Skip to content
2000
Volume 32, Issue 1
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Introduction

The progression of type 2 diabetes in humans appears to be linked to the loss of insulin-producing β-cells. One of the major contributors to β-cell loss is the formation of toxic human IAPP amyloid (hIAPP, Islet Amyloid Polypeptide, amylin) in the pancreas. Inhibiting the formation of toxic hIAPP amyloid could slow, if not prevent altogether, the progression of type 2 diabetes. Many non-human organisms also express amyloidogenic IAPP variants known to kill pancreatic cells and give rise to diabetes-like symptoms. Surprisingly, some of these non-human IAPP variants function as inhibitors of hIAPP aggregation, raising the possibility of developing non-human IAPP peptides into anti-diabetic therapeutic peptides. One such inhibitory IAPP variant is seal IAPP, which has been shown to inhibit hIAPP aggregation. Seal IAPP only differs from hIAPP by three amino acids. In this study, each of the six seal/human IAPP permutations was analyzed to identify the role of each of the three amino acid positions in inhibiting hIAPP aggregation.

Aims

This study aimed to identify the minimal amino acid substitutions to yield a peptide inhibitor of human IAPP aggregation.

Objective

The goal of the study was to determine the minimal amino acid substitutions necessary to convert human IAPP into an amyloid-inhibiting peptide.

Methods

The formation of toxic hIAPP amyloid was monitored using Thioflavin T binding assays, atomic force microscopy, and MTT cell rescue studies.

Results

One seal IAPP variant retained amyloid-inhibition activity, and two variants appeared to be more amyloidogenic and toxic than wild-type human IAPP.

Conclusion

These results suggest that inhibition of hIAPP requires both the H18R and F23L substitutions of hIAPP.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665340227241115110404
2024-12-10
2025-04-24
Loading full text...

Full text loading...

