Skip to content
2000
Volume 32, Issue 1
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

With the emergence of the precision medicine era, targeting specific proteins has emerged as a pivotal breakthrough in tumor diagnosis and treatment. Apurinic/apyrimidinic Endonuclease 1 (APE1) is a multifunctional protein that plays a crucial role in DNA repair and cellular redox regulation. This article comprehensively explores the fundamental mechanisms of APE1 as a multifunctional enzyme in biology, with particular emphasis on its potential significance in disease diagnosis and strategies for tumor treatment. Firstly, this article meticulously analyzes the intricate biological functions of APE1 at a molecular level, establishing a solid theoretical foundation for subsequent research endeavors. In terms of diagnostic applications, the presence of APE1 can be detected in patient serum samples, biopsy tissues, and through cellular testing. The precise detection methods enable changes in APE1 levels to serve as reliable biomarkers for predicting tumor occurrence, progression, and patient prognosis. Moreover, this article focuses on elucidating the potential role of APE1 in tumor treatment by exploring various inhibitors, including nucleic acid-based inhibitors and small molecule drug inhibitors categories, and revealing their unique advantages in disrupting DNA repair function and modulating oxidative-reduction activity. Finally, the article provides an outlook on future research directions for APE1 while acknowledging major technical difficulties and clinical challenges that need to be overcome despite its immense potential as a target for tumor therapy.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665338519241114103223
2024-12-06
2025-04-23
Loading full text...

Full text loading...

References

  1. TellG. FantiniD. QuadrifoglioF. Understanding different functions of mammalian AP endonuclease (APE1) as a promising tool for cancer treatment.Cell. Mol. Life Sci.201067213589360810.1007/s00018‑010‑0486‑420706766
    [Google Scholar]
  2. XanthoudakisS. SmeyneR.J. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice.Proc. Natl. Acad. Sci. USA1996931789198923
    [Google Scholar]
  3. Ludwig, D.L.; MacInnes, M.A.; Takiguchi, Y.; Purtymun, P.E.; Henrie, M.; Flannery, M.; Meneses, J.; Pedersen, R.A.; Chen, D.J. A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity.Mutat. Res.199840911729
    [Google Scholar]
  4. XiangD-B. ChenZ-T. WangD. LiM-X. XieJ-Y. ZhangY-S. QingY. LiZ-P. XieJ. Chimeric adenoviral vector Ad5/F35-mediated APE1 siRNA enhances sensitivity of human colorectal cancer cells to radiotherapy in vitro and in vivo.Cancer Gene Ther.2008151062563510.1038/cgt.2008.3018535621
    [Google Scholar]
  5. WeiX. LiY. LiY. LinB. ShenX.M. CuiR.L. GuY.J. GaoM. LiY.G. ZhangS. Prediction of Lymph Node Metastases in gastric cancer by Serum APE1 expression.J. Cancer2017881492149710.7150/jca.1861528638465
    [Google Scholar]
  6. WooJ. ParkH. SungS.H. MoonB.I. SuhH. LimW. LimW. Prognostic value of human apurinic/apyrimidinic endonuclease 1 (APE1) expression in breast cancer.PLoS One201496e9952810.1371/journal.pone.009952824914806
    [Google Scholar]
  7. AbbottsR. MadhusudanS. Human AP endonuclease 1 (APE1): From mechanistic insights to druggable target in cancer.Cancer Treat. Rev.201036542543510.1016/j.ctrv.2009.12.00620056333
    [Google Scholar]
  8. AbbottsR. JewellR. NsengimanaJ. MaloneyD.J. SimeonovA. SeedhouseC. ElliottF. LayeJ. WalkerC. JadhavA. GrabowskaA. BallG. PatelP.M. Newton-BishopJ. WilsonD.M.III MadhusudanS. Targeting human apurinic/apyrimidinic endonuclease 1 (APE1) in phosphatase and tensin homolog (PTEN) deficient melanoma cells for personalized therapy.Oncotarget20145103273328610.18632/oncotarget.192624830350
    [Google Scholar]
  9. MohammedM.Z. VyjayantiV.N. LaughtonC.A. DekkerL.V. FischerP.M. WilsonD.M.III AbbottsR. ShahS. PatelP.M. HicksonI.D. MadhusudanS. Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines.Br. J. Cancer2011104465366310.1038/sj.bjc.660605821266972
    [Google Scholar]
  10. BarzilayG. HicksonI.D. Structure and function of apurinic/apyrimidinic endonucleases.BioEssays199517871371910.1002/bies.9501708087661852
    [Google Scholar]
  11. DempleB. HermanT. ChenD.S. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: Definition of a family of DNA repair enzymes.Proc. Natl. Acad. Sci. USA19918824114501145410.1073/pnas.88.24.114501722334
    [Google Scholar]
  12. RobsonC.N. HicksonI.D. Isolation of cDNA clones encoding a human apurini/apyrimidinic endonuclease that corects DNA repair and mutagenisis defects in E.coli xth (exonuclease III) mutants.Nucleic Acids Res.199119205519552310.1093/nar/19.20.55191719477
    [Google Scholar]
  13. Craig R, Rack K, Buckle VJ, Hickson ID. S, Structure of the human DNA repair gene HAPl and its localisation to chromosome 14q 11.2-12.Nucleic Acids Res.1992204417442110.1093/nar/20.17.44171383925
