Skip to content
2000
image of Ubiquitination-related Gene UBTD1 Mediates Poor Prognosis of Colorectal Cancer and Affects Colorectal Cancer Cell Proliferation and Ferroptosis

Abstract

Background

Colorectal cancer (CRC) is the third most common cancer worldwide, and its occurrence and progression are often regulated by genetic and hereditary factors. Ubiquitination and the associated ubiquitin-binding enzymes and ligases regulate the tumor microenvironment and antitumor immunity to mediate tumor pathogenesis and progression. In this study, we examined the molecular characteristics and immunomodulatory effects of ubiquitination-associated genes that mediate CRC prognosis.

Methods

The ubiquitination-related gene ubiquitin domain-containing protein 1 (UBTD1) was identified using bioinformatics and single-cell analyses. Subsequently, the ability of UBTD1 to predict CRC prognosis and immune checkpoint correlation was analyzed, the potential drug telatinib targeting UBTD1 was explored, and the correlation between UBTD1 and ferroptosis was analyzed. The role of UBTD1 in CRC and ferroptosis was verified using immunohistochemistry, gene knockout, western blot, cell cloning, and immunofluorescence.

Results

UBTD1 was identified as a significant prognostic and predictive gene for CRC and was involved in regulating immune checkpoint levels and immune cell function of CRC patients with CRC. High UBTD1 expression was found to enhance the presence of immune checkpoints that induce immune escape and inhibit ferroptosis onset. Telatinib may be a potential therapeutic drug targeting UBTD1.

Conclusion

Our study demonstrated that UBTD1 is a prognostic marker for CRC in the regulation of ubiquitination and the tumor immune microenvironment and may serve as a modulator of ferroptosis.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928323408241002131753
2025-01-15
2025-07-11
Loading full text...

Full text loading...

