Skip to content
2000
image of Functionality of Semolina Pasta Supplemented with Grapefruit Flavedo Byproduct: Effect on Phytochemical, Functional, Textural, Cooking, and Sensorial Quality

Abstract

Background

Pasta is consumed worldwide and can be an excellent food matrix for supplementation. Grapefruit (Citrus paradisi) flavedo byproduct is reported to contain considerable amounts of bioactive compounds, which represent a valuable and sustainable source of phenolics. So far, there is limited information available about the utilization of grapefruit flavedo byproducts for supplementation of pasta.

Methods

The present study aimed to investigate the effect of freeze-dried grapefruit flavedo powder (GFP) incorporation at various concentrations (3, 6, 9, and 12%) on the phytochemical, functional, textural, microstructural, and sensory quality of the developed pasta.

Results

Fortification with GFP significantly (P<0.05) enhanced antioxidant activities relative to DPPH and FRAP and increased the total phenolic and flavonoid content from 73.20–96.83 mg GAE/100g and 132.41–211.63 mg GAE/100g, respectively. Supplementation with GFP significantly (P<0.05) reduced the optimum cooking time of pasta, while cooking loss increased up to 6.32% with 12% GFP incorporation, which was still under the acceptable limits (<8%). The addition of GFP decreased the L* value, while the a* and b* values increased for the pasta. SEM analysis presented that GFP incorporation in pasta affected the structural integrity attributable to the enhanced fiber levels, inducing a weaker matrix, as ascertained by textural profile analysis (TPA) with a decline in hardness attribute with increasing GFP concentration. Sensory analysis divulged overall acceptability scores of 8.4 for the pasta with 6% GFP, while further increments in GFP levels led to decreased sensory scores.

Conclusion

Grapefruit peels are typically discarded as waste, the outer layer of which, ., flavedo, could be used to enrich pasta. The present research divulged that pasta supplementation with freeze-dried flavedo powder could provide total phenolic content, flavonoid content, and antioxidant potential without compromising on the technological and sensory quality of pasta. Utilization of this citrus waste as a bioactive food ingredient with promising effects represents a valuable byproduct valorization strategy.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X330847240911092022
2024-11-07
2025-06-27
Loading full text...

Full text loading...