    [Google Scholar]
  14. XanthoudakisS. MiaoG.G. CurranT. The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains.Proc. Natl. Acad. Sci. USA1994911232710.1073/pnas.91.1.237506414
    [Google Scholar]
  15. WeichenriederO. RepanasK. PerrakisA. Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon.Structure200412697598610.1016/j.str.2004.04.01115274918
    [Google Scholar]
  16. RobbinsJ Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: Identification of a class of bipartite nuclear targeting sequenceCell1991643615623
    [Google Scholar]
  17. GormanM.A. MoreraS. RothwellD.G. de La FortelleE. MolC.D. TainerJ.A. HicksonI.D. FreemontP.S. The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites.EMBO J.199716216548655810.1093/emboj/16.21.65489351835
    [Google Scholar]
  18. Evans, A.R.; Limp-Foster, M.; Kelley, M.R. Going APE over ref-1.Mutat. Res./DNA Repair.200046183108
    [Google Scholar]
  19. MolC.D. IzumiT. MitraS. TainerJ.A. DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination.Nature2000403676845145610.1038/3500024910667800
    [Google Scholar]
  20. KrokanH.E. BjøråsM. Base excision repair.Cold Spring Harb. Perspect. Biol.201354a012583a01258310.1101/cshperspect.a01258323545420
    [Google Scholar]
  21. HegdeM.L. HazraT.K. MitraS. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells.Cell Res.2008181274710.1038/cr.2008.818166975
    [Google Scholar]
  22. UllmanT.A. ItzkowitzS.H. Intestinal inflammation and cancer.Gastroenterology2011140618071816.e110.1053/j.gastro.2011.01.05721530747
    [Google Scholar]
  23. ZhouJ. AhnJ. WilsonS.H. PrivesC. A role for p53 in base excision repair.EMBO J.200120491492310.1093/emboj/20.4.91411179235
    [Google Scholar]
  24. LindahlT. KarlströmO. Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution.Biochemistry197312255151515410.1021/bi00749a0204600811
    [Google Scholar]
  25. LindahlT. Instability and decay of the primary structure of DNA.Nature1993362642270971510.1038/362709a08469282
    [Google Scholar]
  26. WilsonD.M.III BarskyD. The major human abasic endonuclease: Formation, consequences and repair of abasic lesions in DNA.Mutat. Res. DNA Repair2001485428330710.1016/S0921‑8777(01)00063‑511585362
    [Google Scholar]
  27. MoranL. GutteridgeJ. QuinlanG. Thiols in cellular redox signalling and control.Curr. Med. Chem.20018776377210.2174/092986701337290411375748
    [Google Scholar]
  28. LiuH. ColavittiR. RoviraI.I. FinkelT. Redox-dependent transcriptional regulation.Circ. Res.2005971096797410.1161/01.RES.0000188210.72062.1016284189
    [Google Scholar]
  29. TellG. DamanteG. CaldwellD. KelleyM.R. The intracellular localization of APE1/Ref-1: more than a passive phenomenon?Antioxid. Redox Signal.200573-436738410.1089/ars.2005.7.36715706084
    [Google Scholar]
  30. TellG. QuadrifoglioF. TiribelliC. KelleyM.R. The many functions of APE1/Ref-1: Not only a DNA repair enzyme.Antioxid. Redox Signal.200911360161910.1089/ars.2008.219418976116
    [Google Scholar]
  31. TellG. PinesA. ParonI. D’EliaA. BiscaA. KelleyM.R. ManziniG. DamanteG. Redox effector factor-1 regulates the activity of thyroid transcription factor 1 by controlling the redox state of the N transcriptional activation domain.J. Biol. Chem.200227717145641457410.1074/jbc.M20058220011834746
    [Google Scholar]
  32. GaiddonC. MoorthyN.C. PrivesC. Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo.EMBO J.199918205609562110.1093/emboj/18.20.560910523305
    [Google Scholar]
  33. XanthoudakisS. MiaoG. WangF. PanY.C. CurranT. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme.EMBO J.19921193323333510.1002/j.1460‑2075.1992.tb05411.x1380454
    [Google Scholar]
  34. XanthoudakisS. CurranT. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity.EMBO J.199211265366510.1002/j.1460‑2075.1992.tb05097.x1537340
    [Google Scholar]
  35. ShengC. ZhaoJ. DiZ. HuangY. ZhaoY. LiL. Spatially resolved in vivo imaging of inflammation-associated mRNA via enzymatic fluorescence amplification in a molecular beacon.Nat. Biomed. Eng.2022691074108410.1038/s41551‑022‑00932‑z36050523
    [Google Scholar]
  36. MalfattiM.C. BellinaA. AntonialiG. TellG. Revisiting two decades of research focused on targeting APE1 for cancer therapy: The pros and cons.Cells20231214189510.3390/cells1214189537508559
    [Google Scholar]
  37. LuX. ZhaoH. YuanH. ChuY. ZhuX. High nuclear expression of APE1 correlates with unfavorable prognosis and promotes tumor growth in hepatocellular carcinoma.J. Mol. Histol.202152221923110.1007/s10735‑020‑09939‑933392892
    [Google Scholar]
  38. Manoel-CaetanoF.S. RossiA.F.T. Calvet de MoraisG. SeverinoF.E. SilvaA.E. Upregulation of the APE1 and H2AX genes and miRNAs involved in DNA damage response and repair in gastric cancer.Genes Dis.20196217618410.1016/j.gendis.2019.03.00731194025
