Skip to content
2000
Volume 31, Issue 9
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Aim

To study the inhibition potential of antibody against a recombinant chimera comprising of the catalytic epitope of gp63 of and B subunit of heat-labile enterotoxin (LTB) in the functional activity of L. donovani.

Background

Visceral leishmaniasis, caused by the protozoan parasite , is a major health problem and causes mortality in tropical regions. Protozoan proteases play a crucial role in the pathogenesis of the disease and in establishing infection by countering the host's innate immune responses, namely complement-mediated lysis and phagocytosis. A surface-bound metalloprotease (gp63) has been reported to be a major virulence factor resulting in the evasion of complement-mediated lysis, cleaving host extracellular and intracellular substrates, resulting in intra-phagolysosomal survival.

Methods

The epitope corresponding to the catalytic motif of gp63 of was fused with the B subunit of heat-labile enterotoxin, which is known to be immunogenic. The chimera was cloned to a prokaryotic expression vector and purified using Ni NTA affinity chromatography. Antibodies were generated against the purified fusion protein and analyzed for its ability to bind to the gp63 catalytic motif peptide by ELISA. The effect of fusion protein antibody on the functional activity of gp63 was evaluated by assessing the effect of purified IgGs on the protease activity and complement-mediated lysis of promastigotes

Results

The present study reports that a recombinant chimera of the catalytic epitope of gp63 and B subunit of heat-labile enterotoxin (LTB) of , a potent adjuvant of humoral response can mount significant immune response towards the catalytic epitope. ELISA and Western blot analysis showed that the anti-fusion protein antiserum could recognize the native gp63. Also, it significantly inhibited the protease activity of promastigotes and subsequently increased complement-mediated lysis of the promastigotes .

Conclusion

It could be concluded that the hybrid protein containing catalytic motif L. donovani gp63 protein and carrier protein (LTB) could elicit antibodies that could neutralise the functional activity of gp63 and thus could be a potential candidate for subunit leishmaniasis vaccine.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665325330240828115712
2024-09-19
2024-12-23
Loading full text...

Full text loading...

