Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716

Abstract

A neglected zoonosis, Cystic Echinococcosis (CE), is most common in developing nations worldwide. Vaccination is, therefore, helpful in preventing this disease.

Predicting the main biochemical properties of Calreticulin (CRT) and its possible B-cell and T-cell-binding epitopes as a valuable candidate for immunization was the goal of the current study.

Predictions were made to determine biochemical, antigenic, structural, and subcellular characteristics, along with the immunogenic epitopes, using several online servers.

The extracellular 48.15 KDa protein exhibited no allergenicity, while possessing hydrophilicity (GRAVY: -0.785), stability (instability: 33.88), tolerance to a wide range of temperatures (aliphatic: 62.45), and 59 post-translational modification sites. The secondary structure mostly comprised random coils and extended strands. The 3D model was generated using the Robetta server (confidence: 0.72), and was rehashed and confirmed subsequently. Common B-cell epitopes were discovered by three servers and screened for antigenic, allergenic, and solubility traits. Moreover, MHC-associated epitopes for mice and humans were predicted in CRT with subsequent screening.

This work offers a foundation for further investigation in order to design an effective vaccination against CE. Further empirical research on the examined protein solely or in combination with other antigens is needed.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708309749240821081333
2024-09-04
2025-05-31
Loading full text...

Full text loading...

