Skip to content
2000
Volume 32, Issue 1
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Objective

This study aimed to identify novel proteins involved in retinoic acid (RA)-induced embryonic cleft palate development.

Methods

The palate tissues of the control and RA-treated E14.5 were dissected and subjected to iTRAQ-based proteomic analysis.

Results

Differential expression analysis identified 196 significantly upregulated and 149 downregulated considerably proteins in RA-induced palate tissues. Comprehensive Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed the significant involvement of cytoplasmic translation, ribosome biogenesis, glycolysis/gluconeogenesis, and glutathione metabolism pathways in cleft palate pathogenesis triggered by RA. In particular, ribosome-related pathways were highly enriched, while glycolysis was disrupted. Protein-protein interaction analysis, facilitated by the STRING database, revealed a tightly interconnected network of differentially expressed proteins. Further analysis using the cytoHubba plugin in Cytoscape identified ten hub proteins, including Eif4a1, Gapdh, Eno1, Imp3, Rps20, Rps27a, Eef2, Hsp90ab1, Rpl19, and Rps16, indicating their potential roles in RA-induced cleft palate development, and thus positioning them as potential biomarkers for cleft palate.

Conclusion

These findings provide valuable insights into the proteomic changes associated with RA-induced cleft palate and shed light on key pathways and proteins that can contribute significantly to the pathogenesis of this congenital condition.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665308502240820115618
2024-10-25
2025-05-29
Loading full text...

Full text loading...

