Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

Background

Osteoarthritis (OA) stands as the most widespread form of arthritis, representing a primary source of pain and functional impairment among the elderly. It is often referred to as a degenerative joint disease. OA is more than just wear and tear; it is an aberrant remodelling of joint tissues prompted by a deluge of inflammatory mediators released within the compromised joint. This disease affects 15 million people in India annually.

Objective

Aceclofenac is a COX-2 inhibitor that has anti-inflammatory activity. However, aceclofenac has a short mean plasma elimination half-life and poor water solubility. It requires frequent dosing, which has been linked to a number of negative side effects, including bleeding and gastrointestinal irritation. A potential solution to this problem is the transdermal administration of aceclofenac using microsponges. In order to have a synergistic effect along with the bio-enhancer effects, piperine was incorporated into the formulation.

Methods

Microsponges were created using the quasi-emulsion solvent diffusion method. After characterization, the prepared microsponges were incorporated into the Carbopol gel. The study focused on evaluating the optimized formulation, F1.

Results

All the prepared microsponge formulations underwent assessment based on parameters including yield of production, entrapment efficiency, and drug release. The outcomes indicated that batches ranging from F1 to F9 showed positive entrapment efficiency and drug release. From 50.37% to 80.76% and 71.18% to 91.8% and studies the results reveal that the inflammatory cells in the best formulation Ace(B) group were reduced hence the formulation's anti-inflammatory impact was achieved.

Conclusion

The findings indicate that Formulation F1 exhibits superior entrapment and enhanced drug release. The kinetics study suggests that the optimized formulation aligns well with the Higuchi model and adheres to the Fickian transport drug release mechanism. Animal study findings suggest that optimized formulation Ace(B) may possess ideal -anti-osteoarthritic activity for osteoarthritic disease. Further clinical trials on humans may be conducted in order to make the research fruitful for society.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708297654240718053117
2024-07-26
2025-06-20
Loading full text...

Full text loading...

