Skip to content
2000
image of Quercetin Promotes the M1-to-M2 Macrophage Phenotypic Switch During Liver Fibrosis Treatment by Modulating the JAK2/STAT3 Signaling Pathway

Abstract

Objective

To investigate the underlying mechanism by which quercetin (Que) regulates macrophage polarization and its subsequent therapeutic effect on liver fibrosis, an important pathological precondition for hepatocellular carcinoma (HCC).

Methods

In vitro experiments were performed on the RAW264.7 mouse macrophage line. After the induction of M1-type macrophages with LPS, the effects of Que on cell morphology, M1/M2 surface marker expression, cytokine expression, and JAK2/STAT3 expression were analyzed. In vivo, male SD rats were used as a model of CCL4-induced hepatic fibrosis, and the effects of Que on serum aminotransferase levels, the histopathological structure of liver tissues, and macrophage-associated protein expression in liver tissues were analyzed.

Results

In vitro experiments revealed that Que can suppress the activation of the JAK2/STAT3 signaling pathway, leading to decreases in the expression of M1 macrophage surface markers and cytokines. Additionally, Que was found to increase the expression of M2 macrophage surface markers and cytokines. In vivo, assays demonstrated that Que significantly ameliorated the development of inflammation and fibrosis in a rat liver fibrosis model.

Conclusion

Que can inhibit hepatic fibrosis by promoting M1 to M2 macrophage polarization, which could be associated with its ability to suppress the JAK2/STAT3 signaling pathway in macrophages.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928318948240920044716
2024-10-02
2025-01-19
Loading full text...

Full text loading...

