Skip to content
2000
image of Effect of Diet and Dietary Patterns on the Progression of Multiple Sclerosis: A Review

Abstract

The link between diet and the progression of Multiple Sclerosis (MS) is a topic of growing interest and investigation within the medical community. This review explored the mechanisms through which dietary interventions can impact the course of MS and shape the clinical outcomes and quality of life of individuals with the disease. By synthesizing current knowledge from clinical studies and observational research, the review aimed to provide insights into the role of diet in managing MS. A comprehensive literature search was conducted, focusing on the effect of diet and dietary patterns on the progression of MS. Key findings indicated that individuals with higher diet quality exhibit reduced disability levels and lower symptom severity, emphasizing the importance of maintaining a healthy diet and adopting a holistic, healthy lifestyle in managing MS. The review also delved into the potential impact of macronutrients, vitamins, and minerals on the progression of MS, highlighting the importance of adequate nutrient intake for optimal health outcomes. Additionally, the study explored the association between dietary intake variations and the severity of MS, suggesting that further investigation is needed to understand the potential implications of nutrient deficiencies in MS patients. Overall, the review serves as a valuable resource for healthcare professionals and individuals living with MS, providing evidence-based dietary approaches that may help optimize health outcomes and mitigate the burden of the disease. It also calls for future research directions in the critical area of dietary management of MS to enhance our understanding and improve patient care.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X325602240910075218
2024-10-21
2024-11-18
Loading full text...

Full text loading...

References

  1. Alshanqiti M. Alotaibi F. Alahmed J. Alrehaili M. Alalwi S. Mansuri D.F. Prevalence of multiple sclerosis in Saudi Arabia. Int. J. Adv. Res. 2016 4 12 1581 1600 10.21474/IJAR01/2560
    [Google Scholar]
  2. Multiple Sclerosis International Federation Atlas of MS; Mapping multiple sclerosis around the world. 2023 Available from: https://www.atlasofms.org/map/global/epidemiology/number-of-people-with-ms
  3. Gaby A. Multiple Sclerosis. Glob. Adv. Health Med. 2013 2 1 50 56 10.7453/gahmj.2013.2.1.009 24381825
    [Google Scholar]
  4. Ghasemi N. Razavi S. Nikzad E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 2017 19 1 1 10 10.22074/cellj.2016.4867 28367411
    [Google Scholar]
  5. Magyari M. Koch-Henriksen N. Quantitative effect of sex on disease activity and disability accumulation in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2022 93 7 716 722 10.1136/jnnp‑2022‑328994 35393340
    [Google Scholar]
  6. Ngo S.T. Steyn F.J. McCombe P.A. Gender differences in autoimmune disease. Front. Neuroendocrinol. 2014 35 3 347 369 10.1016/j.yfrne.2014.04.004 24793874
    [Google Scholar]
  7. Goris A. Vandebergh M. McCauley J.L. Saarela J. Cotsapas C. Genetics of multiple sclerosis: Lessons from polygenicity. Lancet Neurol. 2022 21 9 830 842 10.1016/S1474‑4422(22)00255‑1 35963264
    [Google Scholar]
  8. Barrie W. Yang Y. Irving-Pease E.K. Attfield K.E. Scorrano G. Jensen L.T. Armen A.P. Dimopoulos E.A. Stern A. Refoyo-Martinez A. Pearson A. Ramsøe A. Gaunitz C. Demeter F. Jørkov M.L.S. Møller S.B. Springborg B. Klassen L. Hyldgård I.M. Wickmann N. Vinner L. Korneliussen T.S. Allentoft M.E. Sikora M. Kristiansen K. Rodriguez S. Nielsen R. Iversen A.K.N. Lawson D.J. Fugger L. Willerslev E. Elevated genetic risk for multiple sclerosis emerged in steppe pastoralist populations. Nature 2024 625 7994 321 328 10.1038/s41586‑023‑06618‑z 38200296
    [Google Scholar]
  9. Mahad D.H. Trapp B.D. Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015 14 2 183 193 10.1016/S1474‑4422(14)70256‑X 25772897
    [Google Scholar]
