Skip to content
2000
Volume 17, Issue 1
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

The purpose of the article is to investigate the therapeutic potential of quercetin and related compounds by elucidating their pharmacological characteristics and molecular mechanisms of action. The potential benefits of quercetin and its analogs for cardiovascular health, disorders of the brain, metabolic disorders, and more are discussed in the discussion part of this article. Concerns about their clinical efficacy due to issues with bioavailability and distribution are also discussed. This section of the paper emphasizes the importance of researchers and clinicians working together to maximize the incorporation of these chemicals into real-world therapeutic approaches. In conclusion, quercetin, along with related substances, shows great potential in a wide range of therapeutic settings. Potentially useful for the management of a wide variety of illnesses, their multiple methods of action include the regulation of pathways for cell signaling and interaction with different enzymes. However, additional clinical trials are needed to verify their efficacy and safety.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X332803240930065210
2024-11-07
2026-02-20
Loading full text...

Full text loading...

References

  1. CrozierA Del RioD CliffordMN Bioavailability of dietary flavonoids and phenolic compounds.Mol Aspects Med20103164466710.1016/j.mam.2010.09.007
    [Google Scholar]
  2. MalviyaR. Ankit, Sharma A. Sources, properties, and pharmacological effects of quercetin.Curr. Nutr. Food Sci.202218545746510.2174/1573401318666220127140859
    [Google Scholar]
  3. HollmanP.C. KatanM.B. Absorption, metabolism and health effects of dietary flavonoids in man.Biomed. Pharmacother.1997518305310
    [Google Scholar]
  4. ScalbertA. ManachC. MorandC. RémésyC. JiménezL. Dietary polyphenols and the prevention of diseases.Crit. Rev. Food Sci. Nutr.200545428730610.1080/1040869059096 16047496
    [Google Scholar]
  5. CushnieT.P.T. LambA.J. Antimicrobial activity of flavonoids.Int. J. Antimicrob. Agents200526534335610.1016/j.ijantimicag.2005.09.002 16323269
    [Google Scholar]
  6. LiY. YaoJ. HanC. Quercetin, inflammation and immunity.Nutrients20168316710.3390/nu8030167 26999194
    [Google Scholar]
  7. CarulloG CappelloAR FrattaruoloL BadolatoM ArmentanoB AielloF Quercetin and derivatives: Useful tools in inflammation and pain management.Future Med Chem201791799310.4155/fmc‑2016‑0186
    [Google Scholar]
  8. MurotaK. TeraoJ. Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism.Arch. Biochem. Biophys.20034171121710.1016/S0003‑9861(03)00284‑4 12921774
    [Google Scholar]
  9. YaoL.H. JiangY.M. ShiJ. Flavonoids in food and their health benefits.Plant Foods Hum. Nutr.200459311312210.1007/s11130‑004‑0049‑7 15678717
    [Google Scholar]
  10. WalleT. Bioavailability of resveratrol.Ann. N. Y. Acad. Sci.20111215191510.1111/j.1749‑6632.2010.05842.x 21261636
    [Google Scholar]
  11. CushnieT.P. LambA.J. Recent advances in understanding the antibacterial properties of flavonoids.Int. J. Antimicrob. Agents2016485421430 21514796
    [Google Scholar]
  12. FischerC. SpethV. Fleig-EberenzS. NeuhausG. Induction of zygotic polyembryos in wheat: Influence of auxin polar transport.Plant Cell19979101767178010.2307/3870523 12237347
    [Google Scholar]
