Skip to content
2000
image of Targeting APE1: Advancements in the Diagnosis and Treatment of Tumors

Abstract

With the emergence of the precision medicine era, targeting specific proteins has emerged as a pivotal breakthrough in tumor diagnosis and treatment. Apurinic/apyrimidinic Endonuclease 1 (APE1) is a multifunctional protein that plays a crucial role in DNA repair and cellular redox regulation. This article comprehensively explores the fundamental mechanisms of APE1 as a multifunctional enzyme in biology, with particular emphasis on its potential significance in disease diagnosis and strategies for tumor treatment. Firstly, this article meticulously analyzes the intricate biological functions of APE1 at a molecular level, establishing a solid theoretical foundation for subsequent research endeavors. In terms of diagnostic applications, the presence of APE1 can be detected in patient serum samples, biopsy tissues, and through cellular testing. The precise detection methods enable changes in APE1 levels to serve as reliable biomarkers for predicting tumor occurrence, progression, and patient prognosis. Moreover, this article focuses on elucidating the potential role of APE1 in tumor treatment by exploring various inhibitors, including nucleic acid-based inhibitors and small molecule drug inhibitors categories, and revealing their unique advantages in disrupting DNA repair function and modulating oxidative-reduction activity. Finally, the article provides an outlook on future research directions for APE1 while acknowledging major technical difficulties and clinical challenges that need to be overcome despite its immense potential as a target for tumor therapy.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665338519241114103223
2024-12-06
2025-01-19
Loading full text...

Full text loading...

References

  1. Tell G. Fantini D. Quadrifoglio F. Understanding different functions of mammalian AP endonuclease (APE1) as a promising tool for cancer treatment. Cell. Mol. Life Sci. 2010 67 21 3589 3608 10.1007/s00018‑010‑0486‑4 20706766
    [Google Scholar]
  2. Xanthoudakis S. Smeyne R.J. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice Proc Natl Acad Sci U S A 1996 93 17 8919 8923
    [Google Scholar]
  3. L. DL A murine AP-endonuclease gene-targeted deficiency with post-implantation embryonic progression and ionizing radiation sensitivity Mutat Res 1998 409 1 17 29
    [Google Scholar]
  4. Xiang D-B. Chen Z-T. Wang D. Li M-X. Xie J-Y. Zhang Y-S. Qing Y. Li Z-P. Xie J. Chimeric adenoviral vector Ad5/F35-mediated APE1 siRNA enhances sensitivity of human colorectal cancer cells to radiotherapy in vitro and in vivo. Cancer Gene Ther. 2008 15 10 625 635 10.1038/cgt.2008.30 18535621
    [Google Scholar]
  5. Wei X. Li Y. Li Y. Lin B. Shen X.M. Cui R.L. Gu Y.J. Gao M. Li Y.G. Zhang S. Prediction of Lymph Node Metastases in gastric cancer by Serum APE1 expression. J. Cancer 2017 8 8 1492 1497 10.7150/jca.18615 28638465
    [Google Scholar]
  6. Woo J. Park H. Sung S.H. Moon B.I. Suh H. Lim W. Lim W. Prognostic value of human apurinic/apyrimidinic endonuclease 1 (APE1) expression in breast cancer. PLoS One 2014 9 6 e99528 10.1371/journal.pone.0099528 24914806
    [Google Scholar]
  7. Abbotts R. Madhusudan S. Human AP endonuclease 1 (APE1): From mechanistic insights to druggable target in cancer. Cancer Treat. Rev. 2010 36 5 425 435 10.1016/j.ctrv.2009.12.006 20056333
    [Google Scholar]