  10. Singh S. Dallenga T. Winkler A. Roemer S. Maruschak B. Siebert H. Brück W. Stadelmann C. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis. J. Neuroinflammation 2017 14 1 57 10.1186/s12974‑017‑0831‑8 28302146
    [Google Scholar]
  11. Kamma E. Lasisi W. Libner C. Ng H.S. Plemel J.R. Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. J. Neuroinflammation 2022 19 1 45 10.1186/s12974‑022‑02408‑y 35144628
    [Google Scholar]
  12. Parrilla G.E. Gupta V. Wall R.V. Salkar A. Basavarajappa D. Mirzaei M. Chitranshi N. Graham S.L. You Y. The role of myelin in neurodegeneration: Implications for drug targets and neuroprotection strategies. Rev. Neurosci. 2024 35 3 271 292 10.1515/revneuro‑2023‑0081 37983528
    [Google Scholar]
  13. Disanto G. Morahan J.M. Barnett M.H. Giovannoni G. Ramagopalan S.V. The evidence for a role of B cells in multiple sclerosis. Neurology 2012 78 11 823 832 10.1212/WNL.0b013e318249f6f0 22411958
    [Google Scholar]
  14. Manousaki D. Richards J.B. Vitamin D deficiency is an etiological factor for MS – Yes. Mult. Scler. 2019 25 5 637 639 10.1177/1352458518809301 30499750
    [Google Scholar]
  15. Huang J. Kockum I. Stridh P. Trends in the environmental risks associated with earlier onset in multiple sclerosis. Mult. Scler. Relat. Disord. 2022 68 104250 10.1016/j.msard.2022.104250 36544313
    [Google Scholar]
  16. Huang W.J. Chen W.W. Zhang X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp. Ther. Med. 2017 13 6 3163 3166 10.3892/etm.2017.4410 28588671
    [Google Scholar]
  17. Riccio P. Rossano R. Nutrition facts in multiple sclerosis. ASN Neuro 2015 7 1 10.1177/1759091414568185 25694551
    [Google Scholar]
  18. Stoiloudis P. Kesidou E. Bakirtzis C. Sintila S.A. Konstantinidou N. Boziki M. Grigoriadis N. The role of diet and interventions on multiple sclerosis: A review. Nutrients 2022 14 6 1150 10.3390/nu14061150 35334810
    [Google Scholar]
  19. Broos J.Y. van der Burgt R.T.M. Konings J. Rijnsburger M. Werz O. de Vries H.E. Giera M. Kooij G. Arachidonic acid-derived lipid mediators in multiple sclerosis pathogenesis: Fueling or dampening disease progression? J. Neuroinflammation 2024 21 1 21 10.1186/s12974‑023‑02981‑w 38233951
    [Google Scholar]
  20. AlAmmar W.A. Albeesh F.H. Ibrahim L.M. Algindan Y.Y. Yamani L.Z. Khattab R.Y. Effect of omega-3 fatty acids and fish oil supplementation on multiple sclerosis: A systematic review. Nutr. Neurosci. 2021 24 7 569 579 10.1080/1028415X.2019.1659560 31462182
    [Google Scholar]
  21. Khattab R. Algindan Y. Chapter 28 - Dietary management of multiple sclerosis. Nutrition in Neurological Disorders Academic Press 2023 527 543 10.1016/B978‑0‑323‑89834‑8.00045‑3
    [Google Scholar]
  22. Kairalla M.A. Aburas A.A. Alshelmani M.I. Effect of diet supplemented with graded levels of ginger (Zingiber officinale) powder on growth performance, hematological parameters, and serum lipids of broiler chickens. Arch. Razi Inst. 2022 77 6 2089 2095 10.22092/ARI.2022.359958.2524 37274916
    [Google Scholar]
  23. Kairalla M. Alshelmani M. Aburas A. Effect of diet supplemented with graded levels of garlic (Allium sativum L.) powder on growth performance, carcass characteristics, blood hematology and biochemistry of broiler. Open Vet. J. 2022 12 5 595 601 10.5455/OVJ.2022.v12.i5.1 36589396
    [Google Scholar]
  24. Majdi Abdelfaraj K. Mohamed Idris A. Mohamed M I. Effect of diet supplemented with different levels of moringa powder on growth performance, carcass characteristics, meat quality, hematological parameters, serum lipids, and economic efficiency of broiler chickens. Arch. Razi Inst. 2023 78 5 1647 1656 10.22092/ARI.2023.78.5.1647 38590686
    [Google Scholar]
  25. Guglielmetti M. Grosso G. Ferraris C. Bergamaschi R. Tavazzi E. La Malfa A. Wahidah H.A.Q. Tagliabue A. Ultra-processed foods consumption is associated with multiple sclerosis severity. Front. Neurol. 2023 14 1086720 10.3389/fneur.2023.1086720 36761349
    [Google Scholar]
  26. Pivovarova-Ramich O. Zimmermann H.G. Paul F. Multiple sclerosis and circadian rhythms: Can diet act as a treatment? Acta Physiol. 2023 237 4 e13939 10.1111/apha.13939 36700353
    [Google Scholar]