References

  1. LewisC.W. JacobL.S. LehmannC.U. KrolD. GereigeR. KarpJ. Fisher-OwensS. BraunP. JacobL. SeguraA. The primary care pediatrician and the care of children with cleft lip and/or cleft palate.Pediatrics201713952017062810.1542/peds.2017‑062828557774
    [Google Scholar]
  2. SalariN. DarvishiN. HeydariM. BokaeeS. DarvishiF. MohammadiM. Global prevalence of cleft palate, cleft lip and cleft palate and lip: A comprehensive systematic review and meta-analysis.J. Stomatol. Oral Maxillofac. Surg.2022123211012010.1016/j.jormas.2021.05.00834033944
    [Google Scholar]
  3. XingY. ZhangW. WanX. HongZ. ZhaoH. LiangW. ShiL. ChenJ. ZhongX. ZhouJ. TangS. Association between an interferon regulatory factor 6 gene polymorphism and nonsyndromic cleft palate risk.Genet. Test. Mol. Biomarkers201923965266310.1089/gtmb.2018.031531448957
    [Google Scholar]
  4. DixonM.J. MarazitaM.L. BeatyT.H. MurrayJ.C. Cleft lip and palate: understanding genetic and environmental influences.Nat. Rev. Genet.201112316717810.1038/nrg293321331089
    [Google Scholar]
  5. ZhangW. TanL. XingY. ZhaoH. ShiL. ZhouJ. LangX. CaiJ. TangS. Association between SATB2 gene polymorphism and cleft palate only risk in eastern Guangdong population and a meta-analysis.Cell. Mol. Biol.2018641410110710.14715/cmb/2018.64.14.1730511632
    [Google Scholar]
  6. WangY. ChenJ. WangX. GuoC. PengX. LiuY. LiT. DuJ. Novel investigations in retinoic-acid-induced cleft palate about the gut microbiome of pregnant mice.Front. Cell. Infect. Microbiol.202212104277910.3389/fcimb.2022.104277936590585
    [Google Scholar]
  7. YoshiokaH. RamakrishnanS.S. ShimJ. SuzukiA. IwataJ. Excessive all-trans retinoic acid inhibits cell proliferation through upregulated microrna-4680-3p in cultured human palate cells.Front. Cell Dev. Biol.2021961887610.3389/fcell.2021.61887633585479
    [Google Scholar]
  8. NapoliJ.L. Retinoic acid: the autacoid for all seasons.Nutrients20221421452610.3390/nu1421452636364786
    [Google Scholar]
  9. HuX. GaoJ. LiaoY. TangS. LuF. Retinoic acid alters the proliferation and survival of the epithelium and mesenchyme and suppresses Wnt/β-catenin signaling in developing cleft palate.Cell Death Dis.201341089810.1038/cddis.2013.42424176856
    [Google Scholar]
  10. ZhangJ. ZhouS. ZhangQ. FengS. ChenY. ZhengH. WangX. ZhaoW. ZhangT. ZhouY. DengH. LinJ. ChenF. Proteomic analysis of rbp4/vitamin a in children with cleft lip and/or palate.J. Dent. Res.201493654755210.1177/002203451453039724695672
    [Google Scholar]
  11. YuanX. LiuL. PuY. ZhangX. HeX. FuY. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces a proteomic pattern that defines cleft palate formation in mice.Food Chem. Toxicol.20125072270227410.1016/j.fct.2012.04.03222561679
    [Google Scholar]
  12. ZhangM. WangD. XuX. XuW. ZhouG. iTRAQ-based proteomic analysis of duck muscle related to lipid oxidation.Poult. Sci.2021100410102910.1016/j.psj.2021.10102933662660
    [Google Scholar]
  13. ZhengK. Ye The involvement of hormone-sensitive lipase in all-trans retinoic acid induced cleft palate.Int. J. Dev. Biol.2022667-8-938338910.1387/ijdb.220137kz36688320
    [Google Scholar]
  14. DonchevaN.T. MorrisJ.H. GorodkinJ. JensenL.J. Cytoscape stringapp: Network analysis and visualization of proteomics data.J. Proteome Res.201918262363210.1021/acs.jproteome.8b0070230450911
    [Google Scholar]
  15. WilkesC. GraetzM. DownieL. BethuneM. ChongD. Prenatal diagnosis of cleft lip and/or palate: What do we tell prospective parents?Prenat. Diagn.202343101310131910.1002/pd.641837552068
    [Google Scholar]
  16. AbbottB.D. HarrisM.W. BirnbaumL.S. Etiology of retinoic acid-induced cleft palate varies with the embryonic stage.Teratology198940653355310.1002/tera.14204006022623642
    [Google Scholar]
  17. Lecourtois-AmézquitaM.G. Cuevas-CórdobaB. Santiago-GarcíaJ. Homozygous deletion of glutathione S-transferase theta 1 and mu 1 increase the risk of non-syndromic oral clefts in a Mexican population.Arch. Oral Biol.202113010524610.1016/j.archoralbio.2021.10524634454376
    [Google Scholar]
  18. ThevenonJ. DuplombL. PhadkeS. EguetherT. SaunierA. AvilaM. CarmignacV. BruelA.L. St-OngeJ. DuffourdY. PazourG.J. FrancoB. Attie-BitachT. Masurel-PauletA. RivièreJ.B. Cormier-DaireV. PhilippeC. FaivreL. Thauvin-RobinetC. Autosomal recessive IFT57 hypomorphic mutation cause ciliary transport defect in unclassified oral–facial–digital syndrome with short stature and brachymesophalangia.Clin. Genet.201690650951710.1111/cge.1278527060890
    [Google Scholar]
  19. VanziF. VladimirovS. KnudsenC.R. GoldmanY. CoopermanB.S. Protein synthesis by single ribosomes.RNA20039101174117910.1261/rna.580030313130131
    [Google Scholar]
  20. CaloE. GuB. BowenM.E. AryanF. ZalcA. LiangJ. FlynnR.A. SwigutT. ChangH.Y. AttardiL.D. WysockaJ. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders.Nature2018554769011211710.1038/nature2544929364875
    [Google Scholar]
  21. FavaroF.P. AlviziL. Zechi-CeideR.M. BertolaD. FelixT.M. de SouzaJ. RaskinS. TwiggS.R.F. WeinerA.M. ArmasP. MargaritE. CalcaterraN.B. AndersenG.R. McGowanS.J. WilkieA.O.M. Richieri-CostaA. de AlmeidaM.L.G. Passos-BuenoM.R. A noncoding expansion in EIF4A3 causes Richieri-Costa-Pereira syndrome, a craniofacial disorder associated with limb defects.Am. J. Hum. Genet.201494112012810.1016/j.ajhg.2013.11.02024360810
    [Google Scholar]
  22. ShiY. HuangD. SongC. CaoR. WangZ. WangD. ZhaoL. XuX. LuC. XiongF. ZhaoH. LiS. ZhouQ. LuoS. HuD. ZhangY. WangC. ShenY. SuW. WuY. SchmitzK. WeiS. SongW. Diphthamide deficiency promotes association of eEF2 with p53 to induce p21 expression and neural crest defects.Nat. Commun.2024151330110.1038/s41467‑024‑47670‑138671004
    [Google Scholar]
  23. BharS. ZhouF. ReinekeL.C. MorrisD.K. KhinchaP.P. GiriN. MirabelloL. BergstromK. LemonL.D. WilliamsC.L. TohY. ElghetanyM.T. LloydR.E. AlterB.P. SavageS.A. BertuchA.A. Expansion of germline RPS20 mutation phenotype to include Diamond–Blackfan anemia.Hum. Mutat.202041111918193010.1002/humu.2409232790018
    [Google Scholar]
  24. GazdaH.T. SheenM.R. VlachosA. ChoesmelV. O’DonohueM.F. SchneiderH. DarrasN. HasmanC. SieffC.A. NewburgerP.E. BallS.E. NiewiadomskaE. MatysiakM. ZauchaJ.M. GladerB. NiemeyerC. MeerpohlJ.J. AtsidaftosE. LiptonJ.M. GleizesP.E. BeggsA.H. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients.Am. J. Hum. Genet.200883676978010.1016/j.ajhg.2008.11.00419061985
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665308502240820115618
Loading
/content/journals/ppl/10.2174/0109298665308502240820115618
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test