Skip to content
2000
image of Therapeutic Potential of Quercetin Analogous: Prospective and Advances

Abstract

The purpose of the article is to investigate the therapeutic potential of quercetin and related compounds by elucidating their pharmacological characteristics and molecular mechanisms of action. The potential benefits of quercetin and its analogs for cardiovascular health, disorders of the brain, metabolic disorders, and more are discussed in the discussion part of this page. Concerns about their clinical efficacy due to issues with bioavailability and distribution are also discussed. This region of the paper emphasizes the importance of researchers and clinicians working together to maximize the incorporation of these chemicals into real-world therapeutic approaches. In conclusion, quercetin, along with related substances, shows great potential in a wide range of therapeutic settings. Potentially useful for the management of a wide variety of illnesses, their multiple methods of action include the regulation of pathways for cell signaling and interaction with different enzymes. However, additional clinical trials are needed to verify their efficacy and safety.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X332803240930065210
2024-11-07
2025-06-19
Loading full text...

Full text loading...

References

  1. Manach C. Bioavailability and bioefficacy of dietary flavonoids: A review of recent evidence. Crit. Rev. Food Sci. Nutr. 2004 44 8 651 668
    [Google Scholar]
  2. Malviya R. Ankit Sharma A. Sources, Properties, and Pharmacological Effects of Quercetin. Curr. Nutr. Food Sci. 2022 18 5 457 465 10.2174/1573401318666220127140859
    [Google Scholar]
  3. Hollman P.C. Absorption, metabolism, and health effects of dietary flavonoids in man. Biol. Rev. Camb. Philos. Soc. 2011 81 2 182 199
    [Google Scholar]
  4. Scalbert A. Manach C. Morand C. Rémésy C. Jiménez L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005 45 4 287 306 10.1080/1040869059096 16047496
    [Google Scholar]
  5. Cushnie T.P.T. Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005 26 5 343 356 10.1016/j.ijantimicag.2005.09.002 16323269
    [Google Scholar]
  6. Li Y. Yao J. Han C. Yang J. Chaudhry M. Wang S. Liu H. Yin Y. Quercetin, inflammation and immunity. Nutrients 2016 8 3 167 10.3390/nu8030167 26999194
    [Google Scholar]
  7. Russo M. Quercetin and derivatives: Useful tools in inflammation and pain management. Future Med. Chem. 2019 11 18 2253 2271
    [Google Scholar]
  8. Murota K. Terao J. Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys. 2003 417 1 12 17 10.1016/S0003‑9861(03)00284‑4 12921774
    [Google Scholar]
  9. Yao L.H. Jiang Y.M. Shi J. Tomás-Barberán F.A. Datta N. Singanusong R. Chen S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004 59 3 113 122 10.1007/s11130‑004‑0049‑7 15678717
    [Google Scholar]
  10. Walle T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. 2011 1215 1 9 15 10.1111/j.1749‑6632.2010.05842.x 21261636
    [Google Scholar]
  11. Cushnie T.P. Lamb A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2016 48 5 421 430 21514796
    [Google Scholar]
  12. Fischer C. Speth V. Fleig-Eberenz S. Neuhaus G. Induction of zygotic polyembryos in wheat: influence of auxin polar transport. Plant Cell 1997 9 10 1767 1780 10.2307/3870523 12237347
    [Google Scholar]
  13. McKillop K. Harnly J. Pehrsson P. Fukagawa N. Finley J. Fooddata central, usda’s updated approach to food composition data systems. Curr. Dev. Nutr. 2021 5 596 10.1093/cdn/nzab044_027
    [Google Scholar]
  14. Rhodes D.G. Morton S. Myrowitz R. Moshfegh A.J. Food and Nutrient Database for Dietary Studies 2019–2020: An application database for national dietary surveillance. J. Food Compos. Anal. 2023 123 105547 10.1016/j.jfca.2023.105547