    [Google Scholar]
  39. WeiX. LiQ. LiY. DuanW. HuangC. ZhengX. SunL. LuoJ. WangD. ZhangS. XinX. GaoM. Prediction of survival prognosis of non-small cell lung cancer by APE1 through regulation of epithelial-mesenchymal transition.Oncotarget2016719285232853910.18632/oncotarget.866027074577
    [Google Scholar]
  40. FishelM.L. JiangY. RajeshkumarN.V. ScanduraG. SinnA.L. HeY. ShenC. JonesD.R. PollokK.E. IvanM. MaitraA. KelleyM.R. Impact of APE1/Ref-1 redox inhibition on pancreatic tumor growth.Mol. Cancer Ther.20111091698170810.1158/1535‑7163.MCT‑11‑010721700832
    [Google Scholar]
  41. GuidaM. TommasiS. StrippoliS. NatalicchioM.I. De SummaS. PintoR. CramarossaA. AlbanoA. PiscontiS. AietaM. RidolfiR. AzzaritiA. GuidaG. LorussoV. ColucciG. The search for a melanoma-tailored chemotherapy in the new era of personalized therapy: A phase II study of chemo-modulating temozolomide followed by fotemustine and a cooperative study of GOIM (Gruppo Oncologico Italia Meridionale).BMC Cancer201818155210.1186/s12885‑018‑4479‑229747595
    [Google Scholar]
  42. WickerC.A. TakiarV. SuganyaR. ArnoldS.M. BrillY.M. ChenL. HorbinskiC.M. NapierD. ValentinoJ. KudrimotiM.R. YuG. IzumiT. Evaluation of antioxidant network proteins as novel prognostic biomarkers for head and neck cancer patients.Oral Oncol.202011110494910.1016/j.oraloncology.2020.10494932801084
    [Google Scholar]
  43. HsiaK.T. LiuC.J. MarK. LinL.H. LinC.S. ChengM.F. LeeH.S. ChiuS.Y. Impact of apurinic/apyrimidinic endonuclease 1/redox factor-1 on treatment response and survival in oral squamous cell carcinoma.Head Neck201638455055910.1002/hed.2392725482590
    [Google Scholar]
  44. Al-AttarA. GossageL. FareedK.R. ShehataM. MohammedM. ZaitounA.M. SoomroI. LoboD.N. AbbottsR. ChanS. MadhusudanS. Human apurinic/apyrimidinic endonuclease (APE1) is a prognostic factor in ovarian, gastro-oesophageal and pancreatico-biliary cancers.Br. J. Cancer2010102470470910.1038/sj.bjc.660554120087352
    [Google Scholar]
  45. LiuY. ZhangZ. LiQ. ZhangL. ChengY. ZhongZ. Mitochondrial APE1 promotes cisplatin resistance by downregulating ROS in osteosarcoma.Oncol. Rep.202044249950810.3892/or.2020.763332627008
    [Google Scholar]
  46. LiQ. WeiX. ZhouZ.W. WangS.N. JinH. ChenK.J. LuoJ. WestoverK.D. WangJ.M. WangD. XuC.X. ShanJ.L. GADD45α sensitizes cervical cancer cells to radiotherapy via increasing cytoplasmic APE1 level.Cell Death Dis.20189552410.1038/s41419‑018‑0452‑x29743554
    [Google Scholar]
  47. ZhangS. HeL. DaiN. GuanW. ShanJ. YangX. ZhongZ. QingY. JinF. ChenC. YangY. WangH. BaughL. TellG. WilsonD.M.III LiM. WangD. Serum APE1 as a predictive marker for platinum-based chemotherapy of non-small cell lung cancer patients.Oncotarget2016747774827749410.18632/oncotarget.1303027813497
    [Google Scholar]
  48. RobertsonK.A. BullockH.A. XuY. TrittR. ZimmermanE. UlbrightT.M. FosterR.S. EinhornL.H. KelleyM.R. Altered expression of Ape1/ref-1 in germ cell tumors and overexpression in NT2 cells confers resistance to bleomycin and radiation.Cancer Res.20016152220222511280790
    [Google Scholar]
  49. FishelM.L. KelleyM.R. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target.Mol. Aspects Med.2007283-437539510.1016/j.mam.2007.04.00517560642
    [Google Scholar]
  50. SharbeenG. McCarrollJ. GoldsteinD. PhillipsP.A. Exploiting base excision repair to improve therapeutic approaches for pancreatic cancer.Front. Nutr.201521010.3389/fnut.2015.0001025988138
    [Google Scholar]
  51. LogsdonD.P. Regulation of HIF1α under Hypoxia by APE1/Ref-1 impacts CA9 expression: Dual-targeting in PatientDerived 3D pancreatic cancer models.Mol. Cancer Ther.2016152722273210.1158/1535‑7163.MCT‑16‑025327535970
    [Google Scholar]
  52. Di MasoV. AvelliniC. CrocèL.S. RossoN. QuadrifoglioF. CesarattoL. CodarinE. BedogniG. BeltramiC.A. TellG. TiribelliC. Subcellular localization of APE1/Ref-1 in human hepatocellular carcinoma: Possible prognostic significance.Mol. Med.2007131-2899610.2119/2006‑00084.DiMaso
    [Google Scholar]
  53. DaiN. CaoX.J. LiM.X. QingY. LiaoL. LuX.F. ZhangS.H. LiZ. YangY.X. WangD. WangD. Serum APE1 autoantibodies: A novel potential tumor marker and predictor of chemotherapeutic efficacy in non-small cell lung cancer.PLoS One201383e5800110.1371/journal.pone.005800123472128
    [Google Scholar]
  54. PascutD. SukowatiC.H.C. AntonialiG. MangiapaneG. BurraS. MascarettiL.G. BuonocoreM.R. CrocèL.S. TiribelliC. TellG. Serum AP-endonuclease 1 (sAPE1) as novel biomarker for hepatocellular carcinoma.Oncotarget201910338339410.18632/oncotarget.2655530719231
    [Google Scholar]
  55. ShinJ.H. ChoiS. LeeY.R. ParkM.S. NaY.G. IraniK. LeeS.D. ParkJ.B. KimJ.M. LimJ.S. JeonB.H. APE1/Ref-1 as a serological biomarker for the detection of bladder cancer.Cancer Res. Treat.201547482383310.4143/crt.2014.07425672588
    [Google Scholar]
