Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2772-574X
  • E-ISSN: 2772-5758

Abstract

Background

Potato peel is a byproduct of the potato processing industry and a potential source of functional ingredients such as dietary fiber, polyphenols, and prebiotics. However, the bioaccessibility of polyphenols and antioxidants during digestion as well as prebiotic potential after digestion of potato peel flour has not been reported.

Objective

The study was designed to assess the bioaccessibility of polyphenols and the prebiotic potential of potato peel flour.

Methods

In this study, the changes in polyphenol content and antioxidant capacity during different phases of digestion, including salivary, gastric and intestinal phases were studied. Additionally, an investigation was conducted to evaluate the prebiotic properties of potato peel flour by fermentation with .

Results

The findings revealed a significant increase in the recovery index for total phenolic content during both gastric (106.90%) and intestinal (102.71%) digestive phases. Furthermore, polyphenols in potato peel flour exhibited high residual intestinal digestibility index values (>90%). The antioxidant capacity increased by >50% during various phases of digestion. Regarding prebiotic properties, potato peel flour significantly increased counts and promoted the production of short-chain fatty acids, specifically propionate and butyrate.

Conclusion

This study suggests that potato peel flour has the potential to serve as a functional ingredient or nutraceutical that can enhance health and may help in reducing environmental problems.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X287665240118053142
2024-02-02
2024-11-18
Loading full text...

Full text loading...