  13. McKillopK. HarnlyJ. PehrssonP. FukagawaN. FinleyJ. Fooddata central, USDA’s updated approach to food composition data systems.Curr. Dev. Nutr.2021559610.1093/cdn/nzab044_027
    [Google Scholar]
  14. RhodesD.G. MortonS. MyrowitzR. MoshfeghA.J. Food and nutrient database for dietary studies 2019–2020: An application database for national dietary surveillance.J. Food Compos. Anal.202312310554710.1016/j.jfca.2023.105547
    [Google Scholar]
  15. LeeK.A. KimK.T. KimH.J. Antioxidant activities of onion (Allium cepa L.) peel extracts produced by ethanol, hot water, and subcritical water extraction.Food Sci. Biotechnol.201423261562110.1007/s10068‑014‑0084‑6
    [Google Scholar]
  16. WangS.Y. ChenC.T. SciarappaW. WangC.Y. CampM.J. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries.J. Agric. Food Chem.200856145788579410.1021/jf703775r 18590274
    [Google Scholar]
  17. OrtuñoA. ReynaldoI. FusterM.D. Citrus cultivars with high flavonoid contents in the fruits.Sci. Hortic. (Amsterdam)1997681-423123610.1016/S0304‑4238(96)00988‑0
    [Google Scholar]
  18. ChuY.H. ChangC.L. HsuH.F. Flavonoid content of several vegetables and their antioxidant activity.J. Sci. Food Agric.2000805561566
    [Google Scholar]
  19. CrozierA. LeanM.E.J. McDonaldM.S. BlackC. Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery.J. Agric. Food Chem.199745359059510.1021/jf960339y
    [Google Scholar]
  20. DuB. HeB.J. ShiP.B. LiF.Y. LiJ. ZhuF.M. Phenolic content and antioxidant activity of wine grapes and table grapes.J. Med. Plants Res.201261733813387
    [Google Scholar]
  21. Lola-LuzT. HennequartF. GaffneyM. Effect on yield, total phenolic, total flavonoid and total isothiocyanate content of two broccoli cultivars (Brassica oleraceae var italica) following the application of a commercial brown seaweed extract (Ascophyllum nodosum).Agric. Food Sci.2014231283710.23986/afsci.8832
    [Google Scholar]
  22. PetersonJ. DwyerJ. JacquesP. RandW. PriorR. ChuiK. Tea variety and brewing techniques influence flavonoid content of black tea.J. Food Compos. Anal.2004173-439740510.1016/j.jfca.2004.03.022
    [Google Scholar]
  23. InocencioC. RiveraD. AlcarazF. Tomás-BarberánF.A. Flavonoid content of commercial capers (Capparis spinosa, C. sicula and C. orientalis) produced in mediterranean countries.Eur. Food Res. Technol.20002121707410.1007/s002170000220
    [Google Scholar]
  24. D’ArchivioM. FilesiC. Di BenedettoR. GargiuloR. GiovanniniC. MasellaR. Polyphenols, dietary sources and bioavailability.Ann. Ist. Super. Sanita2007434348361 18209268
    [Google Scholar]
  25. WalleT. OtakeY. WalleU.K. WilsonF.A. Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption.J. Nutr.2000130112658266110.1093/jn/130.11.2658
    [Google Scholar]
  26. ManachC. WilliamsonG. MorandC. ScalbertA. RémésyC. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies.Am. J. Clin. Nutr.2005811230S242S10.1093/ajcn/81.1.230S 15640486
    [Google Scholar]
  27. EgertS. WolfframS. Bosy-WestphalA. Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans.J. Nutr.200813891615162110.1093/jn/138.9.1615 18716159
    [Google Scholar]
  28. HollmanP.C.H. KatanM.B. Dietary flavonoids: Intake, health effects and bioavailability.Food Chem. Toxicol.1999379-1093794210.1016/S0278‑6915(99)00079‑4 10541448
    [Google Scholar]
  29. BarveA. ChenC. HebbarV. DesiderioJ. SawC.L. KongA.N. Metabolism, bioavailability, and tissue distribution of quercetin and its biologically active metabolites in the rat model.J. Pharmacol. Exp. Ther.20093282539550