References

  1. Parola M. Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med. 2019 65 37 55 10.1016/j.mam.2018.09.002 30213667
    [Google Scholar]
  2. Kisseleva T. Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2021 18 3 151 166 10.1038/s41575‑020‑00372‑7 33128017
    [Google Scholar]
  3. Roy A.M. Iyer R. Chakraborty S. The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability. Cell Rep. Med. 2023 4 9 101170 10.1016/j.xcrm.2023.101170 37652015
    [Google Scholar]
  4. Dhar D. Baglieri J. Kisseleva T. Brenner D.A. Mechanisms of liver fibrosis and its role in liver cancer. Exp. Biol. Med. 2020 245 2 96 108 10.1177/1535370219898141 31924111
    [Google Scholar]
  5. Kanda T. Goto T. Hirotsu Y. Moriyama M. Omata M. Molecular mechanisms driving progression of liver cirrhosis towards hepatocellular carcinoma in chronic hepatitis B and C infections: A review. Int. J. Mol. Sci. 2019 20 6 1358 10.3390/ijms20061358 30889843
    [Google Scholar]
  6. Roehlen N. Crouchet E. Baumert T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells 2020 9 4 875 10.3390/cells9040875 32260126
    [Google Scholar]
  7. Bataller R. Brenner D.A. Liver fibrosis. J. Clin. Invest. 2005 115 2 209 218 10.1172/JCI24282 15690074
    [Google Scholar]
  8. van der Heide D. Weiskirchen R. Bansal R. Therapeutic targeting of hepatic macrophages for the treatment of liver diseases. Front. Immunol. 2019 10 2852 10.3389/fimmu.2019.02852 31849997
    [Google Scholar]
  9. Liu P. Li H. Gong J. Chitooligosaccharides alleviate hepatic fibrosis by regulating the polarization of M1 and M2 macrophages. Food Funct. 2022 13 2 753 768 10.1039/D1FO03768D 34940780
    [Google Scholar]
  10. Xu Y. Zhang D. Yang H. Hepatoprotective effect of genistein against dimethylnitrosamine-induced liver fibrosis in rats by regulating macrophage functional properties and inhibiting the JAK2/STAT3/SOCS3 signaling pathway. Frontiers in Bioscience-Landmark 2021 26 12 1572 1584 10.52586/5050 34994171
    [Google Scholar]
  11. Chiow K.H. Phoon M.C. Putti T. Tan B.K.H. Chow V.T. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac. J. Trop. Med. 2016 9 1 1 7 10.1016/j.apjtm.2015.12.002 26851778
    [Google Scholar]
  12. Yao L.H. Jiang Y.M. Shi J. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004 59 3 113 122 10.1007/s11130‑004‑0049‑7 15678717
    [Google Scholar]
  13. Dabeek W.M. Marra M.V. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 2019 11 10 2288 10.3390/nu11102288 31557798
    [Google Scholar]
  14. Yang J. Wang Y.L. Yang D. Qualitative and quantitative study of flavonoids in notoginseng radix et rhizoma based on UPLC-Q-TOF-MS and HPLC-DAD. Zhongguo Zhongyao Zazhi 2023 48 13 3462 3471 37474983
    [Google Scholar]
  15. Kemelo M.K. Pierzynová A. Kutinová Canová N. Kučera T. Farghali H. The involvement of sirtuin 1 and heme oxygenase 1 in the hepato-protective effects of quercetin against carbon tetrachloride-induced sub-chronic liver toxicity in rats. Chem. Biol. Interact. 2017 269 1 8 10.1016/j.cbi.2017.03.014 28347707
    [Google Scholar]
  16. Guzel A. Yunusoglu S. Calapoglu M. Protective effects of quercetin on oxidative stress-induced tubular epithelial damage in the experimental rat hyperoxaluria model. Medicina 2021 57 6 566 10.3390/medicina57060566 34204866
    [Google Scholar]
  17. Wang R. Zhang H. Wang Y. Song F. Yuan Y. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα, p38 MAPK, and Bcl-2/Bax signaling. Int. Immunopharmacol. 2017 47 126 133 10.1016/j.intimp.2017.03.029 28391159
    [Google Scholar]
  18. Turedi S. Protective/preventive effects of quercetin against cyclophosphamide-induced hepatic inflammation, apoptosis and fibrosis in rats. Hepatol. Forum 2023 4 3 135 141
    [Google Scholar]
  19. Salama Y.A. Hassan H.M. El-Gayar A.M. Abdel-Rahman N. Combined quercetin and simvastatin attenuate hepatic fibrosis in rats by modu-lating SphK1/NLRP3 pathways. Life Sci. 2024 337 122349 10.1016/j.lfs.2023.122349 38128755
    [Google Scholar]
  20. Cao H. Jia Q. Yan L. Chen C. Xing S. Shen D. Quercetin suppresses the progression of atherosclerosis by regulating MST1-mediated au-tophagy in ox-LDL-induced RAW264.7 macrophage foam cells. Int. J. Mol. Sci. 2019 20 23 6093 10.3390/ijms20236093 31816893
    [Google Scholar]
  21. Seonhwa Hwang Hwang S. Park M.S. Kim H.K. Park M.H. Schisandrin C. An active compound from the fruit of Schisandra chinensis in anti-inflammation and anti-oxidation. Cell. Mol. Biol. 2023 69 15 167 173 10.14715/cmb/2023.69.15.29 38279455
    [Google Scholar]
  22. Li Z. Lin X. Li L. AG490 regulates JAK2/STAT3 pathway in M2-like macrophages via promoting the proliferation of gastric cancer cells and inhibiting apoptosis. Xi’an Jiaotong Daxue Xuebao. Yixue Ban 2023 44 5 709
    [Google Scholar]
  23. Li X. Jin Q. Yao Q. Xu B. Li Z. Tu C. Quercetin attenuates the activation of hepatic stellate cells and liver fibrosis in mice through modula-tion of HMGB1-TLR2/4-NF-κB signaling pathways. Toxicol. Lett. 2016 261 1 12 10.1016/j.toxlet.2016.09.002 27601294
    [Google Scholar]
  24. Li X. Jin Q. Yao Q. The flavonoid quercetin ameliorates liver inflammation and fibrosis by regulating hepatic macrophages activation and polarization in mice. Front. Pharmacol. 2018 9 72 10.3389/fphar.2018.00072 29497376
    [Google Scholar]
  25. Yunna C. Mengru H. Lei W. Weidong C. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020 877 173090 10.1016/j.ejphar.2020.173090 32234529
    [Google Scholar]
  26. Shapouri-Moghaddam A. Mohammadian S. Vazini H. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018 233 9 6425 6440 10.1002/jcp.26429 29319160
    [Google Scholar]