References

  1. International Pasta Organization. 2021 Available from:https://internationalpasta.org/(accessed on 20-8-2024)
  2. Sissons M. Development of novel pasta products with evidence-based impacts on health—A Review. Foods 2022 11 1 123 10.3390/foods11010123 35010249
    [Google Scholar]
  3. Bianchi F. Tolve R. Rainero G. Bordiga M. Brennan C.S. Simonato B. Technological, nutritional and sensory properties of pasta fortified with agro‐industrial by‐products: a review. Int. J. Food Sci. Technol. 2021 56 9 4356 4366 10.1111/ijfs.15168
    [Google Scholar]
  4. Kaur A. Singh A. Gupta A. Surasani V.K.R. Dhaliwal S.S. Utilisation of aquatic fern ( Azolla sp.) powder for supplementing semolina pasta: quality characteristics of produced pasta. Int. J. Food Sci. Technol. 2024 59 2 1113 1120 10.1111/ijfs.16582
    [Google Scholar]
  5. Carpentieri S. Larrea-Wachtendorff D. Donsì F. Ferrari G. Functionalization of pasta through the incorporation of bioactive compounds from agri-food by-products: Fundamentals, opportunities, and drawbacks. Trends Food Sci. Technol. 2022 122 49 65 10.1016/j.tifs.2022.02.011
    [Google Scholar]
  6. Khajuria A. Atienza V.A. Chavanich S. Henning W. Islam I. Kral U. Liu M. Liu X. Murthy I.K. Oyedotun T.D.T. Verma P. Xu G. Zeng X. Li J. Accelerating circular economy solutions to achieve the 2030 agenda for sustainable development goals. Circular Economy 2022 1 1 100001 10.1016/j.cec.2022.100001
    [Google Scholar]
  7. Padalino L. Conte A. Lecce L. Likyova D. Sicari V. Pellicanò T.M. Poiana M. Del Nobile M.A. Functional pasta with tomato by-product as a source of antioxidant compounds and dietary fibre. Czech J. Food Sci. 2017 35 1 48 56 10.17221/171/2016‑CJFS
    [Google Scholar]
  8. Jalgaonkar K. Jha S.K. Mahawar M.K. Influence of incorporating defatted soy flour, carrot powder, mango peel powder, and moringa leaves powder on quality characteristics of wheat semolina-pearl millet pasta. J. Food Process. Preserv. 2018 42 4 e13575 10.1111/jfpp.13575
    [Google Scholar]
  9. Ungureanu-Iuga M. Dimian M. Mironeasa S. Development and quality evaluation of gluten-free pasta with grape peels and whey powders. Lebensm. Wiss. Technol. 2020 130 109714 10.1016/j.lwt.2020.109714
    [Google Scholar]
  10. Kaur M. Dhaliwal M. Kaur H. Singh M. Punia Bangar S. Kumar M. Pandiselvam R. Preparation of antioxidant‐rich tricolor pasta using microwave processed orange pomace and cucumber peel powder: A study on nutraceutical, textural, color, and sensory attributes. J. Texture Stud. 2022 53 6 834 843 10.1111/jtxs.12654 34910831
    [Google Scholar]
  11. Devi Y.B. Dhar P. Kumari T. Deka S.C. Development of functional pasta from pineapple pomace with soyflour protein. Food Chemistry Advances 2023 2 100198 10.1016/j.focha.2023.100198
    [Google Scholar]
  12. Gumul D. Kruczek M. Ivanišová E. Słupski J. Kowalski S. Apple pomace as an ingredient enriching wheat pasta with health-promoting compounds. Foods 2023 12 4 804 10.3390/foods12040804 36832879
    [Google Scholar]
  13. Segura-Badilla O. Kammar-García A. Mosso-Vázquez J. Ávila-Sosa Sánchez R. Ochoa-Velasco C. Hernández-Carranza P. Navarro-Cruz A.R. Potential use of banana peel (Musa cavendish) as ingredient for pasta and bakery products. Heliyon 2022 8 10 e11044 10.1016/j.heliyon.2022.e11044 36276723
    [Google Scholar]
  14. Namir M. Iskander A. Alyamani A. Sayed-Ahmed E. Saad A. Elsahy K. El-Tarabily K. Conte-Junior C. Upgrading common wheat pasta by fiber-rich fraction of potato peel byproduct at different particle sizes: Effects on physicochemical, thermal, and sensory properties. Molecules 2022 27 9 2868 10.3390/molecules27092868 35566217
    [Google Scholar]
  15. Muzykiewicz A. Zielonka-Brzezicka J. Klimowicz A. The antioxidant potential of flesh, albedo and flavedo extracts from different varieties of grapefruits. Acta Sci. Pol. Technol. Aliment. 2019 18 4 453 462 10.17306/J.AFS.0731 31930795
    [Google Scholar]
  16. Joglekar S.N. Pathak P.D. Mandavgane S.A. Kulkarni B.D. Process of fruit peel waste biorefinery: a case study of citrus waste biorefinery, its environmental impacts and recommendations. Environ. Sci. Pollut. Res. Int. 2019 26 34 34713 34722 10.1007/s11356‑019‑04196‑0 30645745
    [Google Scholar]