    [Google Scholar]
  30. HollmanP.C. Absorption, bioavailability, and metabolism of flavonoids.Pharmacol. Ther.20041053203215
    [Google Scholar]
  31. FormicaJ.V. RegelsonW. Review of the biology of quercetin and related bioflavonoids.Food Chem. Toxicol.199533121061108010.1016/0278‑6915(95)00077‑1 8847003
    [Google Scholar]
  32. LarsonA. WitmanM.A.H. GuoY. Acute, quercetin-induced reductions in blood pressure in hypertensive individuals are not secondary to lower plasma angiotensin-converting enzyme activity or endothelin-1: nitric oxide.Nutr. Res.201232855756410.1016/j.nutres.2012.06.018 22935338
    [Google Scholar]
  33. MurakamiA. AshidaH. TeraoJ. Multitargeted cancer prevention by quercetin.Cancer Lett.2008269231532510.1016/j.canlet.2008.03.046 18467024
    [Google Scholar]
  34. JeongJ.H. AnJ.Y. KwonY.T. RheeJ.G. LeeY.J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression.J. Cell. Biochem.20091061738210.1002/jcb.21977 19009557
    [Google Scholar]
  35. RogerioA.P. KanashiroA. FontanariC. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma.Inflamm. Res.2007561040240810.1007/s00011‑007‑7005‑6 18026696
    [Google Scholar]
  36. DavisJ.M. MurphyE.A. CarmichaelM.D. DavisB. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance.Am. J. Physiol. Regul. Integr. Comp. Physiol.20092964R1071R107710.1152/ajpregu.90925.2008 19211721
    [Google Scholar]
  37. WalleT. Absorption and metabolism of flavonoids.Free Radic. Biol. Med.200436782983710.1016/j.freeradbiomed.2004.01.002 15019968
    [Google Scholar]
  38. HarwoodM. Danielewska-NikielB. BorzellecaJ.F. FlammG.W. WilliamsG.M. LinesT.C. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties.Food Chem. Toxicol.200745112179220510.1016/j.fct.2007.05.015 17698276
    [Google Scholar]
  39. ShuY. LiuY. LiL. Antibacterial activity of quercetin on oral infectious pathogens.Afr. J. Microbiol. Res.2011553585361
    [Google Scholar]
  40. ParasuramanS. Anand DavidA.V. ArulmoliR. Overviews of biological importance of quercetin: A bioactive flavonoid.Pharmacogn. Rev.20161020848910.4103/0973‑7847.194044 28082789
    [Google Scholar]
  41. OliveiraV.M. CarraroE. AulerM.E. KhalilN.M. Quercetin and rutin as potential agents antifungal against Cryptococcus spp.Braz. J. Biol.20167641029103410.1590/1519‑6984.07415 27166572
    [Google Scholar]
  42. OsongaF.J. AkgulA. MillerR.M. Antimicrobial activity of a new class of phosphorylated and modified flavonoids.ACS Omega201947128651287110.1021/acsomega.9b00077 31460413
    [Google Scholar]
  43. HoodaH. SinghP. BajpaiS. Effect of quercetin impregnated silver nanoparticle on growth of some clinical pathogens.Mater. Today Proc.20203162563010.1016/j.matpr.2020.03.530
    [Google Scholar]
  44. WangS. YaoJ. ZhouB. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro.J. Food Prot.2018811687810.4315/0362‑028X.JFP‑17‑214 29271686
    [Google Scholar]
  45. YinJ. PengX. LinJ. Quercetin ameliorates Aspergillus fumigatus keratitis by inhibiting fungal growth, toll-like receptors and inflammatory cytokines.Int. Immunopharmacol.20219310743510.1016/j.intimp.2021.107435 33550031
    [Google Scholar]
  46. SinghB.N. UpretiD.K. SinghB.R. Quercetin sensitizes fluconazole-resistant Candida albicans to induce apoptotic cell death by modulating quorum sensing.Antimicrob. Agents Chemother.20155942153216810.1128/AAC.03599‑14 25645848