  8. Abbotts R. Jewell R. Nsengimana J. Maloney D.J. Simeonov A. Seedhouse C. Elliott F. Laye J. Walker C. Jadhav A. Grabowska A. Ball G. Patel P.M. Newton-Bishop J. Wilson D.M. III Madhusudan S. Targeting human apurinic/apyrimidinic endonuclease 1 (APE1) in phosphatase and tensin homolog (PTEN) deficient melanoma cells for personalized therapy. Oncotarget 2014 5 10 3273 3286 10.18632/oncotarget.1926 24830350
    [Google Scholar]
  9. Mohammed M.Z. Vyjayanti V.N. Laughton C.A. Dekker L.V. Fischer P.M. Wilson D.M. III Abbotts R. Shah S. Patel P.M. Hickson I.D. Madhusudan S. Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines. Br. J. Cancer 2011 104 4 653 663 10.1038/sj.bjc.6606058 21266972
    [Google Scholar]
  10. Barzilay G. Hickson I.D. Structure and function of apurinic/apyrimidinic endonucleases. BioEssays 1995 17 8 713 719 10.1002/bies.950170808 7661852
    [Google Scholar]
  11. Demple B. Herman T. Chen D.S. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: Definition of a family of DNA repair enzymes. Proc. Natl. Acad. Sci. USA 1991 88 24 11450 11454 10.1073/pnas.88.24.11450 1722334
    [Google Scholar]
  12. Robson C.N. Hickson I.D. Isolation of cDNA clones encoding a human apurini/apyrimidinic endonuclease that corects DNA repair and mutagenisis defects in E.coli xth (exonuclease III) mutants. Nucleic Acids Res. 1991 19 20 5519 5523 10.1093/nar/19.20.5519 1719477
    [Google Scholar]
  13. H.D. Robson CN Craig R, Rack K, Buckle VJ, Hickson ID. S, Structure of the human DNA repair gene HAPl and its localisation to chromosome 14q 11.2-12. Nucleic Acids Res. 1992 20 4417 4421 10.1093/nar/20.17.4417 1383925
    [Google Scholar]
  14. Xanthoudakis S. Miao G.G. Curran T. The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains. Proc. Natl. Acad. Sci. USA 1994 91 1 23 27 10.1073/pnas.91.1.23 7506414
    [Google Scholar]
  15. Weichenrieder O. Repanas K. Perrakis A. Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon. Structure 2004 12 6 975 986 10.1016/j.str.2004.04.011 15274918
    [Google Scholar]
  16. Robbins J Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: Identification of a class of bipartite nuclear targeting sequence Cell 1991 64 3 615 623
    [Google Scholar]
  17. Gorman M.A. Morera S. Rothwell D.G. de La Fortelle E. Mol C.D. Tainer J.A. Hickson I.D. Freemont P.S. The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J. 1997 16 21 6548 6558 10.1093/emboj/16.21.6548 9351835
    [Google Scholar]
  18. Angela R. Going APE over ref-1. Mutat. Res. 2000 461 83 108
    [Google Scholar]
  19. Mol C.D. Izumi T. Mitra S. Tainer J.A. DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination. Nature 2000 403 6768 451 456 10.1038/35000249 10667800
    [Google Scholar]
  20. Krokan H.E. Bjørås M. Base excision repair. Cold Spring Harb. Perspect. Biol. 2013 5 4 a012583 a012583 10.1101/cshperspect.a012583 23545420
    [Google Scholar]
  21. Hegde M.L. Hazra T.K. Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res. 2008 18 1 27 47 10.1038/cr.2008.8 18166975
    [Google Scholar]
  22. Ullman T.A. Itzkowitz S.H. Intestinal inflammation and cancer. Gastroenterology 2011 140 6 1807 1816.e1 10.1053/j.gastro.2011.01.057 21530747
    [Google Scholar]
  23. Zhou J. Ahn J. Wilson S.H. Prives C. A role for p53 in base excision repair. EMBO J. 2001 20 4 914 923 10.1093/emboj/20.4.914 11179235
    [Google Scholar]
  24. Lindahl T. Karlström O. Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution. Biochemistry 1973 12 25 5151 5154 10.1021/bi00749a020 4600811
    [Google Scholar]
