S. MatuszewskiB. KueperL.W. XueJ. FisherT. Photochemistry of phosphate esters: α–keto phosphates as a photoprotecting group for caged phosphate.J. Am. Chem. Soc.19931156001601210.1021/ja00067a015
    [Google Scholar]
  18. RajeshC.S. GivensR.S. WirzJ. Kinetics and mechanism of phosphate photorelease from benzoin diethyl phosphate: evidence for adiabatic fission to an α–keto cation in the triplet state.J. Am. Chem. Soc.200012261161810.1021/ja993070i
    [Google Scholar]
  19. GeeK.R. KueperL.W. BarnesJ. DudleyG. GivensR.S. Desyl esters of amino acid neurotransmitters. Phototriggers for biologically active neurotransmitters.J. Org. Chem.1996611228123310.1021/jo951635x
    [Google Scholar]
  20. SheehanJ.C. UmezawaK. Phenacyl photosensitive blocking groups.J. Org. Chem.1973383771377410.1021/jo00961a027
    [Google Scholar]
  21. AndersonJ.C. ReeseC.B.A. Photo–induced rearrangement involving aryl participation.Tetrahedron Lett.1962311410.1016/S0040‑4039(00)62031‑2
    [Google Scholar]
  22. GivensR.S. WeberJ.F.W. ConradP.G.II OroszG. DonahueS.L. ThayerS.A. New phototriggers. 9. p–Hydroxyphenacyl as a C–terminal photoremovable protecting group for oligopeptides.J. Am. Chem. Soc.20001222687269710.1021/ja991014b
    [Google Scholar]
  23. ConradP.G.II GivensR.S. WeberJ.F.W. KandlerK. New phototriggers: extending the p-hydroxyphenacyl π -π absorption range.Org. Lett.20002111545154710.1021/ol005856n10841475
    [Google Scholar]
  24. GivensR.S. Lee, J.–III. The p–Hydroxyphenacyl Photoremovable Protecting Group.J. Photosci.2003103748
    [Google Scholar]
  25. ZabadalM. AnnaP.P. KlanP. WirzJ. 2,5–Dimethylphenacyl esters: A photoremovable protecting group for carboxylic acids.J. Phys. Chem. A2001105103291033310.1021/jp010220e
    [Google Scholar]
  26. LiterakJ. WirzJ. KlánP. 2,5-Dimethylphenacyl carbonates: a photoremovable protecting group for alcohols and phenols.Photochem. Photobiol. Sci.200541434610.1039/B408851D15616690
    [Google Scholar]
  27. KlánP. PelliccioliA.P. PospísilT. WirzJ. 2,5-dimethylphenacyl esters: a photoremovable protecting group for phosphates and sulfonic acids.Photochem. Photobiol. Sci.200211192092310.1039/B208171G12659533
    [Google Scholar]
  28. GivensR.S. MatuszewskiB. Photochemistry of phosphate esters: an efficient method for the generation of electrophiles.J. Am. Chem. Soc.19841066860686110.1021/ja00334a075
    [Google Scholar]
  29. SchadeB. HagenV. SchmidtR. HerbrichR. KrauseE. EckardtT. BendigJ. Deactivation behavior and excited–state properties of (coumarin–4–yl)methyl derivatives. 1. Photocleavage of (7–methoxycoumarin–4–yl)methyl caged acids with fluorescence enhancement.J. Org. Chem.1999649109911710.1021/jo9910233
    [Google Scholar]
  30. FurutaT. WangS.S.H. DantzkerJ.L. DoreT.M. BybeeW.J. CallawayE.M. DenkW. TsienR.Y. Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis.Proc. Natl. Acad. Sci. USA19999641193120010.1073/pnas.96.4.11939990000
    [Google Scholar]