    [Google Scholar]
  47. GaoM. WangH. ZhuL. Quercetin assists fluconazole to inhibit biofilm formations of fluconazole-resistant Candida albicans in in vitro and in vivo antifungal managements of vulvovaginal candidiasis.Cell. Physiol. Biochem.2016403-472774210.1159/000453134 27915337
    [Google Scholar]
  48. KuoS.M. Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells.Cancer Lett.19961101-2414810.1016/S0304‑3835(96)04458‑8 9018079
    [Google Scholar]
  49. SrinivasanM. SudheerA.R. MenonV.P. Ferulic acid: Therapeutic potential through its antioxidant property.J. Clin. Biochem. Nutr.20074029210010.3164/jcbn.40.92 18188410
    [Google Scholar]
  50. ChoiJ.A. KimJ.Y. LeeJ.Y. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin.Int. J. Oncol.200119483784410.3892/ijo.19.4.837 11562764
    [Google Scholar]
  51. SikoraE. CieślikM. BukowskaB. Quercetin induces human colon cancer cells apoptosis and inhibits proliferation of these cells in culture.Cell. Mol. Biol. Lett.2008132312324
    [Google Scholar]
  52. VallianouN.G. EvangelopoulosA. SchizasN. KazazisC. Potential anticancer properties and mechanisms of action of quercetin.Anticancer Res.201333935433548
    [Google Scholar]
  53. KaleA. GawandeS. KotwalS. Cancer phytotherapeutics: Role for flavonoids at the cellular level.Phytother. Res.200822556757710.1002/ptr.2283 18398903
    [Google Scholar]
  54. NairH.K. RaoK.V. AalinkeelR. MahajanS. Inhibition of prostate cancer cells by curcumin, quercetin and β-phenylethyl isothiocyanate.J. Urol.2004171416501654
    [Google Scholar]
  55. PackerL. SmithJ.R. Extension of the lifespan of cultured normal human diploid cells by vitamin E.Proc. Natl. Acad. Sci. USA197471124763476710.1073/pnas.71.12.4763 4531015
    [Google Scholar]
  56. RattanS.I.S. ClarkB.F.C. Kinetin delays the onset of ageing characteristics in human fibroblasts.Biochem. Biophys. Res. Commun.1994201266567210.1006/bbrc.1994.1752 8003000
    [Google Scholar]
  57. McFarlandG.A. HollidayR. Retardation of the senescence of cultured human diploid fibroblasts by carnosine.Exp. Cell Res.1994212216717510.1006/excr.1994.1132 8187813
    [Google Scholar]
  58. SvendsenL. RattanS.I.S. ClarkB.F.C. Testing garlic for possible anti-ageing effects on long-term growth characteristics, morphology and macromolecular synthesis of human fibroblasts in culture.J. Ethnopharmacol.199443212513310.1016/0378‑8741(94)90009‑4 7526077
    [Google Scholar]
  59. TrougakosI.P. ChondrogianniN. PimenidouA. KatsikiM. TzavelasC. GonosE.S. Slowing down cellular ageing in vitro.Modulating ageing and longevity. Rattan SI, Ed.DordrechtKluwer Academic Publishers20036583
    [Google Scholar]
  60. ChondrogianniN KapetaS ChinouI Anti-ageing and rejuvenating effects of quercetin.Exp Gerontol20104510763110.1016/j.exger.2010.07.001
    [Google Scholar]
  61. ZhuY. TchkoniaT. PirtskhalavaT. The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs.Aging Cell201514464465810.1111/acel.12344 25754370
    [Google Scholar]
  62. KirklandJ.L. Inflammation and cellular senescence: Potential contribution to chronic diseases and disabilities with aging.Public Policy Aging Rep.2013234121510.1093/ppar/23.4.12
    [Google Scholar]
  63. KirklandJL TchkoniaT Clinical strategies and animal models for developing senolytic agents.Exp Gerontol201568192510.1016/j.exger.2014.10.012