References

  1. BurlingameB. MouilléB. CharrondièreR. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes.J. Food Compos. Anal.200922649450210.1016/j.jfca.2009.09.001
    [Google Scholar]
  2. WuD. Recycle technology for potato peel waste processing: A review.Procedia Environ. Sci.20163110310710.1016/j.proenv.2016.02.014
    [Google Scholar]
  3. SinghN. KamathV. RajiniP.S. Protective effect of potato peel powder in ameliorating oxidative stress in streptozotocin diabetic rats.Plant Foods Hum. Nutr.2005602495410.1007/s11130‑005‑5099‑y 16021831
    [Google Scholar]
  4. KaurS. AggarwalP. BabbarN. Evaluating progress of indian potato processing industry: An updated review.Potato Res.202210.1007/s11540‑022‑09605‑5
    [Google Scholar]
  5. JeddouK.B. ChaariF. MaktoufS. Nouri-EllouzO. HelbertC.B. GhorbelR.E. Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels.Food Chem.20162059710510.1016/j.foodchem.2016.02.108 27006219
    [Google Scholar]
  6. Rodríguez-MartínezB. GullónB. YáñezR. Identification and recovery of valuable bioactive compounds from potato peels: A comprehensive review.Antioxidants202110163010.3390/antiox10101630
    [Google Scholar]
  7. AmadoI.R. FrancoD. SánchezM. ZapataC. VázquezJ.A. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology.Food Chem.201416529029910.1016/j.foodchem.2014.05.103 25038678
    [Google Scholar]
  8. KoduvayurH.S.F. NielsenN.S. JacobsenC. Antioxidant activity of potato peel extracts in a fish‐rapeseed oil mixture and in oil‐in‐water emulsions.J. Am. Oil Chem. Soc.201087111319133210.1007/s11746‑010‑1611‑0
    [Google Scholar]
  9. FriedmanM. KozukueN. KimH.J. ChoiS.H. MizunoM. Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and Russet potatoes.J. Food Compos. Anal.201762697510.1016/j.jfca.2017.04.019
    [Google Scholar]
  10. MohdalyA.A.A. SarhanM.A. SmetanskaI. MahmoudA. Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake.J. Sci. Food Agric.201090221822610.1002/jsfa.3796 20355034
    [Google Scholar]
  11. Al-WeshahyA. El-NoketyM. BakheteM. RaoV. Effect of storage on antioxidant activity of freeze-dried potato peels.Food Res. Int.201350250751210.1016/j.foodres.2010.12.014
    [Google Scholar]
  12. ScalbertA. JohnsonI.T. SaltmarshM. Polyphenols: Antioxidants and beyond.Am. J. Clin. Nutr.2005811215S217S10.1093/ajcn/81.1.215S 15640483
    [Google Scholar]
  13. SampaioS.L. PetropoulosS.A. AlexopoulosA. HelenoS.A. Santos-BuelgaC. BarrosL. FerreiraI.C.F.R. Potato peels as sources of functional compounds for the food industry: A review.Trends Food Sci. Technol.202010311812910.1016/j.tifs.2020.07.015
    [Google Scholar]
  14. GibsonG.R. HutkinsR. SandersM.E. PrescottS.L. ReimerR.A. SalminenS.J. ScottK. StantonC. SwansonK.S. CaniP.D. VerbekeK. ReidG. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat. Rev. Gastroenterol. Hepatol.201714849150210.1038/nrgastro.2017.75 28611480
    [Google Scholar]
  15. KhodaeiN. FernandezB. FlissI. KarbouneS. Digestibility and prebiotic properties of potato rhamnogalacturonan I polysaccharide and its galactose-rich oligosaccharides/oligomers.Carbohydr. Polym.20161361074108410.1016/j.carbpol.2015.09.106 26572449
    [Google Scholar]
  16. JeddouK.B. BouazizF. HelbertC.B. Nouri-EllouzO. MaktoufS. Ellouz-ChaabouniS. Ellouz-GhorbelR. Structural, functional, and biological properties of potato peel oligosaccharides.Int. J. Biol. Macromol.20181121146115510.1016/j.ijbiomac.2018.02.004 29408417
    [Google Scholar]
  17. LiuS. JiaM. ChenJ. WanH. DongR. NieS. XieM. YuQ. Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber.Food Hydrocoll.20199328429210.1016/j.foodhyd.2019.02.047
    [Google Scholar]
  18. FernandesA. MateusN. de FreitasV. Polyphenol-dietary fiber conjugates from fruits and vegetables: Nature and biological fate in a food and nutrition perspective.Foods2023125105210.3390/foods12051052 36900569
    [Google Scholar]
  19. QuatrinA. RampelottoC. PaulettoR. HaseleinL. MaraS. KleinB. Bioaccessibility and catabolism of phenolic compounds from jaboticaba (Myrciaria trunciflora) fruit peel during in vitro gastrointestinal digestion and colonic fermentation.J. Funct. Foods20206510371410.1016/j.jff.2019.103714
    [Google Scholar]