  27. Bagur M.J. Murcia M.A. Jiménez-Monreal A.M. Tur J.A. Bibiloni M.M. Alonso G.L. Martínez-Tomé M. Influence of diet in multiple sclerosis: A systematic review. Adv. Nutr. 2017 8 3 463 472 10.3945/an.116.014191 28507011
    [Google Scholar]
  28. Schwarz S. Leweling H. Multiple sclerosis and nutrition. Mult. Scler. 2005 11 1 24 32 10.1191/1352458505ms1119oa 15732263
    [Google Scholar]
  29. Zhao S. Han T. Pei X. Song Y. Zhang Y. Liu L. Wang X. Hou W. Sun C. The association of diet carbohydrates consumption with cognitive function among US older adults modification by daily fasting duration. Front. Aging Neurosci. 2022 14 991007 10.3389/fnagi.2022.991007 36225887
    [Google Scholar]
  30. Riccio P. Rossano R. Larocca M. Trotta V. Mennella I. Vitaglione P. Ettorre M. Graverini A. De Santis A. Di Monte E. Coniglio M.G. Anti-inflammatory nutritional intervention in patients with relapsing-remitting and primary-progressive multiple sclerosis: A pilot study. Exp. Biol. Med. 2016 241 6 620 635 10.1177/1535370215618462 26785711
    [Google Scholar]
  31. Fitzgerald K.C. Tyry T. Salter A. Cofield S.S. Cutter G. Fox R. Marrie R.A. Diet quality is associated with disability and symptom severity in multiple sclerosis. Neurology 2018 90 1 e1 e11 10.1212/WNL.0000000000004768 29212827
    [Google Scholar]
  32. Martin K. Cofield S.S. Cross A.H. Goss A.M. Raji C.A. Rinker J.R. Wu G.F. Blair J. Fuchs A. Ghezzi L. Green K. Pace F. Pastori G. Taylor M.G. Piccio L. Wingo B.C. Functional outcomes of diets in multiple sclerosis (FOOD for MS): Protocol for a parallel arm randomized feeding trial for low glycemic load and calorie restriction. Contemp. Clin. Trials 2024 143 107584 10.1016/j.cct.2024.107584 38821260
    [Google Scholar]
  33. Hawkins M.A.W. Keirns N.G. Helms Z. Carbohydrates and cognitive function. Curr. Opin. Clin. Nutr. Metab. Care 2018 21 4 302 307 10.1097/MCO.0000000000000471 29851417
    [Google Scholar]
  34. Porter L. Shoushtarizadeh A. Jelinek G.A. Brown C.R. Lim C.K. de Livera A.M. Jacobs K.R. Weiland T.J. Metabolomic biomarkers of multiple sclerosis: A systematic review. Front. Mol. Biosci. 2020 7 574133 10.3389/fmolb.2020.574133 33381517
    [Google Scholar]
  35. Murgia F. Lorefice L. Noto A. Spada M. Frau J. Fenu G. Coghe G. Gagliano A. Atzori L. Cocco E. Metabolomic changes in patients affected by multiple sclerosis and treated with fingolimod. Metabolites 2023 13 3 428 10.3390/metabo13030428 36984868
    [Google Scholar]
  36. Pritzker L.B. Joshi S. Gowan J.J. Harauz G. Moscarello M.A. Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry 2000 39 18 5374 5381 10.1021/bi9925569 10820008
    [Google Scholar]
  37. Murgia F. Lorefice L. Poddighe S. Fenu G. Secci M.A. Marrosu M.G. Cocco E. Atzori L. Multi-platform characterization of cerebrospinal fluid and serum metabolome of patients affected by relapsing–remitting and primary progressive multiple sclerosis. J. Clin. Med. 2020 9 3 863 10.3390/jcm9030863 32245176
    [Google Scholar]
  38. Rajda C. Majláth Z. Pukoli D. Vécsei L. Kynurenines and multiple sclerosis: The dialogue between the immune system and the central nervous system. Int. J. Mol. Sci. 2015 16 8 18270 18282 10.3390/ijms160818270 26287161
    [Google Scholar]
  39. Lorefice L. Murgia F. Fenu G. Frau J. Coghe G. Murru M.R. Tranquilli S. Visconti A. Marrosu M.G. Atzori L. Cocco E. Assessing the metabolomic profile of multiple sclerosis patients treated with interferon beta 1a by 1H-NMR spectroscopy. Neurotherapeutics 2019 16 3 797 807 10.1007/s13311‑019‑00721‑8 30820880
    [Google Scholar]
  40. Cruzat V.F. Krause M. Newsholme P. Amino acid supplementation and impact on immune function in the context of exercise. J. Int. Soc. Sports Nutr. 2014 11 1 61 10.1186/s12970‑014‑0061‑8 25530736
    [Google Scholar]
  41. Yang L. Chu Z. Liu M. Zou Q. Li J. Liu Q. Wang Y. Wang T. Xiang J. Wang B. Amino acid metabolism in immune cells: Essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J. Hematol. Oncol. 2023 16 1 59 10.1186/s13045‑023‑01453‑1 37277776
    [Google Scholar]