    [Google Scholar]
  15. Lee K.A. Kim K.T. Kim H.J. Chung M.S. Chang P.S. Park H. Pai H.D. Antioxidant activities of onion (Allium cepa L.) peel extracts produced by ethanol, hot water, and subcritical water extraction. Food Sci. Biotechnol. 2014 23 2 615 621 10.1007/s10068‑014‑0084‑6
    [Google Scholar]
  16. Wang S.Y. Chen C.T. Sciarappa W. Wang C.Y. Camp M.J. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J. Agric. Food Chem. 2008 56 14 5788 5794 10.1021/jf703775r 18590274
    [Google Scholar]
  17. Ortuño A. Reynaldo I. Fuster M.D. Botía J. Puig D.G. Sabater F. Lidón A.G. Porras I. Del Río J. Citrus cultivars with high flavonoid contents in the fruits. Sci. Hortic. (Amsterdam) 1997 68 1-4 231 236 10.1016/S0304‑4238(96)00988‑0
    [Google Scholar]
  18. Chu Y.H. Chang C.L. Hsu H.F. Flavonoid content of several vegetables and their antioxidant activity. J. Sci. Food Agric. 2000 80 5 561 566
    [Google Scholar]
  19. Crozier A. Lean M.E.J. McDonald M.S. Black C. Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. J. Agric. Food Chem. 1997 45 3 590 595 10.1021/jf960339y
    [Google Scholar]
  20. Du B. He B.J. Shi P.B. Li F.Y. Li J. Zhu F.M. Phenolic content and antioxidant activity of wine grapes and table grapes. J. Med. Plants Res. 2012 6 17 3381 3387
    [Google Scholar]
  21. Lola-Luz T. Hennequart F. Gaffney M. Effect on yield, total phenolic, total flavonoid and total isothiocyanate content of two broccoli cultivars (Brassica oleraceae var italica ) following the application of a commercial brown seaweed extract (Ascophyllum nodosum ). Agric. Food Sci. 2014 23 1 28 37 10.23986/afsci.8832
    [Google Scholar]
  22. Peterson J. Dwyer J. Jacques P. Rand W. Prior R. Chui K. Tea variety and brewing techniques influence flavonoid content of black tea. J. Food Compos. Anal. 2004 17 3-4 397 405 10.1016/j.jfca.2004.03.022
    [Google Scholar]
  23. Inocencio C. Rivera D. Alcaraz F. Tomás-Barberán F.A. Flavonoid content of commercial capers ( Capparis spinosa, C. sicula and C. orientalis ) produced in mediterranean countries. Eur. Food Res. Technol. 2000 212 1 70 74 10.1007/s002170000220
    [Google Scholar]
  24. D’Archivio M. Filesi C. Di Benedetto R. Gargiulo R. Giovannini C. Masella R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita 2007 43 4 348 361 18209268
    [Google Scholar]
  25. Guo Y. Mah E. Davis C.G. Jalili T. Ferruzzi M.G. The metabolome of [13C] quercetin: Site-specific conjugation in ileostomy fluid. J. Nutr. 2014 144 11 1664 1671
    [Google Scholar]
  26. Manach C. Williamson G. Morand C. Scalbert A. Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005 81 1 230S 242S 10.1093/ajcn/81.1.230S 15640486
    [Google Scholar]
  27. Egert S. Wolffram S. Bosy-Westphal A. Boesch-Saadatmandi C. Wagner A.E. Frank J. Rimbach G. Mueller M.J. Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. J. Nutr. 2008 138 9 1615 1621 10.1093/jn/138.9.1615 18716159
    [Google Scholar]
  28. Hollman P.C.H. Katan M.B. Dietary flavonoids: Intake, health effects and bioavailability. Food Chem. Toxicol. 1999 37 9-10 937 942 10.1016/S0278‑6915(99)00079‑4 10541448
    [Google Scholar]
  29. Barve A. Chen C. Hebbar V. Desiderio J. Saw C.L. Kong A.N. Metabolism, bioavailability, and tissue distribution of quercetin and its biologically active metabolites in the rat model. J. Pharmacol. Exp. Ther. 2009 328 2 539 550 19684255
    [Google Scholar]
  30. Hollman P.C. Absorption, bioavailability, and metabolism of flavonoids. Pharmacol. Ther. 2004 105 3 203 215 15464590
    [Google Scholar]