  20. MallU.P. PatelV.H. Evaluation of pomegranate (Punica granatum) peel for bioaccessibility of polyphenols and prebiotic potential using in vitro model.Food Chemistry Advances.2023210032010.1016/j.focha.2023.100320
    [Google Scholar]
  21. Sáyago-AyerdiS.G. Zamora-GasgaV.M. VenemaK. Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2).Food Res. Int.2019118899510.1016/j.foodres.2017.12.024 30898357
    [Google Scholar]
  22. BamigbadeG.B. SubhashA.J. Kamal-EldinA. NyströmL. AyyashM. An updated review on prebiotics: Insights on potentials of food seeds waste as source of potential prebiotics.Molecules20222718594710.3390/molecules27185947 36144679
    [Google Scholar]
  23. MarkowiakP. ŚliżewskaK. Effects of probiotics, prebiotics, and synbiotics on human health.Nutrients201799102110.3390/nu9091021 28914794
    [Google Scholar]
  24. GibsonG.R. ScottK.P. RastallR.A. TuohyK.M. HotchkissA. Dubert-FerrandonA. GareauM. MurphyE.F. SaulnierD. LohG. MacfarlaneS. DelzenneN. RingelY. KozianowskiG. DickmannR. Lenoir-WijnkoopI. WalkerC. BuddingtonR. Dietary prebiotics: Current status and new definition.Food Sci. Technol. Bull.20107111910.1616/1476‑2137.15880
    [Google Scholar]
  25. FariasD.P. de AraújoF.F. Neri-NumaI.A. PastoreG.M. Prebiotics: Trends in food, health and technological applications.Trends Food Sci. Technol.201993233510.1016/j.tifs.2019.09.004
    [Google Scholar]
  26. WangY. Prebiotics: Present and future in food science and technology.Food Res. Int.200942181210.1016/j.foodres.2008.09.001
    [Google Scholar]
  27. Al-WeshahyA. Venket RaoA. Isolation and characterization of functional components from peel samples of six potatoes varieties growing in Ontario.Food Res. Int.20094281062106610.1016/j.foodres.2009.05.011
    [Google Scholar]
  28. ThakurK. XuG.Y. ZhangJ.G. ZhangF. HuF. WeiZ.J. In vitro prebiotic effects of bamboo shoots and potato peel extracts on the proliferation of lactic acid bacteria under simulated GIT conditions.Front. Microbiol.20189211410.3389/fmicb.2018.02114 30233560
    [Google Scholar]
  29. AlmingerM. AuraA.M. BohnT. DufourC. ElS.N. GomesA. KarakayaS. Martínez-CuestaM.C. McDougallG.J. RequenaT. SantosC.N. In vitro models for studying secondary plant metabolite digestion and bioaccessibility.Compr. Rev. Food Sci. Food Saf.201413441343610.1111/1541‑4337.12081 33412708
    [Google Scholar]
  30. Condezo-HoyosL. MohantyI.P. NorattoG.D. Assessing non-digestible compounds in apple cultivars and their potential as modulators of obese faecal microbiotain vitro Food Chem.201416120821510.1016/j.foodchem.2014.03.122 24837942
    [Google Scholar]
  31. SingletonV.L. OrthoferR. Lamuela-RaventósR.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. . Methods Enzymol., 199929915217810.1016/S0076‑6879(99)99017‑1
    [Google Scholar]
  32. ZhishenJ. MengchengT. JianmingW. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals.Food Chem.199964455555910.1016/S0308‑8146(98)00102‑2
    [Google Scholar]
  33. BenzieI.F.F. StrainJ.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol.,1999299152710.1016/S0076‑6879(99)99005‑5 9916193
    [Google Scholar]
  34. Brand-WilliamsW. CuvelierM.E. BersetC. Use of a free radical method to evaluate antioxidant activity.LWT.1995282530
    [Google Scholar]
  35. ReR. PellegriniN. ProteggenteA. PannalaA. YangM. Rice-EvansC. Antioxidant activity applying an improved ABTS radical cation decolorization assay.Free Radic. Biol. Med.1999269-101231123710.1016/S0891‑5849(98)00315‑3 10381194
    [Google Scholar]
  36. KamilogluS. CapanogluE. BilenF.D. BryanG. GrootaertC. WieleT. Van De, Bioaccessibility of polyphenols from plant-processing byproducts of black carrot (Daucus carota L.).J. Agric. Food Chem.201664122450245810.1021/acs.jafc.5b02640
    [Google Scholar]
  37. ChenH. ShiY. WangL. HuX. LinX. Phenolic profile and α-glucosidase inhibitory potential of wampee (Clausena lansium (Lour.) Skeels) peel and pulp: in vitro digestion/in silico evaluations.Food Res. Int.2023173Pt 111327410.1016/j.foodres.2023.113274 37803586
    [Google Scholar]
  38. BalzeraniF. Hinojosa-NogueiraD. CendoyaX. BlascoT. Pérez-BurilloS. ApaolazaI. FrancinoM.P. Rufián-HenaresJ.Á. PlanesF.J. Prediction of degradation pathways of phenolic compounds in the human gut microbiota through enzyme promiscuity methods.NPJ Syst. Biol. Appl.2022812410.1038/s41540‑022‑00234‑9 35831427