  56. ChoiS. ShinJ.H. LeeY.R. JooH.K. SongK.H. NaY.G. ChangS.J. LimJ.S. JeonB.H. Urinary APE1/Ref-1: A potential bladder cancer biomarker.Dis. Markers201620161810.1155/2016/727650227057081
    [Google Scholar]
  57. QuJ. LiuG.H. HuangB. ChenC. Nitric oxide controls nuclear export of APE1/Ref-1 through S-nitrosation of Cysteines 93 and 310.Nucleic Acids Res.20073582522253210.1093/nar/gkl116317403694
    [Google Scholar]
  58. ZhuQ. LiuM. DaiL. YingX. YeH. ZhouY. HanS. ZhangJ.Y. Using immunoproteomics to identify tumor-associated antigens (TAAs) as biomarkers in cancer immunodiagnosis.Autoimmun. Rev.201312121123112810.1016/j.autrev.2013.06.01523806562
    [Google Scholar]
  59. LiJ. QinB. HuangM. MaY. LiD. LiW. GuoZ. Tumor-associated Antigens (TAAs) for the serological diagnosis of Osteosarcoma.Front. Immunol.20211266510610.3389/fimmu.2021.66510633995397
    [Google Scholar]
  60. GalleP.R. FoersterF. KudoM. ChanS.L. LlovetJ.M. QinS. SchelmanW.R. ChintharlapalliS. AbadaP.B. ShermanM. ZhuA.X. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma.Liver Int.201939122214222910.1111/liv.1422331436873
    [Google Scholar]
  61. FletcherR.H. Carcinoembryonic antigen.Ann. Intern. Med.19861041667310.7326/0003‑4819‑104‑1‑663510056
    [Google Scholar]
  62. KatsumataY. KawaguchiY. BabaS. HattoriS. TaharaK. ItoK. IwasakiT. YamaguchiN. OyamaM. Kozuka-HataH. HattoriH. NagataK. YamanakaH. HaraM. Identification of three new autoantibodies associated with systemic lupus erythematosus using two proteomic approaches.Mol. Cell. Proteomics2011106M110.00533010.1074/mcp.M110.00533021474795
    [Google Scholar]
  63. ZinkernagelR.M. What is missing in immunology to understand immunity?Nat. Immunol.20001318118510.1038/7971210973269
    [Google Scholar]
  64. DesmetzC. MangeA. MaudelondeT. SolassolJ. Autoantibody signatures: Progress and perspectives for early cancer detection.J. Cell. Mol. Med.201115102013202410.1111/j.1582‑4934.2011.01355.x21651719
    [Google Scholar]
  65. FolliF. SolimenaM. CofiellR. AustoniM. TalliniG. FassetaG. BatesD. CartlidgeN. BottazzoG.F. PiccoloG. De CamilliP. Autoantibodies to a 128-kd synaptic protein in three women with the stiff-man syndrome and breast cancer.N. Engl. J. Med.1993328854655110.1056/NEJM1993022532808058381208
    [Google Scholar]
  66. HuajunW. YingF. HongxingZ. WeifengS. PingyangS. MingdeH. GuoguangL. Clinical value of combined detection of serum APE1-Aabs and CEACAM-1 in the diagnosis of colorectal cancer.Eur. Rev. Med. Pharmacol. Sci.20182251286128929565485
    [Google Scholar]
  67. AntoniaS.J. MirzaN. FrickeI. ChiapporiA. ThompsonP. WilliamsN. BeplerG. SimonG. JanssenW. LeeJ.H. MenanderK. ChadaS. GabrilovichD.I. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer.Clin. Cancer Res.200612387888710.1158/1078‑0432.CCR‑05‑201316467102
    [Google Scholar]
  68. LabuschagneC.F. ZaniF. VousdenK.H. Control of metabolism by p53 – Cancer and beyond.Biochim. Biophys. Acta Rev. Cancer201818701324210.1016/j.bbcan.2018.06.00129883595
    [Google Scholar]
  69. TanH.T. LowJ. LimS.G. ChungM.C.M. Serum autoantibodies as biomarkers for early cancer detection.FEBS J.2009276236880690410.1111/j.1742‑4658.2009.07396.x19860826
    [Google Scholar]
  70. LeeJ.W. JinJ. RhaK.S. KimY.M. Expression pattern of apurinic/apyrimidinic endonuclease in sinonasal squamous cell carcinoma.Otolaryngol. Head Neck Surg.2012147478879510.1177/019459981244998722645113
    [Google Scholar]
  71. WenX. LuR. XieS. ZhengH. WangH. WangY. SunJ. GaoX. GuoL. APE1 overexpression promotes the progression of ovarian cancer and serves as a potential therapeutic target.Cancer Biomark.201617331332210.3233/CBM‑16064327802207
    [Google Scholar]
  72. FungH. KowY.W. Van HoutenB. TaatjesD.J. HatahetZ. JanssenY.M.W. VacekP. FauxS.P. MossmanB.T. Asbestos increases mammalian AP-endonuclease gene expression, protein levels, and enzyme activity in mesothelial cells.Cancer Res.19985821891949443389
    [Google Scholar]
  73. TomkinsonA.E. BonkR.T. LinnS. Mitochondrial endonuclease activities specific for apurinic/apyrimidinic sites in DNA from mouse cells.J. Biol. Chem.198826325125321253710.1016/S0021‑9258(18)37787‑12457585
    [Google Scholar]
  74. FanZ. BeresfordP.J. ZhangD. LiebermanJ. HMG2 interacts with the nucleosome assembly protein SET and is a target of the cytotoxic T-lymphocyte protease granzyme A.Mol. Cell. Biol.20022282810282010.1128/MCB.22.8.2810‑2820.200211909973
    [Google Scholar]
  75. FanZ. BeresfordP.J. ZhangD. XuZ. NovinaC.D. YoshidaA. PommierY. LiebermanJ. Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A.Nat. Immunol.20034214515310.1038/ni88512524539
    [Google Scholar]
  76. CastonR.A. GampalaS. ArmstrongL. MessmannR.A. FishelM.L. KelleyM.R. The multifunctional APE1 DNA repair–redox signaling protein as a drug target in human disease.Drug Discov. Today202126121822810.1016/j.drudis.2020.10.01533148489
    [Google Scholar]