  31. Formica J.V. Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 1995 33 12 1061 1080 10.1016/0278‑6915(95)00077‑1 8847003
    [Google Scholar]
  32. Larson A. Witman M.A.H. Guo Y. Ives S. Richardson R.S. Bruno R.S. Jalili T. Symons J.D. Acute, quercetin-induced reductions in blood pressure in hypertensive individuals are not secondary to lower plasma angiotensin-converting enzyme activity or endothelin-1: nitric oxide. Nutr. Res. 2012 32 8 557 564 10.1016/j.nutres.2012.06.018 22935338
    [Google Scholar]
  33. Murakami A. Ashida H. Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett. 2008 269 2 315 325 10.1016/j.canlet.2008.03.046 18467024
    [Google Scholar]
  34. Jeong J.H. An J.Y. Kwon Y.T. Rhee J.G. Lee Y.J. Effects of low dose quercetin: Cancer cell‐specific inhibition of cell cycle progression. J. Cell. Biochem. 2009 106 1 73 82 10.1002/jcb.21977 19009557
    [Google Scholar]
  35. Rogerio A.P. Kanashiro A. Fontanari C. da Silva E.V.G. Lucisano-Valim Y.M. Soares E.G. Faccioli L.H. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm. Res. 2007 56 10 402 408 10.1007/s00011‑007‑7005‑6 18026696
    [Google Scholar]
  36. Davis J.M. Murphy E.A. Carmichael M.D. Davis B. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009 296 4 R1071 R1077 10.1152/ajpregu.90925.2008 19211721
    [Google Scholar]
  37. Walle T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med. 2004 36 7 829 837 10.1016/j.freeradbiomed.2004.01.002 15019968
    [Google Scholar]
  38. Harwood M. Danielewska-Nikiel B. Borzelleca J.F. Flamm G.W. Williams G.M. Lines T.C. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol. 2007 45 11 2179 2205 10.1016/j.fct.2007.05.015 17698276
    [Google Scholar]
  39. Shu Y. Liu Y. Li L. Feng J. Lou B. Zhou X. Wu H. Antibacterial activity of quercetin on oral infectious pathogens. Afr. J. Microbiol. Res. 2011 5 5358 5361
    [Google Scholar]
  40. Parasuraman S. Anand David A.V. Arulmoli R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016 10 20 84 89 10.4103/0973‑7847.194044 28082789
    [Google Scholar]
  41. Oliveira V.M. Carraro E. Auler M.E. Khalil N.M. Quercetin and rutin as potential agents antifungal against Cryptococcus spp. Braz. J. Biol. 2016 76 4 1029 1034 10.1590/1519‑6984.07415 27166572
    [Google Scholar]
  42. Osonga F.J. Akgul A. Miller R.M. Eshun G.B. Yazgan I. Akgul A. Sadik O.A. Antimicrobial Activity of a New Class of Phosphorylated and Modified Flavonoids. ACS Omega 2019 4 7 12865 12871 10.1021/acsomega.9b00077 31460413
    [Google Scholar]
  43. Hooda H. Singh P. Bajpai S. Effect of quercitin impregnated silver nanoparticle on growth of some clinical pathogens. Mater. Today Proc. 2020 31 625 630 10.1016/j.matpr.2020.03.530
    [Google Scholar]
  44. Wang S. Yao J. Zhou B. Yang J. Chaudry M.T. Wang M. Xiao F. Li Y. Yin W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J. Food Prot. 2018 81 1 68 78 10.4315/0362‑028X.JFP‑17‑214 29271686
    [Google Scholar]
  45. Yin J. Peng X. Lin J. Zhang Y. Zhang J. Gao H. Tian X. Zhang R. Zhao G. Quercetin amelioratesAspergillus fumigatuskeratitis by inhibiting fungal growth, toll-like receptors and inflammatory cytokines. Int. Immunopharmacol. 2021 93 107435 10.1016/j.intimp.2021.107435 33550031
    [Google Scholar]
  46. Singh B.N. Upreti D.K. Singh B.R. Pandey G. Verma S. Roy S. Naqvi A.H. Rawat A.K.S. Quercetin sensitizes fluconazole-resistant candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrob. Agents Chemother. 2015 59 4 2153 2168 10.1128/AAC.03599‑14 25645848
    [Google Scholar]
  47. Gao M. Wang H. Zhu L. Quercetin assists fluconazole to inhibit biofilm formations of fluconazole-resistant Candida albicans in in vitro and in vivo antifungal managements of vulvovaginal candidiasis. Cell. Physiol. Biochem. 2016 40 3-4 727 742 10.1159/000453134 27915337