  42. Zielińska M. Michońska I. Macronutrients, vitamins and minerals in the diet of multiple sclerosis patients. Postepy Psychiatr. Neurol. 2022 31 3 128 137 10.5114/ppn.2022.121730 37082222
    [Google Scholar]
  43. Bahr L.S. Bock M. Liebscher D. Bellmann-Strobl J. Franz L. Prüß A. Schumann D. Piper S.K. Kessler C.S. Steckhan N. Michalsen A. Paul F. Mähler A. Ketogenic diet and fasting diet as Nutritional Approaches in Multiple Sclerosis (NAMS): Protocol of a randomized controlled study. Trials 2020 21 1 3 10.1186/s13063‑019‑3928‑9 31898518
    [Google Scholar]
  44. Calder P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017 45 5 1105 1115 10.1042/BST20160474 28900017
    [Google Scholar]
  45. Bisht B. Darling W.G. Grossmann R.E. Shivapour E.T. Lutgendorf S.K. Snetselaar L.G. Hall M.J. Zimmerman M.B. Wahls T.L. A multimodal intervention for patients with secondary progressive multiple sclerosis: Feasibility and effect on fatigue. J. Altern. Complement. Med. 2014 20 5 347 355 10.1089/acm.2013.0188 24476345
    [Google Scholar]
  46. Weinstock-Guttman B. Baier M. Park Y. Feichter J. Lee-Kwen P. Gallagher E. Venkatraman J. Meksawan K. Deinehert S. Pendergast D. Awad A.B. Ramanathan M. Munschauer F. Rudick R. Low fat dietary intervention with ω-3 fatty acid supplementation in multiple sclerosis patients. Prostaglandins Leukot. Essent. Fatty Acids 2005 73 5 397 404 10.1016/j.plefa.2005.05.024 16099630
    [Google Scholar]
  47. Sedighiyan M. Djafarian K. Dabiri S. Abdolahi M. Shab-Bidar S. The effects of omega-3 supplementation on the expanded disability status scale and inflammatory cytokines in multiple sclerosis patients: A systematic review and meta-analysis. CNS Neurol. Disord. Drug Targets 2019 18 7 523 529 10.2174/1871527318666190516083008 31096898
    [Google Scholar]
  48. Kim J.S. Soto-Diaz K. Bingham T.W. Steelman A.J. Das A. Role of omega-3 endocannabinoids in the modulation of T-cell activity in a multiple sclerosis experimental autoimmune encephalomyelitis (EAE) model. J. Biol. Chem. 2023 299 2 102886 10.1016/j.jbc.2023.102886 36626985
    [Google Scholar]
  49. Ghasemi Darestani N. Bahrami A. Mozafarian M.R. Esmalian Afyouni N. Akhavanfar R. Abouali R. Moradian A. Lorase S. Association of polyunsaturated fatty acid intake on inflammatory gene expression and multiple sclerosis: A systematic review and meta-analysis. Nutrients 2022 14 21 4627 10.3390/nu14214627 36364885
    [Google Scholar]
  50. Poggioli R. Hirani K. Jogani V.G. Ricordi C. Modulation of inflammation and immunity by omega-3 fatty acids: A possible role for prevention and to halt disease progression in autoimmune, viral, and age-related disorders. Eur. Rev. Med. Pharmacol. Sci. 2023 27 15 7380 7400 10.26355/eurrev_202308_33310 37606147
    [Google Scholar]
  51. Hoffman K. Doyle W.J. Schumacher S.M. Ochoa-Repáraz J. Gut microbiome-modulated dietary strategies in EAE and multiple sclerosis. Front. Nutr. 2023 10 1146748 10.3389/fnut.2023.1146748 37063324
    [Google Scholar]
  52. Tsogka A. Kitsos D.K. Stavrogianni K. Giannopapas V. Chasiotis A. Christouli N. Tsivgoulis G. Tzartos J.S. Giannopoulos S. Modulating the gut microbiome in multiple sclerosis management: A systematic review of current interventions. J. Clin. Med. 2023 12 24 7610 10.3390/jcm12247610 38137679
    [Google Scholar]
  53. Abdulla N.R. Loh T.C. Foo H.L. Alshelmani M.I. Akit H. Influence of dietary ratios of n-6: n-3 fatty acid on gene expression, fatty acid profile in liver and breast muscle tissues, serum lipid profile, and immunoglobulin in broiler chickens. J. Appl. Poult. Res. 2019 28 2 454 469 10.3382/japr/pfz008
    [Google Scholar]
  54. Simopoulos AP The omega-6/omega-3 fatty acid ratio: Health implications. Nutrition – Santé 2010 17 5 267 275 10.1051/ocl.2010.0325
    [Google Scholar]
  55. DiNicolantonio J.J. O’Keefe J. The importance of maintaining a low omega-6/omega-3 ratio for reducing the risk of autoimmune diseases, asthma, and allergies. Mo. Med. 2021 118 5 453 459 34658440
    [Google Scholar]
  56. Brennan M.S. Patel H. Allaire N. Effects of a low-fat plant-based diet in subjects with relapsing multiple sclerosis (MS): A pilot study. Mult. Scler. Relat. Disord. 2021 55 103105 10.1016/j.msard.2021.103105