References

  1. WenH. VuittonL. TuxunT. LiJ. VuittonD.A. ZhangW. McManusD.P. Echinococcosis: Advances in the 21st century.Clin. Microbiol. Rev.2019322e00075-1810.1128/CMR.00075‑1830760475
    [Google Scholar]
  2. ShamsM. JavanmardiE. NosratiM.C. GhasemiE. ShamsiniaS. YousefiA. KordiB. MajidianiH. NourmohammadiH. Bioinformatics features and immunogenic epitopes of Echinococcus granulosus Myophilin as a promising target for vaccination against cystic echinococcosis.Infect. Genet. Evol.20218910471410.1016/j.meegid.2021.10471433434702
    [Google Scholar]
  3. KhalkhaliH.R. ForoutanM. KhademvatanS. MajidianiH. AryamandS. KhezriP. AminpourA. Prevalence of cystic echinococcosis in Iran: A systematic review and meta-analysis.J. Helminthol.201892326026810.1017/S0022149X1700046328589871
    [Google Scholar]
  4. McManusD.P. GrayD.J. ZhangW. YangY. Diagnosis, treatment, and management of echinococcosis.BMJ2012344e386610.1136/bmj.e386622689886
    [Google Scholar]
  5. BudkeC.M. CarabinH. NguyenH. DickeyM. ZeziulinO. NdimubanziP.C. RainwaterE. BhattaraiR. QianM.B. A systematic review of the literature on cystic echinococcosis frequency worldwide and its associated clinical manifestations.Am. J. Trop. Med. Hyg.20138861011102710.4269/ajtmh.12‑069223546806
    [Google Scholar]
  6. BudkeC.M. DeplazesP. TorgersonP.R. Global socioeconomic impact of cystic echinococcosis.Emerg. Infect. Dis.200612229630310.3201/eid1202.05049916494758
    [Google Scholar]
  7. Otero-AbadB. TorgersonP.R. A systematic review of the epidemiology of echinococcosis in domestic and wild animals.PLoS Negl. Trop. Dis.201376e224910.1371/journal.pntd.000224923755310
    [Google Scholar]
  8. PourseifM.M. MoghaddamG. SaeediN. BarzegariA. DehghaniJ. OmidiY. Current status and future prospective of vaccine development against Echinococcus granulosus.Biologicals20185111110.1016/j.biologicals.2017.10.00329100669
    [Google Scholar]
  9. LightowlersM.W. ColebrookA.L. GauciC.G. GauciS.M. KyngdonC.T. MonkhouseJ.L. Vallejo RodriquezC. ReadA.J. RolfeR.A. SatoC. Vaccination against cestode parasites: Anti-helminth vaccines that work and why.Vet. Parasitol.200311528312310.1016/S0304‑4017(03)00202‑412878418
    [Google Scholar]
  10. VercruysseJ. KnoxD.P. SchettersT.P.M. WilladsenP. Veterinary parasitic vaccines: Pitfalls and future directions.Trends Parasitol.2004201048849210.1016/j.pt.2004.07.00915363443
    [Google Scholar]
  11. CraigP. HegglinD. LightowlersM. TorgersonP.R. WangQ. Echinococcosis: Control and prevention. Advances in parasitology. 96.Elsevier201755158
    [Google Scholar]
  12. GasteigerE. HooglandC. GattikerA. WilkinsM.R. AppelR.D. BairochA. Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook.Springer200557160710.1385/1‑59259‑890‑0:571
    [Google Scholar]
  13. HeoL. ParkH. SeokC. GalaxyRefine: protein structure refinement driven by side-chain repacking.Nucleic Acids Res.201341W1W384W38810.1093/nar/gkt45823737448
    [Google Scholar]
  14. MajidM. AndleebS. Designing a multi-epitopic vaccine against the enterotoxigenic Bacteroides fragilis based on immunoinformatics approach.Sci. Rep.2019911978010.1038/s41598‑019‑55613‑w31874963
    [Google Scholar]
  15. PonomarenkoJ. BuiH.H. LiW. FussederN. BourneP.E. SetteA. PetersB. ElliPro: A new structure-based tool for the prediction of antibody epitopes.BMC Bioinformatics20089151410.1186/1471‑2105‑9‑51419055730
    [Google Scholar]
  16. GreenbaumJ. SidneyJ. ChungJ. BranderC. PetersB. SetteA. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes.Immunogenetics201163632533510.1007/s00251‑011‑0513‑021305276
    [Google Scholar]
  17. EckertJ. ThompsonR. Historical aspects of echinococcosis. Advances in parasitology. 95.Elsevier2017164
    [Google Scholar]
  18. DeplazesP. RinaldiL. RojasC.A. TorgersonP. HarandiM. RomigT. Global distribution of alveolar and cystic echinococcosis. Advances in parasitology. 95.Elsevier2017315493
    [Google Scholar]
  19. LarrieuE. GavidiaC.M. LightowlersM.W. Control of cystic echinococcosis: Background and prospects.Zoonoses Public Health201966888989910.1111/zph.1264931529690
    [Google Scholar]
  20. GauciC. VuralG. ÖncelT. VarcasiaA. DamianV. KyngdonC.T. CraigP.S. AndersonG.A. LightowlersM.W. Vaccination with recombinant oncosphere antigens reduces the susceptibility of sheep to infection with Taenia multiceps.Int. J. Parasitol.2008388-91041105010.1016/j.ijpara.2007.11.00618160069
    [Google Scholar]
  21. MaX. ZhaoH. ZhangF. ZhuY. PengS. MaH. CaoC. XinY. YimitiD. WenH. DingJ. Activity in mice of recombinant BCG-EgG1Y162 vaccine for Echinococcus granulosus infection.Hum. Vaccin. Immunother.201612117017510.1080/21645515.2015.106456426266551
    [Google Scholar]
  22. WangH. LiZ. GaoF. ZhaoJ. ZhuM. HeX. NiuN. ZhaoW. Immunoprotection of recombinant Eg.P29 against Echinococcus granulosus in sheep.Vet. Res. Commun.2016402737910.1007/s11259‑016‑9656‑727094043
    [Google Scholar]
  23. Del TordelloE. RappuoliR. DelanyI. Reverse vaccinology: Exploiting genomes for vaccine design. Human vaccines.Elsevier20176586
    [Google Scholar]
  24. GottsteinB. SoboslayP. OrtonaE. WangJ. SiracusanoA. VuittonD. Immunology of alveolar and cystic echinococcosis (AE and CE). Advances in parasitology. 96.Elsevier2017154
    [Google Scholar]
  25. ZhangW. LiJ. McManusD.P. Concepts in immunology and diagnosis of hydatid disease.Clin. Microbiol. Rev.2003161183610.1128/CMR.16.1.18‑36.200312525423
    [Google Scholar]
  26. CabezónC. CabreraG. ParedesR. FerreiraA. GalantiN. Echinococcus granulosus calreticulin: Molecular characterization and hydatid cyst localization.Mol. Immunol.20084551431143810.1016/j.molimm.2007.08.02217936905
    [Google Scholar]
  27. ChenL. ChengZ. XianS. XuZ. YanY. ChenJ. Immunization with rEmCRT provides protection against Echinococcus multilocularis infection in BALB/c mice.ResearchSquare202210.21203/rs.3.rs‑1740725/v1
    [Google Scholar]
  28. MajidianiH. SoltaniS. GhaffariA.D. SabaghanM. TaghipourA. ForoutanM. In-depth computational analysis of calcium-dependent protein kinase 3 of Toxoplasma gondii provides promising targets for vaccination.Clin. Exp. Vaccine Res.20209214615810.7774/cevr.2020.9.2.14632864371
    [Google Scholar]
  29. WalshC. Posttranslational modification of proteins: expanding nature’s inventory.Roberts and Company Publishers2006
    [Google Scholar]
  30. LeeT.Y. HsuJ. ChangW.C. WangT.Y. HsuP.C. HuangH.D. A comprehensive resource for integrating and displaying protein post-translational modifications.BMC Res. Notes20092111110.1186/1756‑0500‑2‑11119549291
    [Google Scholar]
  31. HanssonM. Nygren PAk, Sta˚ hl SJB, biochemistry a. Design and production of recombinant subunit vaccines.Clin. Microbiol. Rev.200032295107
    [Google Scholar]
  32. YadavG. RaoR. RajU. VaradwajP.K. Computational modeling and analysis of prominent T-cell epitopes for assisting in designing vaccine of ZIKA virus.J. Appl. Pharm. Sci.2017708116122
    [Google Scholar]
  33. ShaddelM. EbrahimiM. TabandehM.R. Bioinformatics analysis of single and multi-hybrid epitopes of GRA-1, GRA-4, GRA-6 and GRA-7 proteins to improve DNA vaccine design against Toxoplasma gondii. J. Parasit. Dis.201842226927610.1007/s12639‑018‑0996‑929844632
    [Google Scholar]
  34. ZhangW WenH LiJ LinR McManusDPJC ImmunologyD Immunology and immunodiagnosis of cystic echinococcosis: an update.201210.1155/2012/101895
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708309749240821081333
Loading
/content/journals/raiad/10.2174/0127722708309749240821081333
Loading

Data & Media loading...

Supplements

Prediction of solubility and phosphorylation sites of the CRT protein using Protein-Sol and NetPhos 3.1 webservers, respectively. The solubility showed a score above average (score: 0.537) solubility in . Also, there existed 43 phosphorylation sites in this protein. Signal peptide prediction for CRT protein using SignalP-6.0, demonstrating the presence of a putative signal peptide with a score of 0.9991. Structural improvement validation of the 3D model before and after refinement. HTL-associated epitopes for calreticulin using some mouse MHC-II alleles with screening. CTL-associated epitopes for calreticulin using some mouse MHC-I alleles with screening. Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): calreticulin; E. granulosus; epitopes; immunization; in silico; Preliminary analysis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test