    [Google Scholar]
  48. Kuo S.M. Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells. Cancer Lett. 1996 110 1-2 41 48 10.1016/S0304‑3835(96)04458‑8 9018079
    [Google Scholar]
  49. Srinivasan M. Sudheer A.R. Menon V.P. Ferulic Acid: therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 2007 40 2 92 100 10.3164/jcbn.40.92 18188410
    [Google Scholar]
  50. Choi J.A. Kim J.Y. Lee J.Y. Kang C.M. Kwon H.J. Yoo Y.D. Kim T.W. Lee Y.S. Lee S.J. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. J. Oncol. 2001 19 4 837 844 10.3892/ijo.19.4.837 11562764
    [Google Scholar]
  51. Sikora E. Cieślik M. Bukowska B. Quercetin induces human colon cancer cells apoptosis and inhibits proliferation of these cells in culture. Cell. Mol. Biol. Lett. 2008 13 2 312 324 18292972
    [Google Scholar]
  52. Vallianou N.G. Evangelopoulos A. Schizas N. Kazazis C. Potential anticancer properties and mechanisms of action of quercetin. Anticancer Res. 2013 33 9 3543 3548 24023279
    [Google Scholar]
  53. Kale A. Gawande S. Kotwal S. Cancer phytotherapeutics: Role for flavonoids at the cellular level. Phytother. Res. 2008 22 5 567 577 10.1002/ptr.2283 18398903
    [Google Scholar]
  54. Nair H.K. Rao K.V. Aalinkeel R. Mahajan S. Inhibition of prostate cancer cells by curcumin, quercetin and β-phenylethyl isothiocyanate. J. Urol. 2004 171 4 1650 1654 15017257
    [Google Scholar]
  55. Packer L. Smith J.R. Extension of the lifespan of cultured normal human diploid cells by vitamin E. Proc. Natl. Acad. Sci. USA 1974 71 12 4763 4767 10.1073/pnas.71.12.4763 4531015
    [Google Scholar]
  56. Rattan S.I.S. Clark B.F.C. Kinetin delays the onset of ageing characteristics in human fibroblasts. Biochem. Biophys. Res. Commun. 1994 201 2 665 672 10.1006/bbrc.1994.1752 8003000
    [Google Scholar]
  57. McFarland G.A. Holliday R. Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp. Cell Res. 1994 212 2 167 175 10.1006/excr.1994.1132 8187813
    [Google Scholar]
  58. Svendsen L. Rattan S.I.S. Clark B.F.C. Testing garlic for possible anti-ageing effects on long-term growth characteristics, morphology and macromolecular synthesis of human fibroblasts in culture. J. Ethnopharmacol. 1994 43 2 125 133 10.1016/0378‑8741(94)90009‑4 7526077
    [Google Scholar]
  59. Trougakos I.P. Chondrogianni N. Pimenidou A. Katsiki M. Tzavelas C. Gonos E.S. Slowing down cellular ageing in vitro . Modulating ageing and longevity Rattan SI. Dordrecht Kluwer Academic Publishers 2003 65 83
    [Google Scholar]
  60. Chondrogianni N. Kapeta S. Chinou I. Anti-ageing and rejuvenating effects of quercetin. Exp Gerontol 2010 45 10 763 71 10.1016/j.exger.2010.07.001.
    [Google Scholar]
  61. Zhu Y. Tchkonia T. Pirtskhalava T. Gower A.C. Ding H. Giorgadze N. Palmer A.K. Ikeno Y. Hubbard G.B. Lenburg M. O’Hara S.P. LaRusso N.F. Miller J.D. Roos C.M. Verzosa G.C. LeBrasseur N.K. Wren J.D. Farr J.N. Khosla S. Stout M.B. McGowan S.J. Fuhrmann-Stroissnigg H. Gurkar A.U. Zhao J. Colangelo D. Dorronsoro A. Ling Y.Y. Barghouthy A.S. Navarro D.C. Sano T. Robbins P.D. Niedernhofer L.J. Kirkland J.L. The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell 2015 14 4 644 658 10.1111/acel.12344 25754370
    [Google Scholar]
  62. Kirkland J.L. Inflammation and cellular senescence: Potential contribution to chronic diseases and disabilities with aging. Public Policy Aging Rep. 2013 23 4 12 15 10.1093/ppar/23.4.12
    [Google Scholar]
  63. Kirkland J.L. Tchkonia T. Clinical strategies and animal models for developing senolytic agents. Exp Gerontol 2015 68 19 25 10.1016/j.exger.2014.10.012.