References

  1. MurphyL. HelmickC.G. The impact of osteoarthritis in the United States: A population-health perspective: A population-based review of the fourth most common cause of hospitalization in U.S. adults.Orthop. Nurs.2012312859110.1097/NOR.0b013e31824fcd42 22446800
    [Google Scholar]
  2. O’NeillT.W. McCabeP.S. McBethJ. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis.Best Pract. Res. Clin. Rheumatol.201832231232610.1016/j.berh.2018.10.007 30527434
    [Google Scholar]
  3. HeidariB. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I.Caspian J. Intern. Med.201122205212 24024017
    [Google Scholar]
  4. FangH. BeierF. Mouse models of osteoarthritis: Modelling risk factors and assessing outcomes.Nat. Rev. Rheumatol.201410741342110.1038/nrrheum.2014.46 24662645
    [Google Scholar]
  5. Glyn-JonesS. PalmerA.J.R. AgricolaR. Osteoarthritis. Lancet2015386999137638710.1016/S0140‑6736(14)60802‑3 25748615
    [Google Scholar]
  6. ScottD.L. WolfeF. HuizingaT.W.J. Rheumatoid arthritis.Lancet201037697461094110810.1016/S0140‑6736(10)60826‑4 20870100
    [Google Scholar]
  7. SharmaA. KumarG. SinghR. Application of box–behnken design and desirability function in the optimization of aceclofenac-loaded micropsonges for topical application.Res J Pharm Technol202114126295630310.52711/0974‑360X.2021.01089
    [Google Scholar]
  8. BangJ.S. OhD.H. ChoiH.M. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1β-stimulated fibroblast-like synoviocytes and in rat arthritis models.Arthritis Res. Ther.2009112R4910.1186/ar2662 19327174
    [Google Scholar]
  9. DerosaG. MaffioliP. SahebkarA. Piperine and its role in chronic diseases.Arthritis Res TherAdv Exp Med Biol20169281R173R18410.1007/978‑3‑319‑41334‑1_8
    [Google Scholar]
  10. AbramoffB. CalderaF.E. Osteoarthritis.Med. Clin. North Am.2020104229331110.1016/j.mcna.2019.10.007 32035570
    [Google Scholar]
  11. XiaB. Di ChenZ. ZhangJ. HuS. JinH. TongP. Osteoarthritis pathogenesis: A review of molecular mechanisms.Calcif. Tissue Int.201495649550510.1007/s00223‑014‑9917‑9 25311420
    [Google Scholar]
  12. LitwicA. EdwardsM.H. DennisonE.M. CooperC. Epidemiology and burden of osteoarthritis.Br. Med. Bull.2013105118519910.1093/bmb/lds038 23337796
    [Google Scholar]
  13. BijlsmaJ.W.J. BerenbaumF. LafeberF.P.J.G. Osteoarthritis: An update with relevance for clinical practice.Lancet201137797832115212610.1016/S0140‑6736(11)60243‑2 21684382
    [Google Scholar]
  14. KumarA. PalitP. ThomasS. Osteoarthritis: Prognosis and emerging therapeutic approach for disease management.Drug Dev. Res.2021821495810.1002/ddr.21741 32931079
    [Google Scholar]
  15. PereiraD. RamosE. BrancoJ. Osteoarthritis. Acta Med Port20142819910610.20344/amp.5477 25817486
    [Google Scholar]
  16. MobasheriA. BattM. An update on the pathophysiology of osteoarthritis.Ann. Phys. Rehabil. Med.2016595-633333910.1016/j.rehab.2016.07.004 27546496
    [Google Scholar]
  17. JangS. LeeK. JuJ.H. Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee.Int. J. Mol. Sci.2021225261910.3390/ijms22052619 33807695
    [Google Scholar]
  18. HussainS.M. NeillyD.W. BaligaS. PatilS. MeekR.M.D. Knee osteoarthritis: A review of management options.Scott. Med. J.201661171610.1177/0036933015619588 27330013
    [Google Scholar]
  19. HochbergM.C. AltmanR.D. AprilK.T. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee.Arthritis Care Res.201264446547410.1002/acr.21596 22563589
    [Google Scholar]
  20. JunqueiraM.V. BruschiM.L. A review about the drug delivery from microsponges.AAPS PharmSciTech20181941501151110.1208/s12249‑018‑0976‑5 29484616
    [Google Scholar]
  21. KhattabA. NattoufA. Optimization of entrapment efficiency and release of clindamycin in microsponge based gel.Sci. Rep.20211112334510.1038/s41598‑021‑02826‑7 34857863
    [Google Scholar]
  22. BhatiaM. SainiM. Formulation and evaluation of curcumin microsponges for oral and topical drug delivery.Prog. Biomater.20187323924810.1007/s40204‑018‑0099‑9 30242738
    [Google Scholar]
  23. Naga JyothiK. Dinesh KumarP. ArshadP. KarthikM. PanneerselvamT. Microsponges: A promising novel drug delivery system.J. Drug Deliv. Ther.201995-s18819410.22270/jddt.v9i5‑s.3649
    [Google Scholar]
  24. KalaS. JuyalD. Preformulation and characterization studies of aceclofenac active ingredient.Pharma Innov.201659110
    [Google Scholar]
  25. AryaU. MalikJ.K. Preformulation studies of aceclofenac: Major part of formulation strategy.EAS J Pharm Pharmacol2022464
    [Google Scholar]
  26. SharmaA. GuarveK. SinghR. Pre-formulation profiling of aceclofenac and development of a sensitive analytical technique for its assessment.Indian Drugs20246141297510.53879/id.58.09.12975
    [Google Scholar]