    [Google Scholar]
  57. Kousparou C. Fyrilla M. Stephanou A. Patrikios I. DHA/EPA (Omega-3) and LA/GLA (Omega-6) as bioactive molecules in neurodegenerative diseases. Int. J. Mol. Sci. 2023 24 13 10717 10.3390/ijms241310717 37445890
    [Google Scholar]
  58. Dere Yelken H. Elci M.P. Turker P.F. Demirkaya S. Omega fatty acid ratios and neurodegeneration in a healthy environment. Prostaglandins Other Lipid Mediat. 2024 170 106799 10.1016/j.prostaglandins.2023.106799 37977351
    [Google Scholar]
  59. Ramirez-Ramirez V. Macias-Islas M.A. Ortiz G.G. Pacheco-Moises F. Torres-Sanchez E.D. Sorto-Gomez T.E. Cruz-Ramos J.A. Orozco-Aviña G. Celis de la Rosa A.J. Efficacy of fish oil on serum of TNF α, IL-1 β, and IL-6 oxidative stress markers in multiple sclerosis treated with interferon beta-1b. Oxid. Med. Cell. Longev. 2013 2013 1 8 10.1155/2013/709493 23861993
    [Google Scholar]
  60. Jelinek G.A. Hadgkiss E.J. Weiland T.J. Pereira N.G. Marck C.H. van der Meer D.M. Association of fish consumption and omega 3 supplementation with quality of life, disability and disease activity in an international cohort of people with multiple sclerosis. Int. J. Neurosci. 2013 123 11 792 801 10.3109/00207454.2013.803104 23713615
    [Google Scholar]
  61. Sorto-Gomez T.E. Ortiz G.G. Pacheco-Moises F.P. Torres-Sanchez E.D. Ramirez-Ramirez V. Macias-Islas M.A. de la Rosa A.C. Velázquez-Brizuela I.E. Effect of fish oil on glutathione redox system in multiple sclerosis. Am. J. Neurodegener. Dis. 2016 5 2 145 151 27335704
    [Google Scholar]
  62. Swank R.L. Dugan B.B. Effect of low saturated fat diet in early and late cases of multiple sclerosis. Lancet 1990 336 8706 37 39 10.1016/0140‑6736(90)91533‑G 1973220
    [Google Scholar]
  63. Hadgkiss E.J. Jelinek G.A. Weiland T.J. Pereira N.G. Marck C.H. van der Meer D.M. The association of diet with quality of life, disability, and relapse rate in an international sample of people with multiple sclerosis. Nutr. Neurosci. 2015 18 3 125 136 10.1179/1476830514Y.0000000117 24628020
    [Google Scholar]
  64. Swank R.L. Goodwin J. Review of MS patient survival on a Swank low saturated fat diet. Nutrition 2003 19 2 161 162 10.1016/S0899‑9007(02)00851‑1 12591551
    [Google Scholar]
  65. Yadav V. Marracci G. Kim E. Spain R. Cameron M. Overs S. Riddehough A. Li D.K.B. McDougall J. Lovera J. Murchison C. Bourdette D. Low-fat, plant-based diet in multiple sclerosis: A randomized controlled trial. Mult. Scler. Relat. Disord. 2016 9 80 90 10.1016/j.msard.2016.07.001 27645350
    [Google Scholar]
  66. Esposito S. Bonavita S. Sparaco M. Gallo A. Tedeschi G. The role of diet in multiple sclerosis: A review. Nutr. Neurosci. 2018 21 6 377 390 10.1080/1028415X.2017.1303016 28338444
    [Google Scholar]
  67. Hoare S. Lithander F. van der Mei I. Ponsonby A.L. Lucas R. Chapman C. Coulthard A. Dear K. Dwyer T. Kilpatrick T. Lucas R.M. McMichael T. Pender M.P. Ponsonby A-L. Taylor B. Valery P.C. van der Mei I. Williams D. Ausimmune Investigator Group Higher intake of omega-3 polyunsaturated fatty acids is associated with a decreased risk of a first clinical diagnosis of central nervous system demyelination: Results from the Ausimmune Study. Mult. Scler. 2016 22 7 884 892 10.1177/1352458515604380 26362904
    [Google Scholar]
  68. Sharifi M.H. Keshani P. Salehi A. Jaladat A.M. Mirzaei Z. Nikseresht A. Association between multiple sclerosis and dietary patterns based on the traditional concept of food nature: A case-control study in Iran. BMC Neurol. 2021 21 1 453 10.1186/s12883‑021‑02483‑3 34794406
    [Google Scholar]
  69. Boziki M.K. Kesidou E. Theotokis P. Mentis A.F.A. Karafoulidou E. Melnikov M. Sviridova A. Rogovski V. Boyko A. Grigoriadis N. Microbiome in multiple sclerosis: Where are we, what we know and do not know. Brain Sci. 2020 10 4 234 10.3390/brainsci10040234 32295236
    [Google Scholar]
  70. Wahls T.L. Chenard C.A. Snetselaar L.G. Review of two popular eating plans within the multiple sclerosis community: Low saturated fat and modified paleolithic. Nutrients 2019 11 2 352 10.3390/nu11020352 30736445