  27. Kong L.N. Lin X. Huang C. Hesperetin derivative-12 (HDND-12) regulates macrophage polarization by modulating JAK2/STAT3 signaling pathway. Chin. J. Nat. Med. 2019 17 2 122 130 10.1016/S1875‑5364(19)30014‑7 30797418
    [Google Scholar]
  28. Zeng H. Zhao B. Zhang D. Viola yedoensis Makino formula alleviates DNCB-induced atopic dermatitis by activating JAK2/STAT3 signaling pathway and promoting M2 macrophages polarization. Phytomedicine 2022 103 154228 10.1016/j.phymed.2022.154228 35689898
    [Google Scholar]
  29. Chen X. Wang Y. Wan J. Quercetin alleviates liver fibrosis via regulating glycolysis of liver sinusoidal endothelial cells and neutrophil infiltration. Biomol. Biomed. 2024 10.17305/bb.2024.10530
    [Google Scholar]
  30. Shakerian E. Afarin R. Akbari R. Mohammadtaghvaei N. Effect of Quercetin on the fructose-activated human hepatic stellate cells, LX-2, an in-vitro study. Mol. Biol. Rep. 2022 49 4 2839 2845 10.1007/s11033‑021‑07097‑z 35067813
    [Google Scholar]
  31. Zhang M. Serna-Salas S. Damba T. Borghesan M. Demaria M. Moshage H. Hepatic stellate cell senescence in liver fibrosis: Characteris-tics, mechanisms and perspectives. Mech. Ageing Dev. 2021 199 111572 10.1016/j.mad.2021.111572 34536446
    [Google Scholar]
  32. Tsuchida T. Friedman S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017 14 7 397 411 10.1038/nrgastro.2017.38 28487545
    [Google Scholar]
  33. Orecchioni M. Ghosheh Y. Pramod A.B. Ley K. Macrophage polarization: Different gene signatures in M1(LPS+) vs. Classically and M2(LPS–) vs. Alternatively activated macrophages. Front. Immunol. 2019 10 1084 10.3389/fimmu.2019.01084 31178859
    [Google Scholar]
  34. Liu Q. Pian K. Tian Z. Calcium-binding protein 39 overexpression promotes macrophages from ‘M1’ into ‘M2’ phenotype and improves chondrocyte damage in osteoarthritis by activating the AMP-activated protein kinase/sirtuin 1 axis. Bioengineered 2022 13 4 9855 9871 10.1080/21655979.2022.2061289 35412939
    [Google Scholar]
  35. Liu X. Su Y. Sun X. Arsenic trioxide alleviates acute graft-versus-host disease by modulating macrophage polarization. Sci. China Life Sci. 2020 63 11 1744 1754 10.1007/s11427‑019‑1691‑x 32382983
    [Google Scholar]
  36. Papadakos S.P. Machairas N. Stergiou I.E. Unveiling the yin-yang balance of M1 and M2 macrophages in hepatocellular carcinoma: Role of exosomes in tumor microenvironment and immune modulation. Cells 2023 12 16 2036 10.3390/cells12162036 37626849
    [Google Scholar]
  37. Deng M. Zhong X. Gao Z. Dynamic changes in Beclin-1, LC3B and p62 at various time points in mice with temporary middle cere-bral artery occlusion and reperfusion (tMCAO). Brain Res. Bull. 2021 173 124 131 10.1016/j.brainresbull.2021.05.002 33974897
    [Google Scholar]
  38. Ye Z. Wang P. Feng G. Cryptotanshinone attenuates LPS-induced acute lung injury by regulating metabolic reprogramming of mac-rophage. Front. Med. 2023 9 1075465 10.3389/fmed.2022.1075465 36714100
    [Google Scholar]
  39. Yin C. Cai J. Gou Y. Dynamic changes in human THP-1-derived M1-to-M2 macrophage polarization during Thelazia callipaeda MIF induction. Front. Immunol. 2023 13 1078880 10.3389/fimmu.2022.1078880 36713445
    [Google Scholar]
  40. Zhang X. Zhang X. Ge X. Liu M. Mangiferin prevents hepatocyte epithelial‐mesenchymal transition in liver fibrosis via targeting HSP27 ‐mediated JAK2/STAT3 and TGF ‐β1/Smad pathway. Phytother. Res. 2022 36 11 4167 4182 10.1002/ptr.7549 35778992
    [Google Scholar]
  41. Widowati W. Kusuma H.S.W. Arumwardana S. Corilagin potential in inhibiting oxidative and inflammatory stress in LPS-induced murine macrophage cell lines (RAW 264.7). Iran. J. Basic Med. Sci. 2021 24 12 1656 1665 35432805
    [Google Scholar]
  42. Akhter S. Irfan H.M. Alamgeer, Jahan S, Shahzad M, Latif MB. Nerolidol: A potential approach in rheumatoid arthritis through reduction of TNF-α, IL-1β, IL-6, NF-kB, COX-2 and antioxidant effect in CFA-induced arthritic model. Inflammopharmacology 2022 30 2 537 548 10.1007/s10787‑022‑00930‑2 35212850
    [Google Scholar]
  43. Zhou Y. Sun Y. Hou W. The JAK2/STAT3 pathway inhibitor, AG490, suppresses the abnormal behavior of keloid fibroblasts in vitro. Int. J. Mol. Med. 2020 46 1 191 200 10.3892/ijmm.2020.4592 32377718
    [Google Scholar]
  44. Lu Z.N. Shan Q. Hu S.J. Discovery of 1,8-naphthalidine derivatives as potent anti-hepatic fibrosis agents via repressing PI3K/AKT/Smad and JAK2/STAT3 pathways. Bioorg. Med. Chem. 2021 49 116438 10.1016/j.bmc.2021.116438 34610571
    [Google Scholar]
  45. Zhong Z. Zhou X. Zhang Z. Clinical observation on modified jisheng shenqi decoction combined with acupoint injection of salvia miltior-rhiza injection in the treatment of chronic hepatitis B liver fibrosis patients. Chinese J Integr Tradit Western Med Liver Dis 2023 33 03 242 246
    [Google Scholar]
  46. Sun S. Zhou X. Sun D. Clinical observation of modified Chaihu Danggui powder combined with acupoint injection of Salvia miltiorrhiza injection in the treatment of hepatitis B liver fibrosis. Shaanxi J Tradit Chin Med 2024 45 04 477 480
    [Google Scholar]
  47. Lines T.C. Method for treating cancer with a combination of quercetin and a chemotherapy agent. US Patent 16/511,620 2019
    [Google Scholar]
  48. Sang-Chan K.I.M. Park S.M. Kim J.K. Composition for preventing or treating liver disease, comprising icaritin and quercetin. US Patent 18/013,755 2023
    [Google Scholar]
/content/journals/pra/10.2174/0115748928318948240920044716
Loading
/content/journals/pra/10.2174/0115748928318948240920044716
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test