    [Google Scholar]
  39. Bas-BellverC. BarreraC. BetoretN. SeguíL. Effect of processing and in vitro digestion on bioactive constituents of powdered IV range carrot (daucus carota, L.) wastes.Foods202312473110.3390/foods12040731 36832803
    [Google Scholar]
  40. DongR. LiuS. XieJ. ChenY. ZhengY. ZhangX. ZhaoE. WangZ. XuH. YuQ. The recovery, catabolism and potential bioactivity of polyphenols from carrot subjected to in vitro simulated digestion and colonic fermentation.Food Res. Int.202114311026310.1016/j.foodres.2021.110263 33992364
    [Google Scholar]
  41. MarieA. AlvitoPC. A standardised static in vitro digestion method suitable for food - an international consensus.Food Funct.2014561113112410.1039/C3FO60702J
    [Google Scholar]
  42. ChandrasekaraA. ShahidiF. Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation 2012.J. Funct. Foods20124122623710.1016/j.jff.2011.11.001
    [Google Scholar]
  43. CaoQ. TengJ. WeiB. HuangL. XiaN. Phenolic compounds, bioactivity, and bioaccessibility of ethanol extracts from passion fruit peel based on simulated gastrointestinal digestion.Food Chem.202135612968210.1016/j.foodchem.2021.129682 33812196
    [Google Scholar]
  44. ZhangY. YuW. ZhangL. WangM. ChangW. The interaction of polyphenols and the gut microbiota in neurodegenerative diseases.Nutrients20221424537310.3390/nu14245373 36558531
    [Google Scholar]
  45. MaG. ChenY. Polyphenol supplementation benefits human health via gut microbiota: A systematic review via meta-analysis.J. Funct. Foods20206610382910.1016/j.jff.2020.103829
    [Google Scholar]
  46. WangX. QiY. ZhengH. Dietary polyphenol, gut microbiota, and health benefits.Antioxidants2022116121210.3390/antiox11061212 35740109
    [Google Scholar]
  47. JavedA. AhmadA. TahirA. ShabbirU. NoumanM. Hameed, A Potato peel waste-its nutraceutical, industrial and biotechnological applacations.AIMS Agric. Food2019480782310.3934/agrfood.2019.3.807
    [Google Scholar]
  48. MaY.L. WangY. WuZ.F. MeiJ. ZhangW.Q. ShangY.F. ThakurK. WeiZ-J. Exploring the effect of in vitro digestion on the phenolics and antioxidant activity of Lycium barbarum fruit extract.Food Biosci.20235110225510.1016/j.fbio.2022.102255
    [Google Scholar]
  49. PalframanR.J. GibsonG.R. RastallR.A. Effect of pH and dose on the growth of gut bacteria on prebiotic carbohydrates in vitro.Anaerobe20028528729210.1006/anae.2002.0434 16887671
    [Google Scholar]
  50. BouayedJ. DeußerH. HoffmannL. BohnT. Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns.Food Chem.201213141466147210.1016/j.foodchem.2011.10.030
    [Google Scholar]
  51. ZakariaZ. AfandiA.A. NuriahS. NoorM. HussinN. ShahidanN. Prebiotic activity score of breadfruit resistant starch (artocarpus altilis), breadfruit flour, and inulin during in-vitro fermentation by pure cultures (lactobacillus plantarum, and bifidobacterium bifidum).J Agrobiotech20189122131
    [Google Scholar]
  52. HuebnerJ. WehlingR.L. HutkinsR.W. Functional activity of commercial prebiotics.Int. Dairy J.200717777077510.1016/j.idairyj.2006.10.006
    [Google Scholar]
  53. RubelI.A. PérezE.E. GenoveseD.B. ManriqueG.D. In vitro prebiotic activity of inulin-rich carbohydrates extracted from Jerusalem artichoke (Helianthus tuberosus L.) tubers at different storage times by Lactobacillus paracasei.Food Res. Int.201462596510.1016/j.foodres.2014.02.024
    [Google Scholar]
  54. GullónB. GullónP. SanzY. AlonsoJ.L. ParajóJ.C. Prebiotic potential of a refined product containing pectic oligosaccharides.Lebensm. Wiss. Technol.20114481687169610.1016/j.lwt.2011.03.006
    [Google Scholar]
  55. FarooqU. MohsinM. LiuX. ZhangH. Enhancement of short chain fatty acid production from millet fibres by pure cultures of probiotic fermentation.Trop. J. Pharm. Res.201312218919410.4314/tjpr.v12i2.9
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X287665240118053142
Loading
/content/journals/rafna/10.2174/012772574X287665240118053142
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bioaccessibility; digestion; in vitro; polyphenols; Potato peel; prebiotic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test