    [Google Scholar]
  71. Kuchkuntla A.R. Shah M. Velapati S. Gershuni V.M. Rajjo T. Nanda S. Hurt R.T. Mundi M.S. Ketogenic diet: An endocrinologist perspective. Curr. Nutr. Rep. 2019 8 4 402 410 10.1007/s13668‑019‑00297‑x 31705484
    [Google Scholar]
  72. Cincotta M.C. Engelhard M.M. Stankey M. Goldman M.D. Fatigue and fluid hydration status in multiple sclerosis: A hypothesis. Mult. Scler. 2016 22 11 1438 1443 10.1177/1352458516663854 27542703
    [Google Scholar]
  73. Kalnicka D. Francisco A. Singh A. Hydration and cognitive function in multiple sclerosis: A systematic review. Mult. Scler. Int. 2021 2021 1376137 10.1155/2021/1376137
    [Google Scholar]
  74. Kaninia S. Stuart C.M. Galea I. Dehydration associates with lower urinary tract symptoms in progressive multiple sclerosis. Eur. J. Neurol. 2024 31 3 e16175 10.1111/ene.16175 38117533
    [Google Scholar]
  75. Frohman T.C. Castro W. Shah A. Courtney A. Ortstadt J. Davis S.L. Logan D. Abraham T. Abraham J. Remington G. Treadaway K. Graves D. Hart J. Stuve O. Lemack G. Greenberg B. Frohman E.M. Symptomatic therapy in multiple sclerosis. Ther. Adv. Neurol. Disord. 2011 4 2 83 98 10.1177/1756285611400658 21694806
    [Google Scholar]
  76. Tam J. Gross M.D. Cheung A. Melville P.M. Kim J.M. Weissbart S.J. Fluid intake and urinary symptoms in patients with multiple sclerosis. J. Urol. 2020 204 6 1284 1289 10.1097/JU.0000000000001309 32924823
    [Google Scholar]
  77. Ramsaransing G.S.M. Mellema S.A. De Keyser J. Dietary patterns in clinical subtypes of multiple sclerosis: An exploratory study. Nutr. J. 2009 8 1 36 10.1186/1475‑2891‑8‑36 19664270
    [Google Scholar]
  78. Katz Sand I. The role of diet in multiple sclerosis: Mechanistic connections and current evidence. Curr. Nutr. Rep. 2018 7 3 150 160 10.1007/s13668‑018‑0236‑z 30117071
    [Google Scholar]
  79. Moravejolahkami A.R. Paknahad Z. Chitsaz A. Association of dietary patterns with systemic inflammation, quality of life, disease severity, relapse rate, severity of fatigue and anthropometric measurements in MS patients. Nutr. Neurosci. 2020 23 12 920 930 10.1080/1028415X.2019.1580831 30896320
    [Google Scholar]
  80. Bromley L. Horvath P.J. Bennett S.E. Weinstock-Guttman B. Ray A.D. Impact of nutritional intake on function in people with mild-to-moderate multiple sclerosis. Int. J. MS Care 2019 21 1 1 9 10.7224/1537‑2073.2017‑039 30833865
    [Google Scholar]
  81. Al-Temaimi R.A. Alroughani R. Dietary factors associated with multiple sclerosis risk in kuwait. Int. J. Nutr. Pharmacol. Neurol. Dis. 2022 12 200 205 10.4103/ijnpnd.ijnpnd_13_22
    [Google Scholar]
  82. Brown R.B. Multiple sclerosis and sodium toxicity: Controversy and future directions for low-salt interventions. Sclerosis 2023 1 1 9 21 10.3390/sclerosis1010003
    [Google Scholar]
  83. Pugliatti M. People with MS should consume a low-salt diet – Commentary. Mult. Scler. 2016 22 14 1781 1782 10.1177/1352458516669003 27609132
    [Google Scholar]
  84. Farez M.F. Fiol M.P. Gaitán M.I. Quintana F.J. Correale J. Sodium intake is associated with increased disease activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2015 86 1 26 31 10.1136/jnnp‑2014‑307928 25168393
    [Google Scholar]
  85. Probst Y. Mowbray E. Svensen E. Thompson K. A systematic review of the impact of dietary sodium on autoimmunity and inflammation related to multiple sclerosis. Adv. Nutr. 2019 10 5 902 910 10.1093/advances/nmz032 31079157
    [Google Scholar]
  86. McDonald J. Graves J. Waldman A. Lotze T. Schreiner T. Belman A. Greenberg B. Weinstock-Guttman B. Aaen G. Tillema J.M. Hart J. Lulu S. Ness J. Harris Y. Rubin J. Candee M. Krupp L.B. Gorman M. Benson L. Rodriguez M. Chitnis T. Mar S. Barcellos L.F. Laraia B. Rose J. Roalstad S. Simmons T. Casper T.C. Waubant E. A case-control study of dietary salt intake in pediatric-onset multiple sclerosis. Mult. Scler. Relat. Disord. 2016 6 87 92 10.1016/j.msard.2016.02.011 27063630
    [Google Scholar]