  77. ChenY. MaH. WangW. ZhangM. A size-tunable nanoplatform: Enhanced MMP2-activated chemo-photodynamic immunotherapy based on biodegradable mesoporous silica nanoparticles.Biomater. Sci.20219391792910.1039/D0BM01452D33284292
    [Google Scholar]
  78. ZhangM. MaH. WangX. YuB. CongH. ShenY. Polysaccharide-based nanocarriers for efficient transvascular drug delivery.J. Control. Release202335416718710.1016/j.jconrel.2022.12.05136581260
    [Google Scholar]
  79. LiS. TianT. ZhangT. CaiX. LinY. Advances in biological applications of self-assembled DNA tetrahedral nanostructures.Mater. Today201924576810.1016/j.mattod.2018.08.002
    [Google Scholar]
  80. ZhangY. DengY. WangC. LiL. XuL. YuY. SuX. Probing and regulating the activity of cellular enzymes by using DNA tetrahedron nanostructures.Chem. Sci. (Camb.)201910235959596610.1039/C9SC01912J31360402
    [Google Scholar]
  81. LiJ.J. DuW.F. LiuY.N. WangF. TangL.J. JiangJ.H. Protein-scaffolded DNA nanostructures for imaging of Apurinic/Apyrimidinic Endonuclease 1 activity in live cells.Anal. Chem.20239573551355510.1021/acs.analchem.2c0550436774652
    [Google Scholar]
  82. YuY. ZhangL. QinZ. KargesJ. XiaoH. SuX. Unraveling and overcoming platinum drug-resistant cancer tumors with DNA nanostructures.Adv. Funct. Mater.2023332220879710.1002/adfm.202208797
    [Google Scholar]
  83. HuY. ChenZ. ZhangH. LiM. HouZ. LuoX. XueX. Development of DNA tetrahedron-based drug delivery system.Drug Deliv.20172411295130110.1080/10717544.2017.137316628891335
    [Google Scholar]
  84. JiangD. EnglandC.G. CaiW. DNA nanomaterials for preclinical imaging and drug delivery.J. Control. Release2016239273810.1016/j.jconrel.2016.08.01327527555
    [Google Scholar]
  85. MaW. ZhanY. ZhangY. MaoC. XieX. LinY. The biological applications of DNA nanomaterials: Current challenges and future directions.Signal Transduct. Target. Ther.20216135110.1038/s41392‑021‑00727‑934620843
    [Google Scholar]
  86. ChenT. ZhouJ. LiP. TangC. XuK. LiT. RenT. SOX2 knockdown with siRNA reverses cisplatin resistance in NSCLC by regulating APE1 signaling.Med. Oncol.20223933610.1007/s12032‑021‑01626‑335059870
    [Google Scholar]
  87. YangZ.Z. LiM.X. ZhangY.S. XiangD.B. DaiN. ZengL.L. LiZ.P. WangG. WangD. Knock down of the dual functional protein apurinic /apyrimidinic endonuclease 1 enhances the killing effect of hematoporphrphyrin derivative-mediated photodynamic therapy on non-small cell lung cancer cells in vitro and in a xenograft model.Cancer Sci.2010101118018710.1111/j.1349‑7006.2009.01366.x19860842
    [Google Scholar]
  88. WangD. LuoM. KelleyM.R. Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: Enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition.Mol. Cancer Ther.20043667968610.1158/1535‑7163.679.3.615210853
    [Google Scholar]
  89. BapatA. GlassL.S. LuoM. FishelM.L. LongE.C. GeorgiadisM.M. KelleyM.R. Novel small-molecule inhibitor of apurinic/apyrimidinic endonuclease 1 blocks proliferation and reduces viability of glioblastoma cells.J. Pharmacol. Exp. Ther.2010334398899810.1124/jpet.110.16912820504914
    [Google Scholar]
  90. McNeillD.R. LamW. DeWeeseT.L. ChengY.C. WilsonD.M.III Impairment of APE1 function enhances cellular sensitivity to clinically relevant alkylators and antimetabolites.Mol. Cancer Res.20097689790610.1158/1541‑7786.MCR‑08‑051919470598
    [Google Scholar]
  91. SenguptaS. ManthaA.K. MitraS. BhakatK.K. Human AP endonuclease (APE1/Ref-1) and its acetylation regulate YB-1-p300 recruitment and RNA polymerase II loading in the drug-induced activation of multidrug resistance gene MDR1.Oncogene201130448249310.1038/onc.2010.43520856196
    [Google Scholar]
  92. ShahF. LogsdonD. MessmannR.A. FehrenbacherJ.C. FishelM.L. KelleyM.R. Exploiting the Ref-1-APE1 node in cancer signaling and other diseases: From bench to clinicNPJ Precis Oncol201711910.1038/s41698‑017‑0023‑0
    [Google Scholar]
  93. JiangY. ZhouS. SanduskyG.E. KelleyM.R. FishelM.L. Reduced expression of DNA repair and redox signaling protein APE1/Ref-1 impairs human pancreatic cancer cell survival, proliferation, and cell cycle progression.Cancer Invest.201028988589510.3109/07357907.2010.51281620919954
    [Google Scholar]
  94. WuH.H. ChuY.C. WangL. TsaiL.H. LeeM.C. ChenC.Y. ShiehS.H. ChengY.W. LeeH. Cytoplasmic Ape1 expression elevated by p53 aberration may predict survival and relapse in resected non-small cell lung cancer.Ann. Surg. Oncol.201320Suppl. 333634710.1245/s10434‑012‑2431‑222688662
    [Google Scholar]
  95. ZawahirZ. DayamR. DengJ. PereiraC. NeamatiN. Pharmacophore guided discovery of small-molecule human apurinic/apyrimidinic endonuclease 1 inhibitors.J. Med. Chem.2009521203210.1021/jm800739m19072053
    [Google Scholar]
  96. LiuzziM. WeinfeldM. PatersonM.C. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4.Biochemistry198726123315332110.1021/bi00386a0112443160