    [Google Scholar]
  64. Shaik Y.B. Castellani M.L. Perrella A. Conti F. Salini V. Tete S. Madhappan B. Vecchiet J. De Lutiis M.A. Caraffa A. Cerulli G. Role of quercetin (a natural herbal compound) in allergy and inflammation. J. Biol. Regul. Homeost. Agents 2006 20 3-4 47 52 18187018
    [Google Scholar]
  65. Chirumbolo S. Quercetin as a potential anti-allergic drug: Which perspectives? Iran. J. Allergy Asthma Immunol. 2011 10 2 139 140 21625024
    [Google Scholar]
  66. Matsuno H. Nakamura H. Katayama K. Hayashi S. Kano S. Yudoh K. Kiso Y. Effects of an oral administration of glucosamine-chondroitin-quercetin glucoside on the synovial fluid properties in patients with osteoarthritis and rheumatoid arthritis. Biosci. Biotechnol. Biochem. 2009 73 2 288 292 10.1271/bbb.80418 19202302
    [Google Scholar]
  67. Knekt P. Kumpulainen J. Järvinen R. Rissanen H. Heliövaara M. Reunanen A. Hakulinen T. Aromaa A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002 76 3 560 568 10.1093/ajcn/76.3.560 12198000
    [Google Scholar]
  68. Hirano T. Kawai M. Arimitsu J. Ogawa M. Kuwahara Y. Hagihara K. Shima Y. Narazaki M. Ogata A. Koyanagi M. Kai T. Shimizu R. Moriwaki M. Suzuki Y. Ogino S. Kawase I. Tanaka T. Preventative effect of a flavonoid, enzymatically modified isoquercitrin on ocular symptoms of Japanese cedar pollinosis. Allergol. Int. 2009 58 3 373 382 10.2332/allergolint.08‑OA‑0070 19454839
    [Google Scholar]
  69. Anjaneyulu M. Chopra K. Kaur I. Antidepressant activity of quercetin, a bioflavonoid, in streptozotocin-induced diabetic mice. J. Med. Food 2003 6 4 391 395 10.1089/109662003772519976 14977450
    [Google Scholar]
  70. Bhutada P. Mundhada Y. Bansod K. Ubgade A. Quazi M. Umathe S. Mundhada D. Reversal by quercetin of corticotrophin releasing factor induced anxiety- and depression-like effect in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010 34 6 955 960 10.1016/j.pnpbp.2010.04.025 20447436
    [Google Scholar]
  71. Priprem A. Watanatorn J. Sutthiparinyanont S. Phachonpai W. Muchimapura S. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine 2008 4 1 70 78 10.1016/j.nano.2007.12.001 18249157
    [Google Scholar]
  72. Adewole S.O. Caxton-Martins E.A. Ojewole J.A. Protective effect of quercetin on the morphology of pancreatic beta-cells of streptozotocin-treated diabetic rats. Afr. J. Tradit. Complement. Altern. Med. 2006 4 1 64 74 20162074
    [Google Scholar]
  73. Holzmann I. da Silva L.M. Corrêa da Silva J.A. Steimbach V.M.B. de Souza M.M. Antidepressant-like effect of quercetin in bulbectomized mice and involvement of the antioxidant defenses, and the glutamatergic and oxidonitrergic pathways. Pharmacol. Biochem. Behav. 2015 136 55 63 10.1016/j.pbb.2015.07.003 26196245
    [Google Scholar]
  74. Joshi D. Naidu P.S. Singh A. Kulkarni S.K. Protective effect of quercetin on alcohol abstinence-induced anxiety and convulsions. J. Med. Food 2005 8 3 392 396 10.1089/jmf.2005.8.392 16176153
    [Google Scholar]
  75. Dixon Clarke S.E. Ramsay R.R. Dietary inhibitors of monoamine oxidase A. J. Neural Transm. (Vienna) 2011 118 7 1031 1041 10.1007/s00702‑010‑0537‑x 21190052
    [Google Scholar]
  76. Kawabata K. Kawai Y. Terao J. Suppressive effect of quercetin on acute stress-induced hypothalamic-pituitary-adrenal axis response in Wistar rats. J. Nutr. Biochem. 2010 21 5 374 380 10.1016/j.jnutbio.2009.01.008 19423323
    [Google Scholar]
  77. Nair V.D. Elias G. Quercetin as an inhibitor of the cytochrome P450 enzyme CYP2D6. Phytother. Res. 2010 24 11 1643 1646
    [Google Scholar]
  78. D’Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015 106 256 271 10.1016/j.fitote.2015.09.018 26393898
    [Google Scholar]