References

  1. SerafimT.D. Coutinho-AbreuI.V. DeyR. KissingerR. ValenzuelaJ.G. OliveiraF. KamhawiS. Leishmaniasis: The act of transmission.Trends Parasitol.2021371197698710.1016/j.pt.2021.07.00334389215
    [Google Scholar]
  2. BurzaS. CroftS.L. BoelaertM. Leishmaniasis.Lancet20183921015195197010.1016/S0140‑6736(18)31204‑230126638
    [Google Scholar]
  3. OlivierM. AtaydeV.D. IsnardA. HassaniK. ShioM.T. Leishmania virulence factors: Focus on the metalloprotease GP63.Microbes Infect.201214151377138910.1016/j.micinf.2012.05.01422683718
    [Google Scholar]
  4. McGwireB.S. ChangK.P. Posttranslational regulation of a Leishmania HEXXH metalloprotease (gp63). The effects of site-specific mutagenesis of catalytic, zinc binding, N-glycosylation, and glycosyl phosphatidylinositol addition sites on N-terminal end cleavage, intracellular stability, and extracellular exit.J. Biol. Chem.1996271147903790910.1074/jbc.271.14.79038626468
    [Google Scholar]
  5. Guay-VincentM.M. MatteC. BerthiaumeA.M. OlivierM. JaramilloM. DescoteauxA. Revisiting Leishmania GP63 host cell targets reveals a limited spectrum of substrates.PLoS Pathog20221810e101064010.1371/journal.ppat.1010640
    [Google Scholar]
  6. RussellD.G. The macrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania mexicana promastigotes.Eur. J. Biochem.1987164121322110.1111/j.1432‑1033.1987.tb11013.x3549304
    [Google Scholar]
  7. ChanA. AyalaJ.M. AlvarezF. PiccirilloC. DongG. LanglaisD. OliverM. The role of Leishmania GP63 in the modulation of innate inflammatory response to Leishmania major infection.PLoS One20211612e026215810.1371/journal.pone.0262158
    [Google Scholar]
  8. JoshiP.B. KellyB.L. KamhawiS. SacksD.L. McMasterW.R. Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor.Mol. Biochem. Parasitol.20021201334010.1016/S0166‑6851(01)00432‑711849703
    [Google Scholar]
  9. GomezM.A. ContrerasI. HalléM. TremblayM.L. McMasterR.W. OlivierM. Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases.Sci. Signal.2009290ra5810.1126/scisignal.200021319797268
    [Google Scholar]
  10. IsnardA. ShioM.T. OlivierM. Impact of Leishmania metalloprotease GP63 on macrophage signaling.Front Cell Infect Microbiol201227210.3389/fcimb.2012.00072
    [Google Scholar]
  11. HassaniK. ShioM.T. MartelC. FaubertD. OlivierM. Absence of metalloprotease GP63 alters the protein content of Leishmania exosomes.PLoS One201494e9500710.1371/journal.pone.0095007
    [Google Scholar]
  12. KhamesipourA. DowlatiY. AsilianA. HashemifesharkiR. JavadiA. NoazinS. ModabberF. Leishmanization: Use of an old method for evaluation of candidate vaccines against leishmaniasis.Vaccine200523283642364810.1016/j.vaccine.2005.02.01515882524
    [Google Scholar]
  13. RavindranR. AnamK. BairagiB.C. SahaB. PramanikN. GuhaS.K. GoswamiR.P. BanerjeeD. AliN. Characterization of immunoglobulin G and its subclass response to Indian kala-azar infection before and after chemotherapy.Infect. Immun.200472286387010.1128/IAI.72.2.863‑870.200414742530
    [Google Scholar]
  14. SaylorK. GillamF. LohneisT. ZhangC. Designs of antigen structure and composition for improved protein-based vaccine efficacy.Front. Immunol.20201128310.3389/fimmu.2020.0028332153587
    [Google Scholar]
  15. VartakA. SucheckS. Recent advances in subunit vaccine carriers.Vaccines (Basel)2016421210.3390/vaccines402001227104575
    [Google Scholar]
  16. AloneP.V. MalikG. KrishnanA. GargL.C. Deletion mutations in N-terminal α1 helix render heat labile enterotoxin B subunit susceptible to degradation.Proc. Natl. Acad. Sci. USA200710441160561606110.1073/pnas.070789710417911243
    [Google Scholar]
  17. SharmaM. DixitA. Identification and immunogenic potential of B cell epitopes of outer membrane protein OmpF of Aeromonas hydrophila in translational fusion with a carrier protein.Appl. Microbiol. Biotechnol.201599156277629110.1007/s00253‑015‑6398‑325636835
    [Google Scholar]
  18. Ríos-HuertaR. Monreal-EscalanteE. Govea-AlonsoD.O. AnguloC. Rosales-MendozaS. Expression of an immunogenic LTB-based chimeric protein targeting Zaire ebolavirus epitopes from GP1 in plant cells.Plant Cell Rep.201736235536510.1007/s00299‑016‑2088‑627942840
    [Google Scholar]
  19. KaushikH. DeshmukhS. MathurDD. TiwariA. GargLC. Recombinant expression of in silico identified Bcell epitope of epsilon toxin of Clostridium perfringens in translational fusion with a carrier protein.Bioinformation201391261762110.6026/9732063000961723904738
    [Google Scholar]