  25. Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993 362 6422 709 715 10.1038/362709a0 8469282
    [Google Scholar]
  26. Wilson D.M. III Barsky D. The major human abasic endonuclease: Formation, consequences and repair of abasic lesions in DNA. Mutat. Res. DNA Repair 2001 485 4 283 307 10.1016/S0921‑8777(01)00063‑5 11585362
    [Google Scholar]
  27. Moran L. Gutteridge J. Quinlan G. Thiols in cellular redox signalling and control. Curr. Med. Chem. 2001 8 7 763 772 10.2174/0929867013372904 11375748
    [Google Scholar]
  28. Liu H. Colavitti R. Rovira I.I. Finkel T. Redox-dependent transcriptional regulation. Circ. Res. 2005 97 10 967 974 10.1161/01.RES.0000188210.72062.10 16284189
    [Google Scholar]
  29. Tell G. Damante G. Caldwell D. Kelley M.R. The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid. Redox Signal. 2005 7 3-4 367 384 10.1089/ars.2005.7.367 15706084
    [Google Scholar]
  30. Tell G. Quadrifoglio F. Tiribelli C. Kelley M.R. The many functions of APE1/Ref-1: Not only a DNA repair enzyme. Antioxid. Redox Signal. 2009 11 3 601 619 10.1089/ars.2008.2194 18976116
    [Google Scholar]
  31. Tell G. Pines A. Paron I. D’Elia A. Bisca A. Kelley M.R. Manzini G. Damante G. Redox effector factor-1 regulates the activity of thyroid transcription factor 1 by controlling the redox state of the N transcriptional activation domain. J. Biol. Chem. 2002 277 17 14564 14574 10.1074/jbc.M200582200 11834746
    [Google Scholar]
  32. Gaiddon C. Moorthy N.C. Prives C. G. C Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J. 1999 18 20 5609 5621 10.1093/emboj/18.20.5609 10523305
    [Google Scholar]
  33. Xanthoudakis S. Miao G. Wang F. Pan Y.C. Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 1992 11 9 3323 3335 10.1002/j.1460‑2075.1992.tb05411.x 1380454
    [Google Scholar]
  34. Xanthoudakis S. Curran T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J. 1992 11 2 653 665 10.1002/j.1460‑2075.1992.tb05097.x 1537340
    [Google Scholar]
  35. Sheng C. Zhao J. Di Z. Huang Y. Zhao Y. Li L. Spatially resolved in vivo imaging of inflammation-associated mRNA via enzymatic fluorescence amplification in a molecular beacon. Nat. Biomed. Eng. 2022 6 9 1074 1084 10.1038/s41551‑022‑00932‑z 36050523
    [Google Scholar]
  36. Malfatti M.C. Bellina A. Antoniali G. Tell G. Revisiting two decades of research focused on targeting APE1 for cancer therapy: The pros and cons. Cells 2023 12 14 1895 10.3390/cells12141895 37508559
    [Google Scholar]
  37. Lu X. Zhao H. Yuan H. Chu Y. Zhu X. High nuclear expression of APE1 correlates with unfavorable prognosis and promotes tumor growth in hepatocellular carcinoma. J. Mol. Histol. 2021 52 2 219 231 10.1007/s10735‑020‑09939‑9 33392892
    [Google Scholar]
  38. Manoel-Caetano F.S. Rossi A.F.T. Calvet de Morais G. Severino F.E. Silva A.E. Upregulation of the APE1 and H2AX genes and miRNAs involved in DNA damage response and repair in gastric cancer. Genes Dis. 2019 6 2 176 184 10.1016/j.gendis.2019.03.007 31194025
    [Google Scholar]
  39. Wei X. Li Q. Li Y. Duan W. Huang C. Zheng X. Sun L. Luo J. Wang D. Zhang S. Xin X. Gao M. Prediction of survival prognosis of non-small cell lung cancer by APE1 through regulation of epithelial-mesenchymal transition. Oncotarget 2016 7 19 28523 28539 10.18632/oncotarget.8660 27074577
    [Google Scholar]
  40. Fishel M.L. Jiang Y. Rajeshkumar N.V. Scandura G. Sinn A.L. He Y. Shen C. Jones D.R. Pollok K.E. Ivan M. Maitra A. Kelley M.R. Impact of APE1/Ref-1 redox inhibition on pancreatic tumor growth. Mol. Cancer Ther. 2011 10 9 1698 1708 10.1158/1535‑7163.MCT‑11‑0107 21700832