    [Google Scholar]
  64. ShaikY.B. CastellaniM.L. PerrellaA. Role of quercetin (a natural herbal compound) in allergy and inflammation.J. Biol. Regul. Homeost. Agents2006203-44752 18187018
    [Google Scholar]
  65. ChirumboloS. Quercetin as a potential anti-allergic drug: Which perspectives?Iran. J. Allergy Asthma Immunol.2011102139140 21625024
    [Google Scholar]
  66. MatsunoH. NakamuraH. KatayamaK. Effects of an oral administration of glucosamine-chondroitin-quercetin glucoside on the synovial fluid properties in patients with osteoarthritis and rheumatoid arthritis.Biosci. Biotechnol. Biochem.200973228829210.1271/bbb.80418 19202302
    [Google Scholar]
  67. KnektP. KumpulainenJ. JärvinenR. Flavonoid intake and risk of chronic diseases.Am. J. Clin. Nutr.200276356056810.1093/ajcn/76.3.560 12198000
    [Google Scholar]
  68. HiranoT. KawaiM. ArimitsuJ. Preventative effect of a flavonoid, enzymatically modified isoquercitrin on ocular symptoms of Japanese cedar pollinosis.Allergol. Int.200958337338210.2332/allergolint.08‑OA‑0070 19454839
    [Google Scholar]
  69. AnjaneyuluM. ChopraK. KaurI. Antidepressant activity of quercetin, a bioflavonoid, in streptozotocin-induced diabetic mice.J. Med. Food20036439139510.1089/109662003772519976 14977450
    [Google Scholar]
  70. BhutadaP. MundhadaY. BansodK. Reversal by quercetin of corticotrophin releasing factor induced anxiety- and depression-like effect in mice.Prog. Neuropsychopharmacol. Biol. Psychiatry201034695596010.1016/j.pnpbp.2010.04.025 20447436
    [Google Scholar]
  71. PripremA. WatanatornJ. SutthiparinyanontS. PhachonpaiW. MuchimapuraS. Anxiety and cognitive effects of quercetin liposomes in rats.Nanomedicine200841707810.1016/j.nano.2007.12.001 18249157
    [Google Scholar]
  72. AdewoleS.O. Caxton-MartinsE.A. OjewoleJ.A. Protective effect of quercetin on the morphology of pancreatic beta-cells of streptozotocin-treated diabetic rats.Afr. J. Tradit. Complement. Altern. Med.2006416474 20162074
    [Google Scholar]
  73. HolzmannI. da SilvaL.M. Corrêa da SilvaJ.A. SteimbachV.M.B. de SouzaM.M. Antidepressant-like effect of quercetin in bulbectomized mice and involvement of the antioxidant defenses, and the glutamatergic and oxidonitrergic pathways.Pharmacol. Biochem. Behav.2015136556310.1016/j.pbb.2015.07.003 26196245
    [Google Scholar]
  74. JoshiD. NaiduP.S. SinghA. KulkarniS.K. Protective effect of quercetin on alcohol abstinence-induced anxiety and convulsions.J. Med. Food20058339239610.1089/jmf.2005.8.392 16176153
    [Google Scholar]
  75. Dixon ClarkeS.E. RamsayR.R. Dietary inhibitors of monoamine oxidase A.J. Neural Transm. (Vienna)201111871031104110.1007/s00702‑010‑0537‑x 21190052
    [Google Scholar]
  76. KawabataK. KawaiY. TeraoJ. Suppressive effect of quercetin on acute stress-induced hypothalamic-pituitary-adrenal axis response in Wistar rats.J. Nutr. Biochem.201021537438010.1016/j.jnutbio.2009.01.008 19423323
    [Google Scholar]
  77. NairV.D. EliasG. Quercetin as an inhibitor of the cytochrome P450 enzyme CYP2D6.Phytother. Res.2010241116431646
    [Google Scholar]
  78. DuanZ. DiP. ZhouW. LiuJ. LiuX. Quercetin enhances the anti-tumor effect of doxorubicin in human breast cancer cells via inhibition of autophagy.PLoS One2012712e51764
    [Google Scholar]
  79. NebertD.W. DaltonT.P. The role of cytochrome P450 enzymes in drug metabolism and chemical toxicity.Environ. Health Perspect.20061141111