    [Google Scholar]
  97. MontaldiA.P. Sakamoto-HojoE.T. Methoxyamine sensitizes the resistant glioblastoma T98G cell line to the alkylating agent temozolomide.Clin. Exp. Med.201313427928810.1007/s10238‑012‑0201‑x22828727
    [Google Scholar]
  98. FishelM.L. HeY. SmithM.L. KelleyM.R. Manipulation of base excision repair to sensitize ovarian cancer cells to alkylating agent temozolomide.Clin. Cancer Res.200713126026710.1158/1078‑0432.CCR‑06‑192017200364
    [Google Scholar]
  99. MadhusudanS. SmartF. ShrimptonP. ParsonsJ.L. GardinerL. HoulbrookS. TalbotD.C. HammondsT. FreemontP.A. SternbergM.J.E. DianovG.L. HicksonI.D. Isolation of a small molecule inhibitor of DNA base excision repair.Nucleic Acids Res.200533154711472410.1093/nar/gki78116113242
    [Google Scholar]
  100. SimeonovA. KulkarniA. DorjsurenD. JadhavA. ShenM. McNeillD.R. AustinC.P. WilsonD.M.III WilsonD.M. Identification and characterization of inhibitors of human apurinic/apyrimidinic endonuclease APE1.PLoS One200946e574010.1371/journal.pone.000574019484131
    [Google Scholar]
  101. RaiG. VyjayantiV.N. DorjsurenD. SimeonovA. JadhavA. WilsonD.M.III MaloneyD.J. Synthesis, biological evaluation, and structure-activity relationships of a novel class of apurinic/apyrimidinic endonuclease 1 inhibitors.J. Med. Chem.20125573101311210.1021/jm201537d22455312
    [Google Scholar]
  102. RuizF.M. FrancisS.M. TintoréM. FerreiraR. Gil-RedondoR. MorrealeA. OrtizÁ.R. EritjaR. FàbregaC. Receptor-based virtual screening and biological characterization of human apurinic/apyrimidinic endonuclease (Ape1) inhibitors.ChemMedChem20127122168217810.1002/cmdc.20120037223109358
    [Google Scholar]
  103. DorjsurenD. KimD. VyjayantiV.N. MaloneyD.J. JadhavA. WilsonD.M.III SimeonovA. SimeonovA. Diverse small molecule inhibitors of human apurinic/apyrimidinic endonuclease APE1 identified from a screen of a large public collection.PLoS One2012710e4797410.1371/journal.pone.004797423110144
    [Google Scholar]
  104. PiduguL.S. ServiusH.W. SevdalisS.E. CookM.E. VarneyK.M. PozharskiE. DrohatA.C. DrohatA.C. Characterizing inhibitors of human AP endonuclease 1.PLoS One2023181e028052610.1371/journal.pone.028052636652434
    [Google Scholar]
  105. FengZ. KochanekS. CloseD. WangL. SrinivasanA. AlmehiziaA.A. IyerP. XieX.Q. JohnstonP.A. GoldB. Design and activity of AP endonuclease-1 inhibitors.J. Chem. Biol.201583799310.1007/s12154‑015‑0131‑726101550
    [Google Scholar]
  106. ArltA. GehrzA. MüerkösterS. VorndammJ. KruseM.L. FölschU.R. SchäferH. Role of NF-κB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death.Oncogene200322213243325110.1038/sj.onc.120639012761494
    [Google Scholar]
  107. ArltA. VorndammJ. BreitenbroichM. FölschU.R. KalthoffH. SchmidtW.E. SchäferH. Inhibition of NF-κB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin.Oncogene200120785986810.1038/sj.onc.120416811314019
    [Google Scholar]
  108. RaffoulJ.J. HeydariA.R. HillmanG.G. DNA repair and cancer therapy: Targeting APE1/Ref-1 using dietary agents.J. Oncol.2012201211110.1155/2012/37048122997517
    [Google Scholar]
  109. SarkarF.H. LiY. WangZ. KongD. Cellular signaling perturbation by natural products.Cell. Signal.200921111541154710.1016/j.cellsig.2009.03.00919298854
    [Google Scholar]
  110. SarkarF.H. LiY. Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics.Cancer Treat. Rev.200935759760710.1016/j.ctrv.2009.07.00119660870
    [Google Scholar]
  111. YangS. IraniK. HeffronS.E. JurnakF. MeyskensF.L.Jr Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor.Mol. Cancer Ther.20054121923193510.1158/1535‑7163.MCT‑05‑022916373707
    [Google Scholar]
  112. BoocockD.J. FaustG.E.S. PatelK.R. SchinasA.M. BrownV.A. DucharmeM.P. BoothT.D. CrowellJ.A. PerloffM. GescherA.J. StewardW.P. BrennerD.E. PhaseI. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent.Cancer Epidemiol. Biomarkers Prev.20071661246125210.1158/1055‑9965.EPI‑07‑002217548692
    [Google Scholar]
  113. SeoY.R. SweeneyC. SmithM.L. Selenomethionine induction of DNA repair response in human fibroblasts.Oncogene200221233663366910.1038/sj.onc.120546812032834
    [Google Scholar]
  114. ShimizuN. SugimotoK. TangJ. NishiT. SatoI. HiramotoM. AizawaS. HatakeyamaM. OhbaR. HatoriH. YoshikawaT. SuzukiF. OomoriA. TanakaH. KawaguchiH. WatanabeH. HandaH. High-performance affinity beads for identifying drug receptors.Nat. Biotechnol.200018887788110.1038/7849610932159
    [Google Scholar]
  115. ZouG.M. MaitraA. Small-molecule inhibitor of the AP endonuclease 1/REF-1 E3330 inhibits pancreatic cancer cell growth and migration.Mol. Cancer Ther.2008772012202110.1158/1535‑7163.MCT‑08‑011318645011
    [Google Scholar]
  116. ManguinhasR. FernandesA.S. CostaJ.G. SaraivaN. CamõesS.P. GilN. RosellR. CastroM. MirandaJ.P. OliveiraN.G. Impact of the APE1 redox function inhibitor E3330 in non-small cell lung cancer cells exposed to cisplatin: Increased cytotoxicity and impairment of cell migration and invasion.Antioxidants20209655010.3390/antiox906055032599967