    [Google Scholar]
  41. Guida M. Tommasi S. Strippoli S. Natalicchio M.I. De Summa S. Pinto R. Cramarossa A. Albano A. Pisconti S. Aieta M. Ridolfi R. Azzariti A. Guida G. Lorusso V. Colucci G. The search for a melanoma-tailored chemotherapy in the new era of personalized therapy: A phase II study of chemo-modulating temozolomide followed by fotemustine and a cooperative study of GOIM (Gruppo Oncologico Italia Meridionale). BMC Cancer 2018 18 1 552 10.1186/s12885‑018‑4479‑2 29747595
    [Google Scholar]
  42. Wicker C.A. Takiar V. Suganya R. Arnold S.M. Brill Y.M. Chen L. Horbinski C.M. Napier D. Valentino J. Kudrimoti M.R. Yu G. Izumi T. Evaluation of antioxidant network proteins as novel prognostic biomarkers for head and neck cancer patients. Oral Oncol. 2020 111 104949 10.1016/j.oraloncology.2020.104949 32801084
    [Google Scholar]
  43. Hsia K.T. Liu C.J. Mar K. Lin L.H. Lin C.S. Cheng M.F. Lee H.S. Chiu S.Y. Impact of apurinic/apyrimidinic endonuclease 1/redox factor‐1 on treatment response and survival in oral squamous cell carcinoma. Head Neck 2016 38 4 550 559 10.1002/hed.23927 25482590
    [Google Scholar]
  44. Al-Attar A. Gossage L. Fareed K.R. Shehata M. Mohammed M. Zaitoun A.M. Soomro I. Lobo D.N. Abbotts R. Chan S. Madhusudan S. Human apurinic/apyrimidinic endonuclease (APE1) is a prognostic factor in ovarian, gastro-oesophageal and pancreatico-biliary cancers. Br. J. Cancer 2010 102 4 704 709 10.1038/sj.bjc.6605541 20087352
    [Google Scholar]
  45. Liu Y. Zhang Z. Li Q. Zhang L. Cheng Y. Zhong Z. Mitochondrial APE1 promotes cisplatin resistance by downregulating ROS in osteosarcoma. Oncol. Rep. 2020 44 2 499 508 10.3892/or.2020.7633 32627008
    [Google Scholar]
  46. Li Q. Wei X. Zhou Z.W. Wang S.N. Jin H. Chen K.J. Luo J. Westover K.D. Wang J.M. Wang D. Xu C.X. Shan J.L. GADD45α sensitizes cervical cancer cells to radiotherapy via increasing cytoplasmic APE1 level. Cell Death Dis. 2018 9 5 524 10.1038/s41419‑018‑0452‑x 29743554
    [Google Scholar]
  47. Zhang S. He L. Dai N. Guan W. Shan J. Yang X. Zhong Z. Qing Y. Jin F. Chen C. Yang Y. Wang H. Baugh L. Tell G. Wilson D.M. III Li M. Wang D. Serum APE1 as a predictive marker for platinum-based chemotherapy of non-small cell lung cancer patients. Oncotarget 2016 7 47 77482 77494 10.18632/oncotarget.13030 27813497
    [Google Scholar]
  48. Robertson K.A. Bullock H.A. Xu Y. Tritt R. Zimmerman E. Ulbright T.M. Foster R.S. Einhorn L.H. Kelley M.R. Altered expression of Ape1/ref-1 in germ cell tumors and overexpression in NT2 cells confers resistance to bleomycin and radiation. Cancer Res. 2001 61 5 2220 2225 11280790
    [Google Scholar]
  49. Fishel M.L. Kelley M.R. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol. Aspects Med. 2007 28 3-4 375 395 10.1016/j.mam.2007.04.005 17560642
    [Google Scholar]
  50. Sharbeen G. McCarroll J. Goldstein D. Phillips P.A. Exploiting base excision repair to improve therapeutic approaches for pancreatic cancer. Front. Nutr. 2015 2 10 10.3389/fnut.2015.00010 25988138
    [Google Scholar]
  51. Logsdon D.P. Regulation of HIF1α under Hypoxia by APE1/Ref-1 impacts CA9 expression: Dual-targeting in PatientDerived 3D pancreatic cancer models. Mol. Cancer Ther. 2016 15 2722 2732 10.1158/1535‑7163.MCT‑16‑0253 27535970
    [Google Scholar]