    [Google Scholar]
  80. HesseL.M. LownK.S. The influence of genetic variability on drug metabolism: Pharmacogenetics in the era of personalized medicine.Pharmacol. Ther.2003993211228
    [Google Scholar]
  81. MurrayM. PhelanD. Phase I and Phase II drug metabolism.In: Fundamentals of Drug Metabolism and Drug Interactions.201122345
    [Google Scholar]
  82. KupfermannI. The pharmacological basis of drug metabolism: Phase I and Phase II.In: Casarett & Doull’s Toxicology: The Basic Science of Poisons.Klaassen CD, ed. 5th ed. New York (NY): McGraw-Hill2001565610
    [Google Scholar]
  83. CoulterI.D. PruettS.B. Liver disease and neurotransmitter regulation: Implications for drug dependence.J. Hepatol.1996253287293
    [Google Scholar]
  84. SmithT.S. McKinneyJ. The influence of liver function on the pharmacokinetics of psychoactive drugs.J. Clin. Psychiatry2005662231241
    [Google Scholar]
  85. NamJ.S. SharmaA.R. NguyenL.T. ChakrabortyC. SharmaG. LeeS.S. Application of bioactive quercetin in oncotherapy: From nutrition to nanomedicine.Molecules201621110810.3390/molecules21010108
    [Google Scholar]
  86. BertinoJ.S. The effect of liver disease on drug metabolism and response.Liver Transpl.200395511517
    [Google Scholar]
  87. HeX. XuH. Interaction between liver and gastrointestinal tract in drug metabolism.Clin. Pharmacokinet.2012516355369
    [Google Scholar]
  88. OkamotoT. Safety of quercetin for clinical application (Review).Int. J. Mol. Med.200516227527810.3892/ijmm.16.2.275 16012761
    [Google Scholar]
  89. UteschD. FeigeK. DasenbrockJ. Evaluation of the potential in vivo genotoxicity of quercetin.Mutat. Res. Genet. Toxicol. Environ. Mutagen.20086541384410.1016/j.mrgentox.2008.04.008 18556240
    [Google Scholar]
  90. MorinoK. MatsukuraN. KawachiT. OhgakiH. SugimuraT. HironoI. Carcinogenicity test of quercetin and rutin in golden hamsters by oral administration.Carcinogenesis198231939710.1093/carcin/3.1.93 7067042
    [Google Scholar]
  91. Pérez-PasténR. Martínez-GaleroE. Chamorro-CevallosG. Quercetin and naringenin reduce abnormal development of mouse embryos produced by hydroxyurea.J. Pharm. Pharmacol.20106281003100910.1111/j.2042‑7158.2010.01118.x 20663034
    [Google Scholar]
  92. VanheesK. de BockL. GodschalkR.W.L. van SchootenF.J. van Waalwijk van Doorn-KhosrovaniS.B. Prenatal exposure to flavonoids: Implication for cancer risk.Toxicol. Sci.20111201596710.1093/toxsci/kfq388 21177254
    [Google Scholar]
  93. CanteroG. CampanellaC. MateosS. CortésF. Topoisomerase II inhibition and high yield of endoreduplication induced by the flavonoids luteolin and quercetin.Mutagenesis200621532132510.1093/mutage/gel033 16950806
    [Google Scholar]
  94. SudanS RupasingheHV Antiproliferative activity of long chain acylated esters of quercetin-3-O-glucoside in hepatocellular carcinoma HepG2 cells.Exp Biol Med (Maywood)20152401114526410.1177/1535370215570828
    [Google Scholar]
  95. HossionA.M.L. ZamamiY. KandaharyR.K. Quercetin diacylglycoside analogues showing dual inhibition of DNA gyrase and topoisomerase IV as novel antibacterial agents.J. Med. Chem.201154113686370310.1021/jm200010x 21534606
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X332803240930065210
Loading
/content/journals/rafna/10.2174/012772574X332803240930065210
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test