  27. PatilH.S. JainS. ShuklaK. PatilP.A. Development and evaluation of transdermal patches of piperine hydrochloride.Res. J. Pharm. Dos. Forms Technol.20241420002110.52711/0975‑4377.2022.00021
    [Google Scholar]
  28. RajabN.A. JawadM.S. Formulation and in vitro evaluation of piroxicam microsponge as a tablet.Int. J. Pharm. Pharm. Sci.2016821044
    [Google Scholar]
  29. OsmaniR.A.M. AloorkarN.H. IngaleD.J. Microsponges based novel drug delivery system for augmented arthritis therapy.Saudi Pharm. J.201523556257210.1016/j.jsps.2015.02.020 26594124
    [Google Scholar]
  30. VernekarA. GudeR. GhadiN. ParabS. ShirodkerA. Formulation and characterization of controlled release flurbiprofen microsponges loaded in gels.Indian J Pharmaceut Edu Res2019532ss50s5710.5530/ijper.53.2s.48
    [Google Scholar]
  31. RajatS KumarMM KumarPA AbhishekS KrishnaK An insight of non-steroidal anti-inflammatory drug mefenamic acid: A review.GSC Biol Pharmaceut Sci201907020529
    [Google Scholar]
  32. AdkiK.M. KulkarniY.A. Chemistry, pharmacokinetics, pharmacology and recent novel drug delivery systems of paeonol.Life Sci.202025011754410.1016/j.lfs.2020.117544 32179072
    [Google Scholar]
  33. ShaikhA.A. SwamiV. BuchadeR.S. JadhavP.N. Formulation development of celecoxib loaded microsponges using eudragit and ethyl cellulose.Int. J. Pharm. Investig.202111222522910.5530/ijpi.2021.2.40
    [Google Scholar]
  34. Rodriguez-MerchanE.C. Topical therapies for knee osteoarthritis.Postgrad. Med.2018130760761210.1080/00325481.2018.1505182 30156934
    [Google Scholar]
  35. LindlerB.N. LongK.E. TaylorN.A. LeiW. Use of herbal medications for treatment of osteoarthritis and rheumatoid arthritis.Medicines20207116710.3390/medicines7110067 33126603
    [Google Scholar]
  36. JainN. ValliK.S. DeviV.K. Importance of novel drug delivery systems in herbal medicines.Pharmacogn. Rev.201047273110.4103/0973‑7847.65322 22228938
    [Google Scholar]
  37. RanadeS.Y. GaudR.S. Current strategies in herbal drug delivery for arthritis: An overview.Int. J. Pharm. Sci. Res.20134103782
    [Google Scholar]
  38. ZhangP. LiK. KamaliA. Small molecules of herbal origin for osteoarthritis treatment: In vitro and in vivo evidence.Arthritis Res. Ther.202224110510.1186/s13075‑022‑02785‑y 35545776
    [Google Scholar]
  39. CarmonaF. Soares PereiraA.M. Herbal medicines: Old and new concepts, truths and misunderstandings.Rev. Bras. Farmacogn.201323237938510.1590/S0102‑695X2013005000018
    [Google Scholar]
  40. AmparoT.R. SeibertJ.B. Herbal medicines to the treatment of skin and soft tissue infections: Advantages of the multi‐targets action.Phytother. Res.2019
    [Google Scholar]
  41. ShindeC.G. VenkateshM.P. KumarT.M.P. ShivakumarH.G. Methotrexate: A gold standard for treatment of rheumatoid arthritis.J. Pain Palliat. Care Pharmacother.201428435135810.3109/15360288.2014.959238 25322199
    [Google Scholar]
  42. GawaiS.H. DhobleN.N. PadoleN. DhapkeP. BahetiJ.R.B. Therapeutic approach in the management of osteoarthritis.Asian J Pharmaceut Res Develop2023111525910.22270/ajprd.v11i1.1220
    [Google Scholar]
  43. LiebermanHA RiegerMM BankerGS Pharmaceutical dosage forms: Disperse system. 2nd ed.3473511
    [Google Scholar]
  44. LachmanL. LiebermanH.A. KanigJ.L. The theory and practice of industrial pharmacy.3rd edBombayVarghese Publishing House1991457477
    [Google Scholar]
  45. Van AmeydeM. HodgdenJ. In patients with osteoarthritis, is curcumin, compared to placebo, effective in reducing pain?J. Okla. State Med. Assoc.202211512830 36304437
    [Google Scholar]
  46. SiddiquiM.Z. Boswellia serrata, a potential antiinflammatory agent: An overview.Indian J. Pharm. Sci.2011733255261 22457547
    [Google Scholar]
  47. DengR. Therapeutic effects of guggul and its constituent guggulsterone: Cardiovascular benefits.Cardiovasc. Drug Rev.200725437539010.1111/j.1527‑3466.2007.00023.x 18078436
    [Google Scholar]
  48. PreethiL. GanamuraliN. DhanasekaranD. SabarathinamS. Therapeutic use of Guggulsterone in COVID-19 induced obesity (COVIBESITY) and significant role in immunomodulatory effect.Obes. Med.20212410034610.1016/j.obmed.2021.100346 33942025
    [Google Scholar]
  49. AnuragT. An over view on chemistry and applications of acacia gums.Pharma Chem201026327331
    [Google Scholar]
  50. KhandreM.Y. TalekarS.R. WaghA.M. TaleA.V. TekaleA.M. Formulations and evaluation of banana compact powder.IJPRA202320234494
    [Google Scholar]
  51. KhattabA. NattoufA. Microsponge based gel as a simple and valuable strategy for formulating and releasing Tazarotene in a controlled manner.Sci. Rep.20221211141410.1038/s41598‑022‑15655‑z 35794139
    [Google Scholar]
  52. VishvakarmaR. MajumdarA. MalviyaN. Formulation and evaluation of orlistat loaded microsponges for the treatment of obesity.Res J Pharm Technol20221573221322510.52711/0974‑360X.2022.00540