  52. Di Maso V. Avellini C. Crocè L.S. Rosso N. Quadrifoglio F. Cesaratto L. Codarin E. Bedogni G. Beltrami C.A. Tell G. Tiribelli C. Subcellular localization of APE1/Ref-1 in human Hepatocellular Carcinoma: Possible prognostic significance. Mol. Med. 2007 13 1-2 89 96 10.2119/2006‑00084.DiMaso
    [Google Scholar]
  53. Dai N. Cao X.J. Li M.X. Qing Y. Liao L. Lu X.F. Zhang S.H. Li Z. Yang Y.X. Wang D. Wang D. Serum APE1 autoantibodies: A novel potential tumor marker and predictor of chemotherapeutic efficacy in non-small cell lung cancer. PLoS One 2013 8 3 e58001 10.1371/journal.pone.0058001 23472128
    [Google Scholar]
  54. Pascut D. Sukowati C.H.C. Antoniali G. Mangiapane G. Burra S. Mascaretti L.G. Buonocore M.R. Crocè L.S. Tiribelli C. Tell G. Serum AP-endonuclease 1 (sAPE1) as novel biomarker for hepatocellular carcinoma. Oncotarget 2019 10 3 383 394 10.18632/oncotarget.26555 30719231
    [Google Scholar]
  55. Shin J.H. Choi S. Lee Y.R. Park M.S. Na Y.G. Irani K. Lee S.D. Park J.B. Kim J.M. Lim J.S. Jeon B.H. APE1/Ref-1 as a serological biomarker for the detection of bladder cancer. Cancer Res. Treat. 2015 47 4 823 833 10.4143/crt.2014.074 25672588
    [Google Scholar]
  56. Choi S. Shin J.H. Lee Y.R. Joo H.K. Song K.H. Na Y.G. Chang S.J. Lim J.S. Jeon B.H. Urinary APE1/Ref-1: A potential bladder cancer biomarker. Dis. Markers 2016 2016 1 8 10.1155/2016/7276502 27057081
    [Google Scholar]
  57. Qu J. Liu G.H. Huang B. Chen C. Nitric oxide controls nuclear export of APE1/Ref-1 through S-nitrosation of Cysteines 93 and 310. Nucleic Acids Res. 2007 35 8 2522 2532 10.1093/nar/gkl1163 17403694
    [Google Scholar]
  58. Zhu Q. Liu M. Dai L. Ying X. Ye H. Zhou Y. Han S. Zhang J.Y. Using immunoproteomics to identify tumor-associated antigens (TAAs) as biomarkers in cancer immunodiagnosis. Autoimmun. Rev. 2013 12 12 1123 1128 10.1016/j.autrev.2013.06.015 23806562
    [Google Scholar]
  59. Li J. Qin B. Huang M. Ma Y. Li D. Li W. Guo Z. Tumor-associated Antigens (TAAs) for the serological diagnosis of Osteosarcoma. Front. Immunol. 2021 12 665106 10.3389/fimmu.2021.665106 33995397
    [Google Scholar]
  60. Galle P.R. Foerster F. Kudo M. Chan S.L. Llovet J.M. Qin S. Schelman W.R. Chintharlapalli S. Abada P.B. Sherman M. Zhu A.X. Biology and significance of alpha‐fetoprotein in hepatocellular carcinoma. Liver Int. 2019 39 12 2214 2229 10.1111/liv.14223 31436873
    [Google Scholar]
  61. Fletcher R.H. Carcinoembryonic Antigen. Ann. Intern. Med. 1986 104 1 66 73 10.7326/0003‑4819‑104‑1‑66 3510056
    [Google Scholar]
  62. Katsumata Y. Kawaguchi Y. Baba S. Hattori S. Tahara K. Ito K. Iwasaki T. Yamaguchi N. Oyama M. Kozuka-Hata H. Hattori H. Nagata K. Yamanaka H. Hara M. Identification of three new autoantibodies associated with systemic lupus erythematosus using two proteomic approaches. Mol. Cell. Proteomics 2011 10 6 M110.005330 10.1074/mcp.M110.005330 21474795
    [Google Scholar]
  63. Zinkernagel R.M. What is missing in immunology to understand immunity? Nat. Immunol. 2000 1 3 181 185 10.1038/79712 10973269
    [Google Scholar]
  64. Desmetz C. Mange A. Maudelonde T. Solassol J. Autoantibody signatures: Progress and perspectives for early cancer detection. J. Cell. Mol. Med. 2011 15 10 2013 2024 10.1111/j.1582‑4934.2011.01355.x 21651719
    [Google Scholar]
  65. Folli F. Solimena M. Cofiell R. Austoni M. Tallini G. Fasseta G. Bates D. Cartlidge N. Bottazzo G.F. Piccolo G. De Camilli P. Autoantibodies to a 128-kd synaptic protein in three women with the stiff-man syndrome and breast cancer. N. Engl. J. Med. 1993 328 8 546 551 10.1056/NEJM199302253280805 8381208