References

  1. KahnS.E. Clinical review 135: The importance of beta-cell failure in the development and progression of type 2 diabetes.J. Clin. Endocrinol. Metab.20018694047405811549624
    [Google Scholar]
  2. KahnS.E. AndrikopoulosS. VerchereC.B. Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes.Diabetes199948224125310.2337/diabetes.48.2.24110334297
    [Google Scholar]
  3. AndrewsM.E. InayathullahN.M. JayakumarR. MalarE.J.P. Conformational polymorphism and cellular toxicity of IAPP and βAP domains.J. Struct. Biol.2009166211612510.1016/j.jsb.2008.12.01119374013
    [Google Scholar]
  4. MontaneJ. Klimek-AbercrombieA. PotterK.J. Westwell-RoperC. Bruce VerchereC. Metabolic stress, IAPP and islet amyloid.Diabetes Obes. Metab.201214Suppl. 3687710.1111/j.1463‑1326.2012.01657.x22928566
    [Google Scholar]
  5. WestermarkP. AnderssonA. WestermarkG.T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus.Physiol. Rev.201191379582610.1152/physrev.00042.200921742788
    [Google Scholar]
  6. JaikaranE.T.A.S. ClarkA. Islet amyloid and type 2 diabetes: From molecular misfolding to islet pathophysiology.Biochim. Biophys. Acta Mol. Basis Dis.20011537317920310.1016/S0925‑4439(01)00078‑311731221
    [Google Scholar]
  7. HaatajaL. GurloT. HuangC.J. ButlerP.C. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis.Endocr. Rev.200829330331610.1210/er.2007‑003718314421
    [Google Scholar]
  8. HullR.L. WestermarkG.T. WestermarkP. KahnS.E. Islet amyloid: A critical entity in the pathogenesis of type 2 diabetes.J. Clin. Endocrinol. Metab.20048983629364310.1210/jc.2004‑040515292279
    [Google Scholar]
  9. ElenbaasB.O.W. KremsreiterS.M. KhemtemourianL. KillianJ.A. SinnigeT. Fibril elongation by human islet amyloid polypeptide is the main event linking aggregation to membrane damage.BBA Advances2023310008310.1016/j.bbadva.2023.10008337082256
    [Google Scholar]
  10. BuchananL.E. DunkelbergerE.B. TranH.Q. ChengP.N. ChiuC.C. CaoP. RaleighD.P. de PabloJ.J. NowickJ.S. ZanniM.T. Mechanism of IAPP amyloid fibril formation involves an intermediate with a transient β-sheet.Proc. Natl. Acad. Sci. USA201311048192851929010.1073/pnas.131448111024218609
    [Google Scholar]
  11. RöderC. KupreichykT. GremerL. SchäferL.U. PothulaK.R. RavelliR.B.G. WillboldD. HoyerW. SchröderG.F. Cryo-EM structure of islet amyloid polypeptide fibrils reveals similarities with amyloid-β fibrils.Nat. Struct. Mol. Biol.202027766066710.1038/s41594‑020‑0442‑432541895
    [Google Scholar]
  12. LiuC. ZhaoM. JiangL. ChengP.N. ParkJ. SawayaM.R. PensalfiniA. GouD. BerkA.J. GlabeC.G. NowickJ. EisenbergD. Out-of-register β-sheets suggest a pathway to toxic amyloid aggregates.Proc. Natl. Acad. Sci. USA201210951209132091810.1073/pnas.121879210923213214
    [Google Scholar]
  13. LaganowskyA. LiuC. SawayaM.R. WhiteleggeJ.P. ParkJ. ZhaoM. PensalfiniA. SoriagaA.B. LandauM. TengP.K. CascioD. GlabeC. EisenbergD. Atomic view of a toxic amyloid small oligomer.Science201233560731228123110.1126/science.121315122403391
    [Google Scholar]
  14. Rodriguez CamargoD.C. KorshavnK.J. JussupowA. RaltchevK. GoricanecD. FleischM. SarkarR. XueK. AichlerM. MettenleiterG. WalchA.K. CamilloniC. HagnF. ReifB. RamamoorthyA. Stabilization and structural analysis of a membrane-associated hIAPP aggregation intermediate.eLife20176e3122610.7554/eLife.3122629148426
    [Google Scholar]
  15. SchlamadingerD.E. MirankerA.D. Fiber-dependent and -independent toxicity of islet amyloid polypeptide.Biophys. J.2014107112559256610.1016/j.bpj.2014.09.04725468335
    [Google Scholar]
  16. BramY. Frydman-MaromA. YanaiI. GileadS. Shaltiel-KaryoR. AmdurskyN. GazitE. Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies.Sci. Rep.2014414267
    [Google Scholar]
  17. CaoQ. BoyerD.R. SawayaM.R. AbskharonR. SaelicesL. NguyenB.A. LuJ. MurrayK.A. KandeelF. EisenbergD.S. Cryo-EM structures of hIAPP fibrils seeded by patient-extracted fibrils reveal new polymorphs and conserved fibril cores.Nat. Struct. Mol. Biol.202128972473010.1038/s41594‑021‑00646‑x34518699
    [Google Scholar]
  18. DeTomaA.S. SalamekhS. RamamoorthyA. LimM.H. Misfolded proteins in Alzheimer’s disease and type II diabetes.Chem. Soc. Rev.201241260862110.1039/C1CS15112F21818468
    [Google Scholar]
  19. CoxS.J. Rodriguez CamargoD.C. LeeY.H. DubiniR.C.A. RovóP. IvanovaM.I. PadminiV. ReifB. RamamoorthyA. Small molecule induced toxic human-IAPP species characterized by NMR.Chem. Commun. (Camb.)20205686131291313210.1039/D0CC04803H33006345
    [Google Scholar]
  20. MarmentiniC. BrancoR.C.S. BoscheroA.C. KurautiM.A. Islet amyloid toxicity: From genesis to counteracting mechanisms.J. Cell. Physiol.202223721119114210.1002/jcp.3060034636428
    [Google Scholar]