  87. Fitzgerald K.C. Munger K.L. Hartung H.P. Freedman M.S. Montalbán X. Edan G. Wicklein E.M. Radue E.W. Kappos L. Pohl C. Ascherio A. BENEFIT Study Group Sodium intake and multiple sclerosis activity and progression in BENEFIT. Ann. Neurol. 2017 82 1 20 29 10.1002/ana.24965 28556498
    [Google Scholar]
  88. Zostawa J. Adamczyk J. Sowa P. Adamczyk-Sowa M. The influence of sodium on pathophysiology of multiple sclerosis. Neurol. Sci. 2017 38 3 389 398 10.1007/s10072‑016‑2802‑8 28078565
    [Google Scholar]
  89. Dastoorpoor M. Nabavi S.M. Majdinasab N. Zare Javid A. Ahmadi Angali K. Seyedtabib M. A case–control study of drinking beverages and the risk of multiple sclerosis in Iran. J. Health Popul. Nutr. 2023 42 1 22 10.1186/s41043‑023‑00364‑8 36959679
    [Google Scholar]
  90. American Academy of Neurology Soda, sugar-sweetened beverages linked to more severe symptoms for people with multiple sclerosis. Available from: www.sciencedaily.com/releases/2019/03/190305162008.htm
    [Google Scholar]
  91. Ascherio A. Munger K.L. White R. Köchert K. Simon K.C. Polman C.H. Freedman M.S. Hartung H.P. Miller D.H. Montalbán X. Edan G. Barkhof F. Pleimes D. Radü E.W. Sandbrink R. Kappos L. Pohl C. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol. 2014 71 3 306 314 10.1001/jamaneurol.2013.5993 24445558
    [Google Scholar]
  92. Jayasinghe M. Prathiraja O. Kayani A.M.A. Jena R. Caldera D. Silva M.S. Singhal M. Pierre J. Jr The role of diet and gut microbiome in multiple sclerosis. Cureus 2022 14 9 e28975 10.7759/cureus.28975 36237764
    [Google Scholar]
  93. Mehrabani G. Aminian S. Mehrabani G. Rabiee M. Dietetic plans within the multiple sclerosis community: A review. Int. J. Nurs. Sci. 2019 4 1 14 22
    [Google Scholar]
  94. Tredinnick A.R. Probst Y.C. Evaluating the effects of dietary interventions on disease progression and symptoms of adults with multiple sclerosis: An umbrella review. Adv. Nutr. 2020 11 6 1603 1615 10.1093/advances/nmaa063 32504530
    [Google Scholar]
  95. Schepici G. Silvestro S. Bramanti P. Mazzon E. The gut microbiota in multiple sclerosis: An overview of clinical trials. Cell Transplant. 2019 28 12 1507 1527 10.1177/0963689719873890 31512505
    [Google Scholar]
  96. Obeid R. McCaddon A. Herrmann W. The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases. Clin. Chem. Lab. Med. 2007 45 12 1590 1606 10.1515/CCLM.2007.356 18067446
    [Google Scholar]
  97. Bitarafan S. Harirchian M-H. Nafissi S. Sahraian M.A. Togha M. Siassi F. Saedisomeolia A. Alipour E. Mohammadpour N. Chamary M. Honarvar N.M. Saboor-Yaraghi A.A. Dietary intake of nutrients and its correlation with fatigue in multiple sclerosis patients. Iran. J. Neurol. 2014 13 1 28 32 24800044
    [Google Scholar]
  98. Chang J.J. Mack W.J. Saver J.L. Sanossian N. Magnesium: Potential roles in neurovascular disease. Front. Neurol. 2014 5 52 10.3389/fneur.2014.00052 24782823
    [Google Scholar]
  99. Socha K. Kochanowicz J. Karpińska E. Soroczyńska J. Jakoniuk M. Mariak Z. Borawska M.H. Dietary habits and selenium, glutathione peroxidase and total antioxidant status in the serum of patients with relapsing-remitting multiple sclerosis. Nutr. J. 2014 13 1 62 10.1186/1475‑2891‑13‑62 24943732
    [Google Scholar]
  100. Santangelo C. Varì R. Scazzocchio B. De Sancti P. Giovannini C. D’Archivio M. Masella R. Antiinflammatory activity of extra virgin olive oil polyphenols: Which role in the prevention and treatment of immunemediated inflammatory diseases? Endocr. Metab. Immune Disord. Drug Targets 2017 18 1 36 50 10.2174/1871530317666171114114321 29141574
    [Google Scholar]
  101. Loonstra F.C. de Ruiter L.R.J. Schoonheim M.M. Moraal B. Strijbis E.M.M. de Jong B.A. Uitdehaag B.M.J. The role of diet in multiple sclerosis onset and course: Results from a nationwide retrospective birth‐year cohort. Ann. Clin. Transl. Neurol. 2023 10 8 1268 1283 10.1002/acn3.51788 37421227
    [Google Scholar]
  102. Pekmezovic T.D. Kisic Tepavcevic D.B. Mesaros S.T. Dujmovic Basuroski I.B. Stojsavljevic N.S. Drulovic J.S. Food and dietary patterns and multiple sclerosis: A case-control study in Belgrade (Serbia). Ital. J. Public Health 2009 6 1 81 87 10.2427/5808
    [Google Scholar]