  17. Nadeem M. Asghar M. Variability in peel composition and quality evaluation of peel oils of citrus varieties. J. Agric. Res. (Lahore) 2016 54 4 747 756
    [Google Scholar]
  18. Chaudhary S. Singh B. From Bin to Benefit: Sustainable Valorization of Grapefruit (Citrus paradisi) Byproducts Towards the Circular Economy. Curr. Food Sci. Tech. Rep. 2024 Published:17 May 2024
    [Google Scholar]
  19. Xi W. Zhang G. Jiang D. Zhou Z. Phenolic compositions and antioxidant activities of grapefruit ( Citrus paradisi Macfadyen) varieties cultivated in China. Int. J. Food Sci. Nutr. 2015 66 8 858 866 10.3109/09637486.2015.1095864 26600065
    [Google Scholar]
  20. Stabrauskiene J. Marksa M. Ivanauskas L. Viskelis P. Viskelis J. Bernatoniene J. Citrus × paradisi L. fruit waste: The impact of eco-friendly extraction techniques on the phytochemical and antioxidant potential. Nutrients 2023 15 5 1276 10.3390/nu15051276 36904275
    [Google Scholar]
  21. Babaoğlu A.S. Ainiwaer T. Özkan H. Karakaya M. Grapefruit and pomelo peel extracts as natural antioxidants for improved storage stability of Turkey patties during refrigerated storage. J. Food Sci. Technol. 2022 59 10 4067 4074 10.1007/s13197‑022‑05458‑5 36193353
    [Google Scholar]
  22. Multari S. Licciardello C. Caruso M. Anesi A. Martens S. Flavedo and albedo of five citrus fruits from Southern Italy: physicochemical characteristics and enzyme-assisted extraction of phenolic compounds. J. Food Meas. Charact. 2021 15 2 1754 1762 10.1007/s11694‑020‑00787‑5
    [Google Scholar]
  23. Official Methods of Analysis. Rockville, Maryland Association of the Official Analytical Chemists 2000
    [Google Scholar]
  24. Gull A. Prasad K. Kumar P. Nutritional, antioxidant, microstructural and pasting properties of functional pasta. J. Saudi Soc. Agric. Sci. 2018 17 2 147 153 10.1016/j.jssas.2016.03.002
    [Google Scholar]
  25. Tolve R. Pasini G. Vignale F. Favati F. Simonato B. Effect of grape pomace addition on the technological, sensory, and nutritional properties of durum wheat pasta. Foods 2020 9 3 354 10.3390/foods9030354 32204341
    [Google Scholar]
  26. Kataria A. Sharma S. Dar B.N. Changes in phenolic compounds, antioxidant potential and antinutritional factors of Teff ( Eragrostis tef ) during different thermal processing methods. Int. J. Food Sci. Technol. 2022 57 11 6893 6902 10.1111/ijfs.15210
    [Google Scholar]
  27. Singh G. Singh B. Singh A. Sharma S. Functionality of Barley pasta supplemented with Mungbean flour: cooking behavior, quality characteristics and morphological interactions. J. Food Meas. Charact. 2023 17 6 5806 5820 10.1007/s11694‑023‑02080‑7
    [Google Scholar]
  28. Approved methods of the American association of cereal chemists; AACC 2000
    [Google Scholar]
  29. Singh A. Gupta A. Surasani V.K.R. Sharma S. Influence of supplementation with pangas protein isolates on textural attributes and sensory acceptability of semolina pasta. J. Food Meas. Charact. 2021 15 2 1317 1326 10.1007/s11694‑020‑00728‑2
    [Google Scholar]
  30. Reddy Surasani V.K. Singh A. Gupta A. Sharma S. Functionality and cooking characteristics of pasta supplemented with protein isolate from pangas processing waste. Lebensm. Wiss. Technol. 2019 111 443 448 10.1016/j.lwt.2019.05.014
    [Google Scholar]
  31. Chauhan A. Saxena D.C. Singh S. Effect of hydrocolloids on microstructure, texture and quality characteristics of gluten-free pasta. J. Food Meas. Charact. 2017 11 3 1188 1195 10.1007/s11694‑017‑9495‑4
    [Google Scholar]
  32. Mariotti M. Iametti S. Cappa C. Rasmussen P. Lucisano M. Characterisation of gluten-free pasta through conventional and innovative methods: Evaluation of the uncooked products. J. Cereal Sci. 2011 53 3 319 327 10.1016/j.jcs.2011.02.001
    [Google Scholar]
  33. Surasani V.K.R. Raju C.V. Shafiq U. Chandra M.V. Lakshmisha I.P. Influence of protein isolates from Pangas processing waste on physico-chemical, textural, rheological and sensory quality characteristics of fish sausages. Lebensm. Wiss. Technol. 2020 117 108662 10.1016/j.lwt.2019.108662
    [Google Scholar]
  34. El-Sohaimy S.A. Brennan M. Darwish A.M.G. Brennan C. Physicochemical, texture and sensorial evaluation of pasta enriched with chickpea flour and protein isolate. Ann. Agric. Sci. 2020 65 1 28 34 10.1016/j.aoas.2020.05.005