    [Google Scholar]
  117. GuerreiroP.S. CorvachoE. CostaJ.G. SaraivaN. FernandesA.S. CastroM. MirandaJ.P. OliveiraN.G. The APE1 redox inhibitor E3330 reduces collective cell migration of human breast cancer cells and decreases chemoinvasion and colony formation when combined with docetaxel.Chem. Biol. Drug Des.201790456157110.1111/cbdd.1297928303665
    [Google Scholar]
  118. JiangA. GaoH. KelleyM.R. QiaoX. Inhibition of APE1/Ref-1 redox activity with APX3330 blocks retinal angiogenesis in vitro and in vivo.Vision Res.20115119310010.1016/j.visres.2010.10.00820937296
    [Google Scholar]
  119. KelleyM.R. WikelJ.H. GuoC. PollokK.E. BaileyB.J. WiremanR. FishelM.L. VaskoM.R. Identification and characterization of new chemical entities targeting Apurinic/Apyrimidinic Endonuclease 1 for the prevention of Chemotherapy-induced Peripheral neuropathy.J. Pharmacol. Exp. Ther.2016359230030910.1124/jpet.116.23528327608656
    [Google Scholar]
  120. LuoM. DelaplaneS. JiangA. ReedA. HeY. FishelM. NylandR.L.II BorchR.F. QiaoX. GeorgiadisM.M. KelleyM.R. Role of the multifunctional DNA repair and redox signaling protein Ape1/Ref-1 in cancer and endothelial cells: small-molecule inhibition of the redox function of Ape1.Antioxid. Redox Signal.200810111853186710.1089/ars.2008.212018627350
    [Google Scholar]
  121. NylandR.L.II LuoM. KelleyM.R. BorchR.F. Design and synthesis of novel quinone inhibitors targeted to the redox function of apurinic/apyrimidinic endonuclease 1/redox enhancing factor-1 (Ape1/ref-1).J. Med. Chem.20105331200121010.1021/jm901485720067291
    [Google Scholar]
  122. ZouG.M. LuoM.H. ReedA. KelleyM.R. YoderM.C. Ape1 regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain.Blood200710951917192210.1182/blood‑2006‑08‑04417217053053
    [Google Scholar]
  123. KelleyM.R. LuoM. ReedA. SuD. DelaplaneS. BorchR.F. NylandR.L.II GrossM.L. GeorgiadisM.M. Functional analysis of novel analogues of E3330 that block the redox signaling activity of the multifunctional AP Endonuclease/Redox signaling Enzyme APE1/Ref-1.Antioxid. Redox Signal.20111481387140110.1089/ars.2010.3410
    [Google Scholar]
  124. SunZ. ZhuY. AminbuheQ. FanQ. PengJ. ZhangN. Differential expression of APE1 in hepatocellular carcinoma and the effects on proliferation and apoptosis of cancer cells.Biosci. Trends201812545646210.5582/bst.2018.0123930473552
    [Google Scholar]
  125. Di MasoV. MediavillaM.G. VascottoC. LupoF. BaccaraniU. AvelliniC. TellG. TiribelliC. CrocèL.S. CrocèL.S. Transcriptional up-regulation of APE1/Ref-1 in hepatic tumor: Role in hepatocytes resistance to oxidative stress and apoptosis.PLoS One20151012e014328910.1371/journal.pone.014328926624999
    [Google Scholar]
  126. ChenT. LiuC. LuH. YinM. ShaoC. HuX. WuJ. WangY. The expression of APE1 in triple-negative breast cancer and its effect on drug sensitivity of olaparib.Tumour Biol.2017391010.1177/101042831771339010.1177/101042831771339029064327
    [Google Scholar]
  127. JianD. LiX.M. DaiN. LiangD.D. ZhangG. MaoC.Y. WangD. SongG.B. LiM.X. LuoH. KabraA. Inhibition of APE1 expression enhances the antitumor activity of Olaparib in triple-negative breast cancer.Evid. Based Complement. Alternat. Med.2022202211010.1155/2022/604801735463096
    [Google Scholar]
  128. QingY. LiQ. RenT. XiaW. PengY. LiuG. LuoH. YangY. DaiX. ZhouS.F. WangD. Upregulation of PD-L1 and APE1 is associated with tumorigenesis and poor prognosis of gastric cancer.Drug Des. Devel. Ther.2015990190910.2147/DDDT.S7515225733810
    [Google Scholar]
  129. Zhang, B.; Tang, Q.; Shi, W.; Bao, Z.; Gao, S.; Pan, C. Knock down of APE1 suppressed gastric cancer metastasis via improving immune disorders caused by myeloid-derived suppressor cells.Cell Cycle2024235602612
    [Google Scholar]
  130. PolettoM. MalfattiM.C. DorjsurenD. ScognamiglioP.L. MarascoD. VascottoC. JadhavA. MaloneyD.J. WilsonD.M.III SimeonovA. TellG. Inhibitors of the apurinic/apyrimidinic endonuclease 1 (APE1)/nucleophosmin (NPM1) interaction that display anti-tumor properties.Mol. Carcinog.201655568870410.1002/mc.2231325865359
    [Google Scholar]
  131. HongJ. ChenZ. PengD. ZaikaA. RevettaF. WashingtonM.K. BelkhiriA. El-RifaiW. APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts.Oncotarget2016713166881670210.18632/oncotarget.769626934647
    [Google Scholar]
  132. BhatA.A. LuH. SouttoM. CapobiancoA. RaiP. ZaikaA. El-RifaiW. Exposure of Barrett’s and esophageal adenocarcinoma cells to bile acids activates EGFR–STAT3 signaling axis via induction of APE1.Oncogene201837466011602410.1038/s41388‑018‑0388‑829991802
    [Google Scholar]
  133. SakS.C. HarndenP. JohnstonC.F. PaulA.B. KiltieA.E. APE1 and XRCC1 protein expression levels predict cancer-specific survival following radical radiotherapy in bladder cancer.Clin. Cancer Res.200511176205621110.1158/1078‑0432.CCR‑05‑004516144922