    [Google Scholar]
  53. SyedS.M. GaikwadS.S. WaghS. Formulation and evaluation of gel containing fluconazole microsponges.Asian J Pharm Res Dev202084231239
    [Google Scholar]
  54. KarthikaR. ElangoK. Ramesh KumarK. RahulK. Formulation and evaluation of lornoxicam microsponge tablets for the treatment of arthritis.Int. J. Pharm. Innov.20133229
    [Google Scholar]
  55. SultanF. ChopraH. Kumar SharmaG. Formulation and evaluation of luliconazole microsponges loaded gel for topical delivery.Res J Pharm Technol202114115775578010.52711/0974‑360X.2021.01004
    [Google Scholar]
  56. PatelN. PadiaN. VadgamaN. RavalM. ShethN. Formulation and evaluation of microsponge gel for topical delivery of fluconazole for fungal therapy.J. Pharm. Investig.201646322123810.1007/s40005‑016‑0230‑7
    [Google Scholar]
  57. NiveditaM. Formulation and evaluation of diacerein loaded microsponges in capsule.INJRD202383114
    [Google Scholar]
  58. NiefR. HusseinA. Preparation and evaluation of meloxicam microsponges: As transdermal delivery system.Iraqi J. Pharm Sci.201523274
    [Google Scholar]
  59. KashyapA. DasA. AhmedA.B. Formulation and evaluation of transdermal topical gel of ibuprofen.J. Drug Deliv. Ther.2020102202510.22270/jddt.v10i2.3902
    [Google Scholar]
  60. MadanS. NehateC. BarmanT.K. RathoreA.S. KoulV. Design, preparation, and evaluation of liposomal gel formulations for treatment of acne: In vitro and in vivo studies.Drug Dev. Ind. Pharm.201945339540410.1080/03639045.2018.1546310 30442066
    [Google Scholar]
  61. ThavvaV. BaratamS.R. Formulation and evaluation of terbinafine hydrochloride microsponge gel.Int J Appl Pharmaceut2019116788510.22159/ijap.2019v11i6.32502
    [Google Scholar]
  62. RaoR. JakharS. KadianV. Dapsone-loaded microsponge gel for acne management: Preparation, characterization and anti-microbial activity.Micro Nanosyst.202113221122210.2174/1876402912999200630130442
    [Google Scholar]
  63. TambeA.B. Topical anti-inflammatory gels of naproxen entrapped in eudragit based microsponge delivery system.J Adv Chem Eng201552
    [Google Scholar]
  64. KesharwaniR. SachanA. SinghS. PatelD. Formulation and evaluation of solid lipid nanoparticle (SLN) based topical gel of etoricoxib.J. Appl. Pharm. Sci.201661012413110.7324/JAPS.2016.601017
    [Google Scholar]
  65. GuzmanR.E. EvansM.G. BoveS. MorenkoB. KilgoreK. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: An animal model of osteoarthritis.Toxicol. Pathol.200331661962410.1080/01926230390241800 14585729
    [Google Scholar]
  66. ChunJ.M. LeeA.Y. NamJ.Y. Effects of Dipsacus asperoides extract on monosodium iodoacetate–induced osteoarthritis in rats based on gene expression profiling.Front. Pharmacol.20211261515710.3389/fphar.2021.615157 33927614
    [Google Scholar]
  67. KimJ.S. Characterization of a new animal model for evaluation and treatment of back pain due to lumbar facet joint osteoarthritis.Arthritis Rheum.201163102966297310.1002/art.30487
    [Google Scholar]
  68. Di Cesare MannelliL. MicheliL. ZanardelliM. GhelardiniC. Low dose native type II collagen prevents pain in a rat osteoarthritis model.BMC Musculoskelet. Disord.201314122810.1186/1471‑2474‑14‑228 23915264
    [Google Scholar]
  69. SinghV.K. SinghP.K. SharmaP.K. SrivastavaP.K. MishraA. Formulation and evaluation of topical gel of acelofenac containing piparine.Indo Am J Pharm Res2013375268
    [Google Scholar]
  70. TsoukalasD. ZlatianO. MitroiM. A novel nutraceutical formulation can improve motor activity and decrease the stress level in a murine model of middle-age animals.J. Clin. Med.202110462410.3390/jcm10040624 33562115
    [Google Scholar]
  71. SalamaA. El-HashemyH.A. DarwishA.B. Formulation and optimization of lornoxicam-loaded bilosomes using 23 full factorial design for the management of osteoarthritis in rats: Modulation of MAPK/Erk1 signaling pathway.J. Drug Deliv. Sci. Technol.20226910317510.1016/j.jddst.2022.103175
    [Google Scholar]
  72. CordaroM. SiracusaR. ImpellizzeriD. Safety and efficacy of a new micronized formulation of the ALIAmide palmitoylglucosamine in preclinical models of inflammation and osteoarthritis pain.Arthritis Res. Ther.201921125410.1186/s13075‑019‑2048‑y 31779692
    [Google Scholar]
  73. OrhanC. TuzcuM. DurmusA.S. Protective effect of a novel polyherbal formulation on experimentally induced osteoarthritis in a rat model.Biomed. Pharmacother.202215111305210.1016/j.biopha.2022.113052 35588576
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708297654240718053117
Loading
/content/journals/raiad/10.2174/0127722708297654240718053117
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test