    [Google Scholar]
  35. Milde L.B. Chigal P.S. Olivera J.E. González K.G. Incorporation of xanthan gum to gluten-free pasta with cassava starch. Physical, textural and sensory attributes. Lebensm. Wiss. Technol. 2020 131 109674 10.1016/j.lwt.2020.109674
    [Google Scholar]
  36. Zhao R. Zhao R. Li Q. Li K. Liu Q. Liu W. Hu H. Improvement effect of different protein powder on cooking characteristics of gluten‐free pasta and the establishment of quality evaluation based on principal component analysis. Int. J. Food Sci. Technol. 2024 59 2 1138 1149 10.1111/ijfs.16728
    [Google Scholar]
  37. Panghal A. Kaur R. Janghu S. Sharma P. Sharma P. Chhikara N. Nutritional, phytochemical, functional and sensorial attributes of Syzygium cumini L. pulp incorporated pasta. Food Chem. 2019 289 723 728 10.1016/j.foodchem.2019.03.081 30955672
    [Google Scholar]
  38. Multari S. Licciardello C. Caruso M. Martens S. Monitoring the changes in phenolic compounds and carotenoids occurring during fruit development in the tissues of four citrus fruits. Food Res. Int. 2020 134 109228 10.1016/j.foodres.2020.109228 32517916
    [Google Scholar]
  39. Saini R.K. Ranjit A. Sharma K. Prasad P. Shang X. Gowda K.G.M. Keum Y.S. Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants 2022 11 2 239 10.3390/antiox11020239 35204122
    [Google Scholar]
  40. Badalamenti N. Bruno M. Schicchi R. Geraci A. Leporini M. Gervasi L. Tundis R. Loizzo M.R. Chemical compositions and antioxidant activities of essential oils, and their combinations, obtained from flavedo by-product of seven cultivars of Sicilian Citrus aurantium L. Molecules 2022 27 5 1580 10.3390/molecules27051580 35268681
    [Google Scholar]
  41. Zhang M. Duan C. Zang Y. Huang Z. Liu G. The flavonoid composition of flavedo and juice from the pummelo cultivar (Citrus grandis (L.) Osbeck) and the grapefruit cultivar (Citrus paradisi) from China. Food Chem. 2011 129 4 1530 1536 10.1016/j.foodchem.2011.05.136
    [Google Scholar]
  42. Zarate-Vilet N. Gue E. Delalonde M. Wisniewski C. Valorization of Grapefruit (Citrus× paradisi) Processing Wastes. Mediterranean Fruits Bio-wastes: Chemistry, Functionality and Technological Applicationspp. Cham Springer International Publishing 2022 179 220 10.1007/978‑3‑030‑84436‑3_8
    [Google Scholar]
  43. Crizel T.M. Rios A.O. Thys R.C.S. Flôres S.H. Effects of orange by-product fiber incorporation on the functional and technological properties of pasta. Food Sci. Technol. (Campinas) 2015 35 3 546 551 10.1590/1678‑457X.6719
    [Google Scholar]
  44. Raina S. Gupta A. Singh A. Surasani V.K.R. Sharma S. Functionality of pasta enriched with pumpkin seed meal: cooking quality, techno‐functional properties, textural and structural characterisation. Int. J. Food Sci. Technol. 2023 58 5 2735 2743 10.1111/ijfs.16077
    [Google Scholar]
  45. Bawa K. Brar J.K. Singh A. Gupta A. Kaur H. Bains K. Wheatgrass powder‐enriched functional pasta: Techno‐functional, phytochemical, textural, sensory, and structural characterization. J. Texture Stud. 2022 53 4 517 530 10.1111/jtxs.12680 35363375
    [Google Scholar]
  46. Arribas C. Cabellos B. Cuadrado C. Guillamón E. Pedrosa M.M. Cooking effect on the bioactive compounds, texture, and color properties of cold-extruded rice/bean-based pasta supplemented with whole carob fruit. Foods 2020 9 4 415 10.3390/foods9040415 32252323
    [Google Scholar]
  47. Vimercati W.C. da Silva Araújo C. Macedo L.L. Maradini Filho A.M. Saraiva S.H. Teixeira L.J.Q. Influence of drying temperature on drying kinetics, energy consumption, bioactive compounds and cooking quality of pasta enriched with spinach. J. Food Process Eng. 2020 43 12 e13571 10.1111/jfpe.13571
    [Google Scholar]
  48. Molina O.M. Domínguez-Avila J.A. Pareek S. Madera Santana T.J. González Aguilar G.A. Lopez-Martínez L.X. Valorization of tropical fruit peel powders: Physico chemical composition, techno-functional properties, and in vitro antioxidant and antidiabetic activities. Emir. J. Food Agric. 2023 35 6 [EJFA]
    [Google Scholar]
  49. Abou-Arab E.A. Mahmoud M.H. Abu-Salem F.M. Functional properties of citrus peel as affected by drying methods. Am. J. Food Technol. 2017 12 3 193 200 10.3923/ajft.2017.193.200
    [Google Scholar]