  31. HagenV. BendigJ. FringsS. EckardtT. HelmS. ReuterD. KauppU.B. Highly efficient and ultrafast phototriggers for cAMP and cGMP by using long–wavelength UV/VIS activation.Angew. Chem. Int. Ed. Engl.20014061045104810.1002/1521‑3773(20010316)40:6<1045::AID‑ANIE10450>3.0.CO;2‑F11268067
    [Google Scholar]
  32. FurutaT. IwamuraM. New caged groups: 7–substituted coumarinylmethyl phosphate esters. Methods in Enzymology. MarriottG. New YorkAcademic Press1998Vol. 2915063
    [Google Scholar]
  33. KimH-C. KreilingS. GreinerA. HamppN. Two–photon–induced cycloreversion reaction of coumarin photodimers.Chem. Phys. Lett.200337289990310.1016/S0009‑2614(03)00535‑9
    [Google Scholar]
  34. FurutaT. MomotakeA. SugimotoM. HatayamaM. TorigaiH. IwamuraM. Acyloxycoumarinylmethyl-caged cAMP, the photolabile and membrane-permeable derivative of cAMP that effectively stimulates pigment-dispersion response of melanophores.Biochem. Biophys. Res. Commun.1996228119319810.1006/bbrc.1996.16388912658
    [Google Scholar]
  35. FurutaT. TorigaiM. SugimotoM. IwamuraM. Photochemical properties of new photolabile cAMP derivatives in a physiological saline solution.J. Org. Chem.1995603953395610.1021/jo00118a008
    [Google Scholar]
  36. FedoryakO.D. DoreT.M. Brominated hydroxyquinoline as a photolabile protecting group with sensitivity to multiphoton excitation.Org. Lett.20024203419342210.1021/ol026524g12323033
    [Google Scholar]
  37. ZhuY. PavlosC.M. ToscanoJ.P. DoreT.M. 8-Bromo-7-hydroxyquinoline as a photoremovable protecting group for physiological use: mechanism and scope.J. Am. Chem. Soc.2006128134267427610.1021/ja055532016569001
    [Google Scholar]
  38. SoaresA.M.S. CostaS.P.G. GonçalvesM.S.T. Oxazole light triggered protecting groups: synthesis and photolysis of fused heteroaromatic conjugates.Tetrahedron2010668189819510.1016/j.tet.2010.08.020
    [Google Scholar]
  39. FurutaT. HirayamaY. IwamuraM. Anthraquinon-2-ylmethoxycarbonyl (Aqmoc): a new photochemically removable protecting group for alcohols.Org. Lett.20013121809181210.1021/ol015787s11405717
    [Google Scholar]
  40. JonesP.B. PollastriM.P. PorterN.A. 2-Benzoylbenzoic acid: A photolabile mask for alcohols and thiols.J. Org. Chem.1996619455946110.1021/jo961638p
    [Google Scholar]
  41. PikaJ. KonosonoksA. RobinsonR.M. SinghP.N.D. GudmundsdottirA.D. Photoenolization as a means to release alcohols.J. Org. Chem.20036851964197210.1021/jo026119312608818
    [Google Scholar]
  42. HagenV. FringsS. BendigJ. LorenzD. WiesnerB. KauppU.B. Fluorescence spectroscopic quantification of the release of cyclic nucleotides from photocleavable [bis(carboxymethoxy)coumarin-4-yl]methyl esters inside cells.Angew. Chem. Int. Ed.2002411936253628, 3516.10.1002/1521‑3773(20021004)41:19<3625::AIDANIE3625>3.0.CO;2‑J12370911
    [Google Scholar]
  43. WelchM.B. MartinezC.I. ZhangA.J. JinS. GibbsR. BurgessK. Syntheses of nucleosides designed for combinatorial DNA sequencing.Chemistry1999595196010.1002/(SICI)1521‑3765(19990301)5:3<951::AID‑CHEM951>3.0.CO;2‑G
    [Google Scholar]
  44. EckardtT. HagenV. SchadeB. SchmidtR. SchweitzerC. BendigJ. Deactivation behavior and excited-state properties of (coumarin-4-yl)methyl derivatives. 2. Photocleavage of selected (coumarin-4-yl)methyl-caged adenosine cyclic 3, 5-monophosphates with fluorescence enhancement.J. Org. Chem.200267370371010.1021/jo010692p11856009