    [Google Scholar]
  66. Huajun W. Ying F. Hongxing Z. Weifeng S. Pingyang S. Mingde H. Guoguang L. Clinical value of combined detection of serum APE1-Aabs and CEACAM-1 in the diagnosis of colorectal cancer. Eur. Rev. Med. Pharmacol. Sci. 2018 22 5 1286 1289 29565485
    [Google Scholar]
  67. Antonia S.J. Mirza N. Fricke I. Chiappori A. Thompson P. Williams N. Bepler G. Simon G. Janssen W. Lee J.H. Menander K. Chada S. Gabrilovich D.I. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin. Cancer Res. 2006 12 3 878 887 10.1158/1078‑0432.CCR‑05‑2013 16467102
    [Google Scholar]
  68. Labuschagne C.F. Zani F. Vousden K.H. Control of metabolism by p53 – Cancer and beyond. Biochim. Biophys. Acta Rev. Cancer 2018 1870 1 32 42 10.1016/j.bbcan.2018.06.001 29883595
    [Google Scholar]
  69. Tan H.T. Low J. Lim S.G. Chung M.C.M. Serum autoantibodies as biomarkers for early cancer detection. FEBS J. 2009 276 23 6880 6904 10.1111/j.1742‑4658.2009.07396.x 19860826
    [Google Scholar]
  70. Lee J.W. Jin J. Rha K.S. Kim Y.M. Expression pattern of apurinic/apyrimidinic endonuclease in sinonasal squamous cell carcinoma. Otolaryngol. Head Neck Surg. 2012 147 4 788 795 10.1177/0194599812449987 22645113
    [Google Scholar]
  71. Wen X. Lu R. Xie S. Zheng H. Wang H. Wang Y. Sun J. Gao X. Guo L. APE1 overexpression promotes the progression of ovarian cancer and serves as a potential therapeutic target. Cancer Biomark. 2016 17 3 313 322 10.3233/CBM‑160643 27802207
    [Google Scholar]
  72. Fung H. Kow Y.W. Van Houten B. Taatjes D.J. Hatahet Z. Janssen Y.M.W. Vacek P. Faux S.P. Mossman B.T. Asbestos increases mammalian AP-endonuclease gene expression, protein levels, and enzyme activity in mesothelial cells. Cancer Res. 1998 58 2 189 194 9443389
    [Google Scholar]
  73. Tomkinson A.E. Bonk R.T. Linn S. Mitochondrial endonuclease activities specific for apurinic/apyrimidinic sites in DNA from mouse cells. J. Biol. Chem. 1988 263 25 12532 12537 10.1016/S0021‑9258(18)37787‑1 2457585
    [Google Scholar]
  74. Fan Z. Beresford P.J. Zhang D. Lieberman J. HMG2 interacts with the nucleosome assembly protein SET and is a target of the cytotoxic T-lymphocyte protease granzyme A. Mol. Cell. Biol. 2002 22 8 2810 2820 10.1128/MCB.22.8.2810‑2820.2002 11909973
    [Google Scholar]
  75. Fan Z. Beresford P.J. Zhang D. Xu Z. Novina C.D. Yoshida A. Pommier Y. Lieberman J. Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat. Immunol. 2003 4 2 145 153 10.1038/ni885 12524539
    [Google Scholar]
  76. Caston R.A. Gampala S. Armstrong L. Messmann R.A. Fishel M.L. Kelley M.R. The multifunctional APE1 DNA repair–redox signaling protein as a drug target in human disease. Drug Discov. Today 2021 26 1 218 228 10.1016/j.drudis.2020.10.015 33148489
    [Google Scholar]
  77. Chen Y. Ma H. Wang W. Zhang M. A size-tunable nanoplatform: Enhanced MMP2-activated chemo-photodynamic immunotherapy based on biodegradable mesoporous silica nanoparticles. Biomater. Sci. 2021 9 3 917 929 10.1039/D0BM01452D 33284292
    [Google Scholar]
  78. Zhang M. Ma H. Wang X. Yu B. Cong H. Shen Y. Polysaccharide-based nanocarriers for efficient transvascular drug delivery. J. Control. Release 2023 354 167 187 10.1016/j.jconrel.2022.12.051 36581260
    [Google Scholar]
  79. Li S. Tian T. Zhang T. Cai X. Lin Y. Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Mater. Today 2019 24 57 68 10.1016/j.mattod.2018.08.002
    [Google Scholar]