References

  1. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  2. Punt C.J.A. Koopman M. Vermeulen L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol. 2017 14 4 235 246 10.1038/nrclinonc.2016.171 27922044
    [Google Scholar]
  3. Loree J.M. Kopetz S. Recent developments in the treatment of metastatic colorectal cancer. Ther. Adv. Med. Oncol. 2017 9 8 551 564 10.1177/1758834017714997 28794806
    [Google Scholar]
  4. Zhu J. Liu A. Sun X. Liu L. Zhu Y. Zhang T. Jia J. Tan S. Wu J. Wang X. Zhou J. Yang J. Zhang C. Zhang H. Zhao Y. Cai G. Zhang W. Xia F. Wan J. Zhang H. Shen L. Cai S. Zhang Z. Multicenter, randomized, phase III trial of neoadjuvant chemoradiation with capecitabine and irinotecan guided by UGT1A1 status in patients with locally advanced rectal cancer. J. Clin. Oncol. 38 36 4231 4239 10.1200/JCO.20.01932 33119477
    [Google Scholar]
  5. Kalbasi A. Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 2020 20 1 25 39 10.1038/s41577‑019‑0218‑4 31570880
    [Google Scholar]
  6. Markowitz S.D. Bertagnolli M.M. Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med. 2009 361 25 2449 2460 10.1056/NEJMra0804588 20018966
    [Google Scholar]
  7. Ganesh K. Stadler Z.K. Cercek A. Mendelsohn R.B. Shia J. Segal N.H. Diaz L.A. Jr Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 2019 16 6 361 375 10.1038/s41575‑019‑0126‑x 30886395
    [Google Scholar]
  8. Hermann J. Schurgers L. Jankowski V. Identification and characterization of post-translational modifications: Clinical implications. Mol. Aspects Med. 2022 86 101066 10.1016/j.mam.2022.101066 35033366
    [Google Scholar]
  9. Deribe Y.L. Pawson T. Dikic I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 2010 17 6 666 672 10.1038/nsmb.1842 20495563
    [Google Scholar]
  10. Tundo G.R. Sbardella D. Santoro A.M. Coletta A. Oddone F. Grasso G. Milardi D. Lacal P.M. Marini S. Purrello R. Graziani G. Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol. Ther. 2020 213 107579 10.1016/j.pharmthera.2020.107579 32442437
    [Google Scholar]
  11. Popovic D. Vucic D. Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 2014 20 11 1242 1253 10.1038/nm.3739 25375928
    [Google Scholar]
  12. Cockram P.E. Kist M. Prakash S. Chen S.H. Wertz I.E. Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021 28 2 591 605 10.1038/s41418‑020‑00708‑5 33432113
    [Google Scholar]
  13. Wang W. Jia M. Zhao C. Yu Z. Song H. Qin Y. Zhao W. RNF39 mediates K48-linked ubiquitination of DDX3X and inhibits RLR-dependent antiviral immunity. Sci. Adv. 2021 7 10 eabe5877 10.1126/sciadv.abe5877 33674311
    [Google Scholar]
  14. Hu H. Sun S.C. Ubiquitin signaling in immune responses. Cell Res. 2016 26 4 457 483 10.1038/cr.2016.40 27012466
    [Google Scholar]
  15. Zhou X. Sun S.C. Targeting ubiquitin signaling for cancer immunotherapy. Signal Transduct. Target. Ther. 2021 6 1 16 10.1038/s41392‑020‑00421‑2 33436547
    [Google Scholar]
  16. Uhler J.P. Spåhr H. Farge G. Clavel S. Larsson N.G. Falkenberg M. Samuelsson T. Gustafsson C.M. The UbL protein UBTD1 stably interacts with the UBE2D family of E2 ubiquitin conjugating enzymes. Biochem. Biophys. Res. Commun. 2014 443 1 7 12 10.1016/j.bbrc.2013.10.137 24211586
    [Google Scholar]
  17. Yang N. Chen T. Wang L. Liu R. Niu Y. Sun L. Yao B. Wang Y. Yang W. Liu Q. Tu K. Liu Z. CXCR4 mediates matrix stiffness-induced downregulation of UBTD1 driving hepatocellular carcinoma progression via YAP signaling pathway. Theranostics 2020 10 13 5790 5801 10.7150/thno.44789 32483419
    [Google Scholar]
  18. Torrino S. Roustan F.R. Kaminski L. Bertero T. Pisano S. Ambrosetti D. Dufies M. Uhler J.P. Lemichez E. Mettouchi A. Gesson M. Laurent K. Gaggioli C. Michiels J.F. Lamaze C. Bost F. Clavel S. UBTD1 is a mechano‐regulator controlling cancer aggressiveness. EMBO Rep. 2019 20 4 e46570 10.15252/embr.201846570 30804013
    [Google Scholar]
  19. Zhang X.W. Wang X.F. Ni S.J. Qin W. Zhao L.Q. Hua R.X. Lu Y.W. Li J. Dimri G.P. Guo W.J. UBTD1 induces cellular senescence through an UBTD1-Mdm2/p53 positive feedback loop. J. Pathol. 2015 235 4 656 667 10.1002/path.4478 25382750
    [Google Scholar]
  20. Chen X. Kang R. Kroemer G. Tang D. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 2021 18 5 280 296 10.1038/s41571‑020‑00462‑0 33514910
    [Google Scholar]
  21. Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Patel D.N. Bauer A.J. Cantley A.M. Yang W.S. Morrison B. III Stockwell B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012 149 5 1060 1072 10.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  22. Friedmann Angeli J.P. Krysko D.V. Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 2019 19 7 405 414 10.1038/s41568‑019‑0149‑1 31101865
    [Google Scholar]
  23. Lei G. Mao C. Yan Y. Zhuang L. Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 2021 12 11 836 857 10.1007/s13238‑021‑00841‑y 33891303
    [Google Scholar]
  24. Shaghaghi Z. Salari A. Jalali F. Alvandi M. Farzipour S. Polgardani N.Z. Targeting ferroptosis as a new approach for radiation protection and mitigation. Recent. Pat. Anti-Canc. Discov. 19 15 57 71 10.2174/1574892818666230119153247
    [Google Scholar]