    [Google Scholar]
  45. PolitzJ.C. Use of caged fluorochromes to track macromolecular movement in living cells.Trends Cell Biol.19999728428710.1016/S0962‑8924(99)01585‑810370245
    [Google Scholar]
  46. McGallG.H. BaroneA.D. DiggelmannM. FodorS.P.A. GentalenE. NgoN. The efficiency of light–directed synthesis of DNA arrays on glass substrates.J. Am. Chem. Soc.19971195081509010.1021/ja964427a
    [Google Scholar]
  47. MullerC. EvenP. ViriotM-L. CarreM-C. Protection and labelling of thymidine by a fluorescent photolabile group.Helv. Chim. Acta2001843735374110.1002/1522‑2675(20011219)84:12<3735::AID‑HLCA3735>3.0.CO;2‑A
    [Google Scholar]
  48. TangX. DmochowskiI.J. Phototriggering of caged fluorescent oligodeoxynucleotides.Org. Lett.20057227928210.1021/ol047729n15646977
    [Google Scholar]
  49. VázquezM.E. NitzM. StehnJ. YaffeM.B. ImperialiB. Fluorescent caged phosphoserine peptides as probes to investigate phosphorylation-dependent protein associations.J. Am. Chem. Soc.200312534101501015110.1021/ja035184712926919
    [Google Scholar]
  50. CanepariM. NelsonL. PapageorgiouG. CorrieJ.E.T. OgdenD. Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters.J. Neurosci. Methods20011121294210.1016/S0165‑0270(01)00451‑411640955
    [Google Scholar]
  51. CürtenB. KullmannP.H. BierM.E. KandlerK. SchmidtB.F. Synthesis, photophysical, photochemical and biological properties of caged GABA, 4-[[(2H-1-benzopyran-2-one-7-amino-4-methoxy) carbonyl] amino] butanoic acid.Photochem. Photobiol.200581364164810.1562/2004‑07‑08‑RA‑226.115623351
    [Google Scholar]
  52. FernandesM.J.G. GoncalvesM.S.T. CostaS.P.G. Photorelease of amino acid neurotransmitters from pyrenylmethyl ester conjugates.Tetrahedron200763101331013910.1016/j.tet.2007.07.107
    [Google Scholar]
  53. ShahA.J. CrespiF. HeidbrederC. Amino acid neurotransmitters: separation approaches and diagnostic value.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20027811-215116310.1016/S1570‑0232(02)00621‑912450657
    [Google Scholar]
  54. Lippincott-SchwartzJ. PattersonG.H. Fluorescent proteins for photoactivation experiments.Methods Cell Biol.200885456110.1016/S0091‑679X(08)85003‑018155458
    [Google Scholar]
  55. RavagliaG. FortiP. MaioliF. BianchiG. MartelliM. TalericoT. ServadeiL. ZoliM. MarianiE. Plasma amino acid concentrations in patients with amnestic mild cognitive impairment or Alzheimer disease.Am. J. Clin. Nutr.200480248348810.1093/ajcn/80.2.48315277174
    [Google Scholar]
  56. BurgessK. JacutinS.E. LimD. ShitangkoonA. An approach to photolabile, fluorescent protecting groups.J. Org. Chem.1997625165516810.1021/jo9702608
    [Google Scholar]
  57. SinghA.K. KhadeP.K. Anthracene–9–methanol–a novel fluorescent phototrigger for biomolecular caging.Tetrahedron Lett.2005465563556610.1016/j.tetlet.2005.06.026
    [Google Scholar]