  79. Duan Z. Di P. Zhou W. Liu J. Liu X. Quercetin enhances the anti-tumor effect of doxorubicin in human breast cancer cells via inhibition of autophagy. PLoS One 2012 7 12 e51764 23240061
    [Google Scholar]
  80. Nebert D.W. Dalton T.P. The role of cytochrome P450 enzymes in drug metabolism and chemical toxicity. Environ. Health Perspect. 2006 114 1 1 11 16393649
    [Google Scholar]
  81. Hesse L.M. Lown K.S. The influence of genetic variability on drug metabolism: Pharmacogenetics in the era of personalized medicine. Pharmacol. Ther. 2003 99 3 211 228
    [Google Scholar]
  82. Murray M. Phelan D. Phase I and Phase II drug metabolism. In: Fundamentals of Drug Metabolism and Drug Interactions 2011 223 245
    [Google Scholar]
  83. Klaassen C. D. The pharmacological basis of drug metabolism: Phase I and Phase II. In: Casarett & Doull's Toxicology: The Basic Science of Poisons 2001 565 610
    [Google Scholar]
  84. Coulter I.D. Pruett S.B. Liver disease and neurotransmitter regulation: Implications for drug dependence. J. Hepatol. 1996 25 3 287 293
    [Google Scholar]
  85. Smith T.S. McKinney J. The influence of liver function on the pharmacokinetics of psychoactive drugs. J. Clin. Psychiatry 2005 66 2 231 241 15705010
    [Google Scholar]
  86. Hepatic Drug Metabolism and Its Alteration in Liver Disease. In: Liver Disease and Drug Interaction: Clinical Applications 2016 12 25
    [Google Scholar]
  87. Bertino J.S. The effect of liver disease on drug metabolism and response. Liver Transpl. 2003 9 5 511 517
    [Google Scholar]
  88. He X. Xu H. Interaction between liver and gastrointestinal tract in drug metabolism. Clin. Pharmacokinet. 2012 51 6 355 369
    [Google Scholar]
  89. Okamoto T. Safety of quercetin for clinical application (Review). Int. J. Mol. Med. 2005 16 2 275 278 10.3892/ijmm.16.2.275 16012761
    [Google Scholar]
  90. Utesch D. Feige K. Dasenbrock J. Broschard T.H. Harwood M. Danielewska-Nikiel B. Lines T.C. Evaluation of the potential in vivo genotoxicity of quercetin. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2008 654 1 38 44 10.1016/j.mrgentox.2008.04.008 18556240
    [Google Scholar]
  91. Morino K. Matsukura N. Kawachi T. Ohgaki H. Sugimura T. Hirono I. Carcinogenicity test of quercetin and rutin in golden hamsters by oral administration. Carcinogenesis 1982 3 1 93 97 10.1093/carcin/3.1.93 7067042
    [Google Scholar]
  92. Pérez-Pastén R. Martínez-Galero E. Chamorro-Cevallos G. Quercetin and naringenin reduce abnormal development of mouse embryos produced by hydroxyurea. J. Pharm. Pharmacol. 2010 62 8 1003 1009 10.1111/j.2042‑7158.2010.01118.x 20663034
    [Google Scholar]
  93. Vanhees K. de Bock L. Godschalk R.W.L. van Schooten F.J. van Waalwijk van Doorn-Khosrovani S.B. Prenatal exposure to flavonoids: Implication for cancer risk. Toxicol. Sci. 2011 120 1 59 67 10.1093/toxsci/kfq388 21177254
    [Google Scholar]
  94. Cantero G. Campanella C. Mateos S. Cortés F. Topoisomerase II inhibition and high yield of endoreduplication induced by the flavonoids luteolin and quercetin. Mutagenesis 2006 21 5 321 325 10.1093/mutage/gel033 16950806
    [Google Scholar]
  95. Sudan S. Rupasinghe H.V. Antiproliferative activity of long chain acylated esters of quercetin-3-O-glucoside in hepatocellular carcinoma HepG2 cells. Exp Biol Med (Maywood) 2015 240 11 1452 64 10.1177/1535370215570828.
    [Google Scholar]
  96. Hossion A.M.L. Zamami Y. Kandahary R.K. Tsuchiya T. Ogawa W. Iwado A. Sasaki K. Quercetin diacylglycoside analogues showing dual inhibition of DNA gyrase and topoisomerase IV as novel antibacterial agents. J. Med. Chem. 2011 54 11 3686 3703 10.1021/jm200010x 21534606
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X332803240930065210
Loading
/content/journals/rafna/10.2174/012772574X332803240930065210
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test