  25. Zhou J. Xu Y. Lin S. Guo Y. Deng W. Zhang Y. Guo A. Xue Y. iUUCD 2.0: An update with rich annotations for ubiquitin and ubiquitin-like conjugations. Nucleic Acids Res. 2018 46 D1 D447 D453 10.1093/nar/gkx1041 29106644
    [Google Scholar]
  26. Jiang P. Gu S. Pan D. Fu J. Sahu A. Hu X. Li Z. Traugh N. Bu X. Li B. Liu J. Freeman G.J. Brown M.A. Wucherpfennig K.W. Liu X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 2018 24 10 1550 1558 10.1038/s41591‑018‑0136‑1 30127393
    [Google Scholar]
  27. Newman A.M. Liu C.L. Green M.R. Gentles A.J. Feng W. Xu Y. Hoang C.D. Diehn M. Alizadeh A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015 12 5 453 457 10.1038/nmeth.3337 25822800
    [Google Scholar]
  28. Luna A. Elloumi F. Varma S. Wang Y. Rajapakse V.N. Aladjem M.I. Robert J. Sander C. Pommier Y. Reinhold W.C. CellMiner Cross-Database (CellMinerCDB) version 1.2: Exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Res. 2021 49 D1 D1083 D1093 10.1093/nar/gkaa968 33196823
    [Google Scholar]
  29. Maeser D. Gruener R.F. Huang R.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. 2021 22 6 bbab260 10.1093/bib/bbab260 34260682
    [Google Scholar]
  30. Yang W. Soares J. Greninger P. Edelman E.J. Lightfoot H. Forbes S. Bindal N. Beare D. Smith J.A. Thompson I.R. Ramaswamy S. Futreal P.A. Haber D.A. Stratton M.R. Benes C. McDermott U. Garnett M.J. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2012 41 D1 D955 D961 10.1093/nar/gks1111 23180760
    [Google Scholar]
  31. Wu Y. Zhang X. Wei X. Feng H. Hu B. Deng Z. Liu B. Luan Y. Ruan Y. Liu X. Liu Z. Liu J. Wang T. Development of an individualized ubiquitin prognostic signature for clear cell renal cell carcinoma. Front. Cell Dev. Biol. 2021 9 684643 10.3389/fcell.2021.684643 34239875
    [Google Scholar]
  32. Gao T. Liu Z. Wang Y. Cheng H. Yang Q. Guo A. Ren J. Xue Y. UUCD: A family-based database of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Res. 2013 41 D1 D445 D451 10.1093/nar/gks1103 23172288
    [Google Scholar]
  33. Guo H. Li Y. Liu Y. Chen L. Gao Z. Zhang L. Zhou N. Guo H. Shi B. Prognostic role of the ubiquitin proteasome system in clear cell renal cell carcinoma: A bioinformatic perspective. J. Cancer 2021 12 14 4134 4147 10.7150/jca.53760 34093816
    [Google Scholar]
  34. Song J. So T. Cheng M. Tang X. Croft M. Sustained survivin expression from OX40 costimulatory signals drives T cell clonal expansion. Immunity 2005 22 5 621 631 10.1016/j.immuni.2005.03.012 15894279
    [Google Scholar]
  35. Lee Y. Martin-Orozco N. Zheng P. Li J. Zhang P. Tan H. Park H.J. Jeong M. Chang S.H. Kim B.S. Xiong W. Zang W. Guo L. Liu Y. Dong Z. Overwijk W.W. Hwu P. Yi Q. Kwak L. Yang Z. Mak T.W. Li W. Radvanyi L.G. Ni L. Liu D. Dong C. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 2017 27 8 1034 1045 10.1038/cr.2017.90 28685773
    [Google Scholar]
  36. van IJzendoorn D.G.P. Sleijfer S. Gelderblom H. Eskens F.A.L.M. van Leenders G.J.L.H. Szuhai K. Bovée J.V.M.G. Telatinib is an effective targeted therapy for pseudomyogenic hemangioendothelioma. Clin. Cancer Res. 2018 24 11 2678 2687 10.1158/1078‑0432.CCR‑17‑3512
    [Google Scholar]
  37. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  38. Qi J. Ronai Z.A. Dysregulation of ubiquitin ligases in cancer. Drug Resist. Updat. 2015 23 1 11 10.1016/j.drup.2015.09.001 26690337
    [Google Scholar]
  39. Whiteside T. Immune suppression in cancer: Effects on immune cells, mechanisms and future therapeutic intervention. Semin. Cancer Biol. 2006 16 1 3 15 10.1016/j.semcancer.2005.07.008 16153857
    [Google Scholar]
  40. Kopalli S.R. Kang T.B. Lee K.H. Koppula S. Novel Small molecule inhibitors of programmed cell death (PD)-1, and its ligand, PD-L1 in cancer immunotherapy: A review update of patent literature. Recent Pat. Anti-Cancer Drug Discov. 2019 14 2 100 112 10.2174/1574892813666181029142812 30370857
    [Google Scholar]
  41. Jiang X. Stockwell B.R. Conrad M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021 22 4 266 282 10.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  42. Wu J. Minikes A.M. Gao M. Intercellular interaction dictates cancer cell ferroptosis via Merlin-YAP signalling. Nature 2019 572 7769 402 406 10.1038/s41586‑019‑1426‑6 31341276
    [Google Scholar]
  43. Gao R. Kalathur R.K.R. Coto-Llerena M. Ercan C. Buechel D. Shuang S. Piscuoglio S. Dill M.T. Camargo F.D. Christofori G. Tang F. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol. Med. 2021 13 12 e14351 10.15252/emmm.202114351 34664408
    [Google Scholar]
  44. Yang W.S. SriRamaratnam R. Welsch M.E. Shimada K. Skouta R. Viswanathan V.S. Cheah J.H. Clemons P.A. Shamji A.F. Clish C.B. Brown L.M. Girotti A.W. Cornish V.W. Schreiber S.L. Stockwell B.R. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014 156 1-2 317 331 10.1016/j.cell.2013.12.010 24439385
    [Google Scholar]
/content/journals/pra/10.2174/0115748928323408241002131753
Loading
/content/journals/pra/10.2174/0115748928323408241002131753
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: immune escape ; CRC ; ferroptosis ; UBTD1 ; ubiquitination
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test