  58. IwamuraM. HodotaC. IshibashiM. 1–(α–Diazobenzyl)pyrene: a reagent for photolabile and fluorescent protection of carboxyl groups of amino acids and peptides.Synlett19911353610.1055/s‑1991‑20619
    [Google Scholar]
  59. FurutaT. TorigaiH. OsawaT. IwamuraM. New photochemically labile protecting group for phosphates.Chem. Lett.199371179118210.1246/cl.1993.1179
    [Google Scholar]
  60. OkadaS. YamashitaS. FurutaT. IwamuraM. (1–Pyrenyl)methyl carbamates for fluorescent “caged” amino acids and peptides.Photochem. Photobiol.19956143110.1111/j.1751‑1097.1995.tb02340.x
    [Google Scholar]
  61. PilotoA.M. RoviraD. CostaS.P.G. GoncalvesM. OxobenzoS.T. [f]benzopyrans as new fluorescent photolabile protecting groups for the carboxylic function.Tetrahedron200662119551196210.1016/j.tet.2006.09.085
    [Google Scholar]
  62. ArumugamS. PopikV.V. Bichromophoric fluorescent photolabile protecting group for alcohols and carboxylic acids.Photochem. Photobiol. Sci.201211351852110.1039/C1PP05317E22186939
    [Google Scholar]
  63. JanaA. AttaS. SarkarS. SinghN.D.P. 1–acetylpyrene with dual functions as an environment–sensitive fluorophore and fluorescent photoremovable protecting group.Tetrahedron2010669798980710.1016/j.tet.2010.10.090
    [Google Scholar]
  64. JanaA. IkbalM. SinghN.D.P. Perylen–3–ylmethanol: fluorescent photoremovable protecting group (FPRPG) for carboxylic acids and alcohols.Tetrahedron2012681128113610.1016/j.tet.2011.11.074
    [Google Scholar]
  65. NicolaouK.C. YueE.W. Total synthesis of selected natural products.Pure Appl. Chem.19976941310.1351/pac199769030413
    [Google Scholar]
  66. PandaB. SarkarT.K. Gold catalysis: regio- and stereoselective total synthesis of xyloketals D and G and the related natural product alboatrin.J. Org. Chem.20137862413242110.1021/jo302545n23428314
    [Google Scholar]
  67. PandaB. Total synthesis of xyloketals and related natural product alboatrin: Strategies and tactics.ChemistrySelect201949143916410.1002/slct.201900779
    [Google Scholar]
  68. PandaB. GooyeeA.K. Bioactivity of marine natural product xyloketals.Lett. Org. Chem.2021750751210.2174/1570178617999200909114431
    [Google Scholar]
  69. PandaB. Total synthesis of Bruguierols: strategies and tactics.ARKIVOC2019i29330310.24820/ark.5550190.p010.966
    [Google Scholar]
  70. NicolaouK.C. HummelC.W. NakadaM. ShibayamaK. PitsinosE.N. SaimotoH. MizunoY. BaldeniusK.U. SmithA.L. Total synthesis of calicheamicin γ1. The final stages.J. Am. Chem. Soc.19931157625763510.1021/ja00070a006
    [Google Scholar]
  71. GareauY. ZamboniR. WongA.W. Total synthesis of N-methyl LTC4: a novel methodology for the monomethylation of amines.J. Org. Chem.1993581582158510.1021/jo00058a049
    [Google Scholar]
  72. SniderB.B. BusuyekM.V. Synthesis of circumdatin F and sclerotigenin. Use of the 2-nitrobenzyl group for protection of a diketopiperazine amide; synthesis of ent-fumiquinazoline G.Tetrahedron2001573301330710.1016/S0040‑4020(01)00208‑3
    [Google Scholar]
/content/journals/ccchem/10.2174/2666001602666220202142858
Loading
/content/journals/ccchem/10.2174/2666001602666220202142858
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test