    [Google Scholar]
  134. LouD. ZhuL. DingH. DaiH.Y. ZouG.M. Aberrant expression of redox protein Ape1 in colon cancer stem cells.Oncol. Lett.2014741078108210.3892/ol.2014.186424944672
    [Google Scholar]
  135. CodrichM. ComelliM. MalfattiM.C. MioC. AyyildizD. ZhangC. KelleyM.R. TerrosuG. PucilloC.E.M. TellG. Inhibition of APE1-endonuclease activity affects cell metabolism in colon cancer cells via a p53-dependent pathway.DNA Repair (Amst.)20198210267510.1016/j.dnarep.2019.10267531450087
    [Google Scholar]
  136. KühlS.B.R. AustráliaP.M.R.C. de NoronhaL. Veloso da Silva-CamargoC.C. SantosS.V. MartinsS.A.P. Vasconcelos de CastilhoA.P. RodriguesM.N.M. Expression of parkin, APC, APE1, and Bcl-xL in colorectal polyps.J. Histochem. Cytochem.202169743744910.1369/0022155421102629634126796
    [Google Scholar]
  137. ZhangQ. DongG. WangF. DingW. Correlation between the changes of serum COX 2, APE1, VEGF, TGF-β and TSGF levels and prognosis in patients with osteosarcoma before and after treatment.J. Cancer Res. Ther.202016233534210.4103/jcrt.JCRT_11_2032474521
    [Google Scholar]
  138. ChenY. YangY. YuanZ. WangC. ShiY. Predicting chemosensitivity in osteosarcoma prior to chemotherapy: An investigational study of biomarkers with immunohistochemistry.Oncol. Lett.2012351011101610.3892/ol.2012.60422783382
    [Google Scholar]
  139. JiangX. ShanJ. DaiN. ZhongZ. QingY. YangY. ZhangS. LiC. SuiJ. RenT. LiM. WangD. Apurinic/apyrimidinic endonuclease 1 regulates angiogenesis in a transforming growth factor β-dependent manner in human osteosarcoma.Cancer Sci.2015106101394140110.1111/cas.1276326250694
    [Google Scholar]
  140. SchindlM. OberhuberG. PichlbauerE. ObermairA. BirnerP. KelleyM. DNA repair-redox enzyme apurinic endonuclease in cervical cancer: Evaluation of redox control of HIF-1α and prognostic significance.Int. J. Oncol.200119479980210.3892/ijo.19.4.79911562758
    [Google Scholar]
  141. PramanikS. ChenY. SongH. KhutsishviliI. MarkyL.A. RayS. NatarajanA. PankajK. The human AP-endonuclease 1 (APE1) is a DNA G-quadruplex structure binding protein and regulatesKRASexpression in pancreatic ductal adenocarcinoma cells.Nucleic Acids Res.2022503394341210.1093/nar/gkac17235286386
    [Google Scholar]
  142. BhakatK.K. SenguptaS. AdeniyiV.F. RoychoudhuryS. NathS. BellotL.J. FengD. ManthaA.K. SinhaM. QiuS. LuxonB.A. Regulation of limited N-terminal proteolysis of APE1 in tumor via acetylation and its role in cell proliferation.Oncotarget2016716225902260410.18632/oncotarget.8026
    [Google Scholar]
  143. KelleyM.R. ChengL. FosterR. TrittR. JiangJ. BroshearsJ. KochM. Elevated and altered expression of the multifunctional DNA base excision repair and redox enzyme Ape1/ref-1 in prostate cancer.Clin. Cancer Res.20017482483011309329
    [Google Scholar]
  144. EscobarI. XuJ. JacksonC.W. StegelmannS.D. FagerliE.A. DaveK.R. Perez-PinzonM.A. Resveratrol preconditioning protects against Ischemia-induced Synaptic dysfunction and cofilin Hyperactivation in the mouse Hippocampal slice.Neurotherapeutics20232041177119710.1007/s13311‑023‑01386‑037208551
    [Google Scholar]
  145. ZhongC. XuM. WangY. XuJ. YuanY. YuanY. An APE1 inhibitor reveals critical roles of the redox function of APE1 in KSHV replication and pathogenic phenotypes.PLoS Pathog.2017134e100628910.1371/journal.ppat.100628928380040
    [Google Scholar]
  146. XueZ. DempleB. Knockout and inhibition of Ape1: Roles of Ape1 in base excision DNA repair and modulation of Gene expression.Antioxidants2022119181710.3390/antiox1109181736139891
    [Google Scholar]
  147. NaiduM.D. AgarwalR. PenaL.A. CunhaL. MezeiM. ShenM. WilsonD.M.III LiuY. SanchezZ. ChaudharyP. WilsonS.H. WaringM.J. WaringM.J. Lucanthone and its derivative hycanthone inhibit apurinic endonuclease-1 (APE1) by direct protein binding.PLoS One201169e2367910.1371/journal.pone.002367921935361
    [Google Scholar]
  148. LuoM. KelleyM.R. Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone.Anticancer Res.20042442127213415330152
    [Google Scholar]
  149. SrinivasanA. WangL. ClineC.J. XieZ. SobolR.W. XieX.Q. GoldB. Identification and characterization of human apurinic/apyrimidinic endonuclease-1 inhibitors.Biochemistry201251316246625910.1021/bi300490r22788932
    [Google Scholar]
  150. SeipleL.A. CardellinaJ.H.II AkeeR. StiversJ.T. Potent inhibition of human apurinic/apyrimidinic endonuclease 1 by arylstibonic acids.Mol. Pharmacol.200873366967710.1124/mol.107.04262218042731
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665338519241114103223
Loading
/content/journals/ppl/10.2174/0109298665338519241114103223
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): acid-based inhibitors; APE1; biomacromolecule; diagnosis; DNA repair; tumor therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test