  20. MukhijaR. RupaP. PillaiD. GargL.C. High-level production and one-step purification of biologically active human growth hormone in Escherichia coli .Gene1995165230330610.1016/0378‑1119(95)00525‑B8522194
    [Google Scholar]
  21. YadavV. KrishnanA. BaigM.S. MajeedM. NayakM. VohoraD. Decrypting the interaction pattern of Piperlongumine with calf thymus DNA and dodecamer d(CGCGAATTCGCG)2 B-DNA: Biophysical and molecular docking analysis.Biophys. Chem.202228510680810.1016/j.bpc.2022.10680835358908
    [Google Scholar]
  22. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3942051
    [Google Scholar]
  23. EtgesR. BouvierJ. BordierC. The major surface protein of Leishmania promastigotes is a protease.J. Biol. Chem.1986261209098910110.1016/S0021‑9258(18)67621‑53522584
    [Google Scholar]
  24. KatzelnickL.C. GreshL. HalloranM.E. MercadoJ.C. KuanG. GordonA. BalmasedaA. HarrisE. Antibody-dependent enhancement of severe dengue disease in humans.Science2017358636592993210.1126/science.aan683629097492
    [Google Scholar]
  25. KrishnanA. MillerE. HerbertA. NgM. NdungoE. WhelanS. DyeJ. ChandranK. Niemann-Pick C1 (NPC1)/NPC1-like1 chimeras define sequences critical for NPC1's function as a flovirus entry receptor.Viruses20124112471248410.3390/v411247123202491
    [Google Scholar]
  26. Veena RaniN. KapoorN. KrishnanA. Efficient generation and characterization of chimeric dengue viral-like particles.Biochem. Biophys. Res. Commun.2023654101710.1016/j.bbrc.2023.02.05236878035
    [Google Scholar]
  27. NovinroozA. Zahraei SalehiT. FirouziR. ArabshahiS. DerakhshandehA. In silico design, expression, and purification of novel chimeric Escherichia coli O157:H7 OmpA fused to LTB protein in Escherichia coli .PLoS One2017123e017376110.1371/journal.pone.0173761.
    [Google Scholar]
  28. AlvarJ. VélezI.D. BernC. HerreroM. DesjeuxP. CanoJ. JanninJ. den BoerM. Leishmaniasis worldwide and global estimates of its incidence.PLoS One201275e3567110.1371/journal.pone.0035671
    [Google Scholar]
  29. YimerM. NibretE. YismawG. Updates on prevalence and trend status of visceral leishmaniasis at two health facilities in Amhara Regional State, Northwest Ethiopia: A retrospective study.Biochem Res Int20222022360389210.1155/2022/3603892.
    [Google Scholar]
  30. BrownM.C. JoaquimT.R. ChambersR. OniskD.V. YinF. MoriangoJ.M. XuY. FancyDA. CrowgeyEL. HeY. StaveJW. LindpaintnerK. Impact of immunization technology and assay application on antibody performance--A systematic comparative evaluation.PLoS One2011612e2871810.1371/journal.pone.0028718.
    [Google Scholar]
  31. BhatiaB. SolankiA.K. KaushikH. DixitA. GargL.C. B-cell epitope of beta toxin of Clostridium perfringens genetically conjugated to a carrier protein: Expression, purification and characterization of the chimeric protein.Protein Expr. Purif.2014102384410.1016/j.pep.2014.06.01424996028
    [Google Scholar]
  32. Silva-AlmeidaM. Souza-SilvaF. PereiraB.A.S. Ribeiro-GuimarãesM.L. AlvesC.R. Overview of the organization of protease genes in the genome of Leishmania spp.Parasit. Vectors20147138710.1186/1756‑3305‑7‑38725142315
    [Google Scholar]
  33. ThompsonC.P. LourençoJ. WaltersA.A. ObolskiU. EdmansM. PalmerD.S. KooblallK. CarnellG.W. O’ConnorD. BowdenT.A. PybusO.G. PollardA.J. TempertonN.J. LambeT. GilbertS.C. GuptaS. A naturally protective epitope of limited variability as an influenza vaccine target.Nat. Commun.201891385910.1038/s41467‑018‑06228‑830242149
    [Google Scholar]
  34. ZhaoZ. SunH.Q. WeiS.S. LiB. FengQ. ZhuJ. ZengH. ZouQ.M. WuC. Multiple B-cell epitope vaccine induces a Staphylococcus enterotoxin B-specific IgG1 protective response against MRSA infection.Sci. Rep.2015511237110.1038/srep1237126201558
    [Google Scholar]
  35. NationC.S. DondjiB. StrykerG.A. Previous exposure to a low infectious dose of Leishmania major exacerbates infection with Leishmania infantum in the susceptible BALB/c mouse.Parasitol. Res.201211131407141510.1007/s00436‑012‑2899‑522476599
    [Google Scholar]
  36. ZhangJ. HeJ. LiJ. ZhouQ. ChenH. ZhengZ. ChenQ. ChenD. ChenJ. The immunogenicity and protective immunity of multi-epitopes DNA prime-protein boost vaccines encoding Amastin-Kmp-11, Kmp11-Gp63 and Amastin-Gp63 against visceral leishmaniasis.PLoS One2020153e023038110.1371/journal.pone.0230381.
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665325330240828115712
Loading
/content/journals/ppl/10.2174/0109298665325330240828115712
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test