  103. Skovgaard L. Trénel P. Westergaard K. Knudsen A.K. Dietary patterns and their associations with symptom levels among people with multiple sclerosis: A real-world digital study. Neurol. Ther. 2023 12 4 1335 1357 10.1007/s40120‑023‑00505‑5 37311967
    [Google Scholar]
  104. Mohsen G. Stroemer A. Mayr A. Kunsorg A. Stoppe C. Wittmann M. Velten M. Effects of omega-3 fatty acids on postoperative inflammatory response: A systematic review and meta-analysis. Nutrients 2023 15 15 3414 10.3390/nu15153414 37571352
    [Google Scholar]
  105. Serhan C.N. Krishnamoorthy S. Recchiuti A. Chiang N. Novel anti-inflammatory--pro-resolving mediators and their receptors. Curr. Top. Med. Chem. 2011 11 6 629 647 10.2174/1568026611109060629 21261595
    [Google Scholar]
  106. Feng J. Zheng Y. Guo M. Ares I. Martínez M. Lopez-Torres B. Martínez-Larrañaga M.R. Wang X. Anadón A. Martínez M.A. Oxidative stress, the blood–brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm. Sin. B 2023 13 10 3988 4024 10.1016/j.apsb.2023.07.010 37799389
    [Google Scholar]
  107. PĂdureanu R. Albu C.V. PĂdureanu V. BugĂ A.M. Oxidative stress and vitamin D as predictors in multiple sclerosis. Curr. Health Sci. J. 2020 46 4 371 378 10.12865/CHSJ.46.04.07 33717511
    [Google Scholar]
  108. Zhang S.Y. Gui L.N. Liu Y.Y. Shi S. Cheng Y. Oxidative stress marker aberrations in multiple sclerosis: A meta-analysis study. Front. Neurosci. 2020 14 823 10.3389/fnins.2020.00823 32982663
    [Google Scholar]
  109. Bellavite P. Neuroprotective potentials of flavonoids: Experimental studies and mechanisms of action. Antioxidants 2023 12 2 280 10.3390/antiox12020280 36829840
    [Google Scholar]
  110. Amiri B. Yazdani Tabrizi M. Naziri M. Moradi F. Arzaghi M. Archin I. Behaein F. Bagheri Pour A. Ghannadikhosh P. Imanparvar S. Akhtari Kohneshahri A. Sanaye Abbasi A. Zerangian N. Alijanzadeh D. Ghayyem H. Azizinezhad A. Ahmadpour Youshanlui M. Poudineh M. Neuroprotective effects of flavonoids: Endoplasmic reticulum as the target. Front. Neurosci. 2024 18 1348151 10.3389/fnins.2024.1348151 38957188
    [Google Scholar]
  111. Ney L.M. Wipplinger M. Grossmann M. Engert N. Wegner V.D. Mosig A.S. Short chain fatty acids: Key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biol. 2023 13 3 230014 10.1098/rsob.230014 36977462
    [Google Scholar]
  112. Bronzini M. Maglione A. Rosso R. Matta M. Masuzzo F. Rolla S. Clerico M. Feeding the gut microbiome: Impact on multiple sclerosis. Front. Immunol. 2023 14 1176016 10.3389/fimmu.2023.1176016 37304278
    [Google Scholar]
  113. Yadav S.K. Ito K. Dhib-Jalbut S. Interaction of the gut microbiome and immunity in multiple sclerosis: Impact of diet and immune therapy. Int. J. Mol. Sci. 2023 24 19 14756 10.3390/ijms241914756 37834203
    [Google Scholar]
  114. Ji J Jin W Liu SJ Jiao Z Li X Probiotics, prebiotics, and postbiotics in health and disease. MedComm 2023 4 6 e420 10.1002/mco2.420
    [Google Scholar]
  115. Sanders M.E. Merenstein D.J. Reid G. Gibson G.R. Rastall R.A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019 16 10 605 616 10.1038/s41575‑019‑0173‑3 31296969
    [Google Scholar]
  116. Galoppin M. Kari S. Soldati S. Pal A. Rival M. Engelhardt B. Astier A. Thouvenot E. Full spectrum of vitamin D immunomodulation in multiple sclerosis: Mechanisms and therapeutic implications. Brain Commun. 2022 4 4 fcac171 10.1093/braincomms/fcac171 35813882
    [Google Scholar]
  117. Ferenčík M. Ebringer L. Modulatory effects of selenium and zinc on the immune system. Folia Microbiol. 2003 48 3 417 426 10.1007/BF02931378 12879758
    [Google Scholar]
  118. Shakoor H. Feehan J. Al Dhaheri A.S. Ali H.I. Platat C. Ismail L.C. Apostolopoulos V. Stojanovska L. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas 2021 143 1 9 10.1016/j.maturitas.2020.08.003 33308613
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X325602240910075218
Loading
/content/journals/rafna/10.2174/012772574X325602240910075218
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: multiple sclerosis ; progression ; dietary pattern ; Diet
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test