  21. RitzelR.A. MeierJ.J. LinC.Y. VeldhuisJ.D. ButlerP.C. Human islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets.Diabetes2007561657110.2337/db06‑073417192466
    [Google Scholar]
  22. YanL.M. VelkovaA. Tatarek-NossolM. AndreettoE. KapurniotuA. IAPP mimic blocks Abeta cytotoxic self-assembly: Cross-suppression of amyloid toxicity of Abeta and IAPP suggests a molecular link between Alzheimer’s disease and type II diabetes.Angew. Chem. Int. Ed.20074681246125210.1002/anie.20060405617203498
    [Google Scholar]
  23. KapurniotuA. SchmauderA. TenidisK. Structure-based design and study of non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity.J. Mol. Biol.2002315333935010.1006/jmbi.2001.524411786016
    [Google Scholar]
  24. KayedR. HeadE. ThompsonJ.L. McIntireT.M. MiltonS.C. CotmanC.W. GlabeC.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis.Science2003300561848648910.1126/science.107946912702875
    [Google Scholar]
  25. WakabayashiM. MatsuzakiK. Ganglioside-induced amyloid formation by human islet amyloid polypeptide in lipid rafts.FEBS Lett.2009583172854285810.1016/j.febslet.2009.07.04419647738
    [Google Scholar]
  26. FortinJ.S. Benoit-BiancamanoM.O. Wildlife sequences of islet amyloid polypeptide (IAPP) identify critical species variants for fibrillization.Amyloid201522319420210.3109/13506129.2015.107082426300107
    [Google Scholar]
  27. PalatoL.M. PilcherS. OakesA. LambaA. TorresJ. Ledesma MonjarazL.I. MunozC. NjooE. RinauroD.J. MenefeeK.A. TunA. JaureguiB.L. ShapiroS. NossiffO.H. OlivaresE. ChangK. NguyenV. NogajL.A. MoffetD.A. Amyloidogenicity of naturally occurring full-length animal IAPP variants.J. Pept. Sci.2019258e319910.1002/psc.319931231935
    [Google Scholar]
  28. WestermarkP. EngströmU. JohnsonK.H. WestermarkG.T. BetsholtzC. Islet amyloid polypeptide: Pinpointing amino acid residues linked to amyloid fibril formation.Proc. Natl. Acad. Sci. USA199087135036504010.1073/pnas.87.13.50362195544
    [Google Scholar]
  29. BerhanuW.M. HansmannU.H.E. Inter-species cross-seeding: Stability and assembly of rat-human amylin aggregates.PLoS One201495e9705110.1371/journal.pone.009705124810618
    [Google Scholar]
  30. OakesA. MenefeeK. LambaA. PalatoL.M. RinauroD.J. TunA. JaureguiB. ChangK. NogajL.A. MoffetD.A. Nonhuman IAPP variants inhibit human IAPP aggregation.Protein Pept. Lett.202128996397110.2174/092986652866621080615270634365921
    [Google Scholar]
  31. SandersH.M. ChalyaviF. FieldsC.R. KostelicM.M. LiM.H. RaleighD.P. ZanniM.T. MartyM.T. Interspecies variation affects islet amyloid polypeptide membrane binding.J. Am. Soc. Mass Spectrom.202334698699010.1021/jasms.3c0000537126782
    [Google Scholar]
  32. FoxA. SnollaertsT. Errecart CasanovaC. CalcianoA. NogajL.A. MoffetD.A. Selection for nonamyloidogenic mutants of islet amyloid polypeptide (IAPP) identifies an extended region for amyloidogenicity.Biochemistry201049367783778910.1021/bi100337p20698575
    [Google Scholar]
  33. FuentesA.L. HennessyK. PascualJ. PepeN. WangI. SantiagoA. ChagganC. MartinezJ. RiveraE. CotaP. CunhaC. NogajL.A. MoffetD.A. Identification of plant extracts that inhibit the formation of diabetes-linked IAPP amyloid.J. Herb. Med.201661374110.1016/j.hermed.2015.11.00127042401
    [Google Scholar]
  34. LevineH.III Thioflavine T interaction with synthetic Alzheimer’s disease β -amyloid peptides: Detection of amyloid aggregation in solution.Protein Sci.19932340441010.1002/pro.55600203128453378
    [Google Scholar]
  35. WangS.T. LinY. HsuC.C. AmdurskyN. SpicerC.D. StevensM.M. Probing amylin fibrillation at an early stage via a tetracysteine-recognising fluorophore.Talanta2017173445010.1016/j.talanta.2017.05.01528602190
    [Google Scholar]
  36. WongA.G. WuC. HannaberryE. WatsonM.D. SheaJ.E. RaleighD.P. Analysis of the amyloidogenic potential of pufferfish (Takifugu rubripes) islet amyloid polypeptide highlights the limitations of thioflavin-T assays and the difficulties in defining amyloidogenicity.Biochemistry201655351051810.1021/acs.biochem.5b0110726694855
    [Google Scholar]
  37. WangZ. ZhouC. WangC. WanL. FangX. BaiC. AFM and STM study of β-amyloid aggregation on graphite.Ultramicroscopy2003971-4737910.1016/S0304‑3991(03)00031‑712801659
    [Google Scholar]
  38. Watanabe-NakayamaT. SahooB.R. RamamoorthyA. OnoK. High-speed atomic force microscopy reveals the structural dynamics of the amyloid-β and amylin aggregation pathways.Int. J. Mol. Sci.20202112428710.3390/ijms2112428732560229
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665340227241115110404
Loading
/content/journals/ppl/10.2174/0109298665340227241115110404
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): amylin; Amyloid inhibition; diabetes; IAPP; islet amyloid; protein aggregation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test