  50. Foschia M. Peressini D. Sensidoni A. Brennan M.A. Brennan C.S. How combinations of dietary fibres can affect physicochemical characteristics of pasta. Lebensm. Wiss. Technol. 2015 61 1 41 46 10.1016/j.lwt.2014.11.010
    [Google Scholar]
  51. Singh H. Sharma R. Gupta A. Joshi S. Dar B.N. Singh B. Sharma S. Characterization of jackfruit seed enriched pasta. Qual. Assur. Saf. Crops Foods 2023 15 2 11 19 10.15586/qas.v15i2.1217
    [Google Scholar]
  52. Rakhesh N. Fellows C.M. Sissons M. Evaluation of the technological and sensory properties of durum wheat spaghetti enriched with different dietary fibres. J. Sci. Food Agric. 2015 95 1 2 11 10.1002/jsfa.6723 24798805
    [Google Scholar]
  53. Ajila C.M. Aalami M. Leelavathi K. Rao U.J.S.P. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations. Innov. Food Sci. Emerg. Technol. 2010 11 1 219 224 10.1016/j.ifset.2009.10.004
    [Google Scholar]
  54. Macaroni, Spaghetti, Vermicelli and Egg Noodles-specification, second revision. Bureau of Indian Standards, New Delhi 2010
    [Google Scholar]
  55. Qureshi A. Ainee A. Nadeem M. Munir M. Qureshi T.M. Jabbar S. Effect of grape fruit albedo powder on the physicochemical and sensory attributes of fruit cake. Pak. J. Agric. Res. 2017 30 2 185 193 10.17582/journal.pjar/2017/30.2.185.193
    [Google Scholar]
  56. Gull A. Prasad K. Kumar P. Effect of millet flours and carrot pomace on cooking qualities, color and texture of developed pasta. Lebensm. Wiss. Technol. 2015 63 1 470 474 10.1016/j.lwt.2015.03.008
    [Google Scholar]
  57. Rodriguez-Huezo M.E. Valeriano-Garcia N. Totosaus-Sanchez A. Vernon-Carter E.J. Alvarez-Ramirez J. The effect of the addition of soluble fibers (polydextrose, corn, pea) on the color, texture, structural features and protein digestibility of semolina pasta. Applied Food Research 2022 2 2 100187 10.1016/j.afres.2022.100187
    [Google Scholar]
  58. Nilusha R.A.T. Jayasinghe J.M.J.K. Perera O.D.A.N. Perera P.I.P. Development of pasta products with nonconventional ingredients and their effect on selected quality characteristics: A brief overview. Int. J. Food Sci. 2019 2019 1 1 10 10.1155/2019/6750726 31886166
    [Google Scholar]
  59. Lončarić A. Kosović I. Jukić M. Ugarčić Ž. Piližota V. Effect of apple by-product as a supplement on antioxidant activity and quality parameters of pasta. Croat. J. Food Sci. Technol. 2014 6 2 97 103 10.17508/CJFST.2014.6.2.05
    [Google Scholar]
  60. Le N.P. Tran T.T.T. Ton N.M.N. Le V.V.M. Use of pennywort pomace and tyrosinase in making of fibre‐rich pasta: effects on proximate composition, textural profile, cooking quality and overall acceptability of the product. Int. J. Food Sci. Technol. 2023 58 4 1970 1978 10.1111/ijfs.16349
    [Google Scholar]
  61. Garcia-Valle D.E. Agama-Acevedo E. Alvarez-Ramirez J. Bello-Perez L.A. Semolina pasta replaced with whole unripe plantain flour: Chemical, cooking quality, texture, and starch digestibility. Stärke 2020 72 9-10 1900097 10.1002/star.201900097
    [Google Scholar]
  62. Sindhu R. Devi A. Khatkar B.S. Physicochemical, thermal and structural properties of heat moisture treated common buckwheat starches. J. Food Sci. Technol. 2019 56 5 2480 2489 10.1007/s13197‑019‑03725‑6 31168130
    [Google Scholar]
  63. Iuga M. Mironeasa S. Use of grape peels by-product for wheat pasta manufacturing. Plants 2021 10 5 926 10.3390/plants10050926 34066588
    [Google Scholar]
  64. Panda T.C. Jaddu S. Bansode V. Dwivedi M. Pradhan R.C. Seth D. A novel approach to increase calcium and fiber content in pasta using kadamb fruit (Neolamarckia cadamba) powder and study of functional and structural characteristics. J. Food Sci. Technol. 2024 61 2 311 319 10.1007/s13197‑023‑05842‑9 38196706
    [Google Scholar]
  65. Chusak C. Chanbunyawat P. Chumnumduang P. Chantarasinlapin P. Suantawee T. Adisakwattana S. Effect of gac fruit (Momordica cochinchinensis) powder on in vitro starch digestibility, nutritional quality, textural and sensory characteristics of pasta. Lebensm. Wiss. Technol. 2020 118 108856 10.1016/j.lwt.2019.108856
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X330847240911092022
Loading
/content/journals/rafna/10.2174/012772574X330847240911092022
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test