  80. Zhang Y. Deng Y. Wang C. Li L. Xu L. Yu Y. Su X. Probing and regulating the activity of cellular enzymes by using DNA tetrahedron nanostructures. Chem. Sci. (Camb.) 2019 10 23 5959 5966 10.1039/C9SC01912J 31360402
    [Google Scholar]
  81. Li J.J. Du W.F. Liu Y.N. Wang F. Tang L.J. Jiang J.H. Protein-scaffolded DNA nanostructures for imaging of Apurinic/Apyrimidinic Endonuclease 1 activity in live cells. Anal. Chem. 2023 95 7 3551 3555 10.1021/acs.analchem.2c05504 36774652
    [Google Scholar]
  82. Yu Y. Zhang L. Qin Z. Karges J. Xiao H. Su X. Unraveling and overcoming platinum drug‐resistant cancer tumors with DNA nanostructures. Adv. Funct. Mater. 2023 33 2 2208797 10.1002/adfm.202208797
    [Google Scholar]
  83. Hu Y. Chen Z. Zhang H. Li M. Hou Z. Luo X. Xue X. Development of DNA tetrahedron-based drug delivery system. Drug Deliv. 2017 24 1 1295 1301 10.1080/10717544.2017.1373166 28891335
    [Google Scholar]
  84. Jiang D. England C.G. Cai W. DNA nanomaterials for preclinical imaging and drug delivery. J. Control. Release 2016 239 27 38 10.1016/j.jconrel.2016.08.013 27527555
    [Google Scholar]
  85. Ma W. Zhan Y. Zhang Y. Mao C. Xie X. Lin Y. The biological applications of DNA nanomaterials: Current challenges and future directions. Signal Transduct. Target. Ther. 2021 6 1 351 10.1038/s41392‑021‑00727‑9 34620843
    [Google Scholar]
  86. Chen T. Zhou J. Li P. Tang C. Xu K. Li T. Ren T. SOX2 knockdown with siRNA reverses cisplatin resistance in NSCLC by regulating APE1 signaling. Med. Oncol. 2022 39 3 36 10.1007/s12032‑021‑01626‑3 35059870
    [Google Scholar]
  87. Yang Z.Z. Li M.X. Zhang Y.S. Xiang D.B. Dai N. Zeng L.L. Li Z.P. Wang G. Wang D. Knock down of the dual functional protein apurinic /apyrimidinic endonuclease 1 enhances the killing effect of hematoporphrphyrin derivative‐mediated photodynamic therapy on non‐small cell lung cancer cells in vitro and in a xenograft model. Cancer Sci. 2010 101 1 180 187 10.1111/j.1349‑7006.2009.01366.x 19860842
    [Google Scholar]
  88. Wang D. Luo M. Kelley M.R. Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: Enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol. Cancer Ther. 2004 3 6 679 686 10.1158/1535‑7163.679.3.6 15210853
    [Google Scholar]
  89. Bapat A. Glass L.S. Luo M. Fishel M.L. Long E.C. Georgiadis M.M. Kelley M.R. Novel small-molecule inhibitor of apurinic/apyrimidinic endonuclease 1 blocks proliferation and reduces viability of glioblastoma cells. J. Pharmacol. Exp. Ther. 2010 334 3 988 998 10.1124/jpet.110.169128 20504914
    [Google Scholar]
  90. McNeill D.R. Lam W. DeWeese T.L. Cheng Y.C. Wilson D.M. III Impairment of APE1 function enhances cellular sensitivity to clinically relevant alkylators and antimetabolites. Mol. Cancer Res. 2009 7 6 897 906 10.1158/1541‑7786.MCR‑08‑0519 19470598
    [Google Scholar]
  91. Sengupta S. Mantha A.K. Mitra S. Bhakat K.K. Human AP endonuclease (APE1/Ref-1) and its acetylation regulate YB-1-p300 recruitment and RNA polymerase II loading in the drug-induced activation of multidrug resistance gene MDR1. Oncogene 2011 30 4 482 493 10.1038/onc.2010.435 20856196
    [Google Scholar]
  92. Shah F. Logsdon D. Messmann R.A. Fehrenbacher J.C. Fishel M.L. Kelley M.R. Exploiting the Ref-1-APE1 node in cancer signaling and other diseases: From bench to clinic NPJ Precis Oncol 2017 1 19 10.1038/s41698‑017‑0023‑0
    [Google Scholar]
  93. Jiang Y. Zhou S. Sandusky G.E. Kelley M.R. Fishel M.L. Reduced expression of DNA repair and redox signaling protein APE1/Ref-1 impairs human pancreatic cancer cell survival, proliferation, and cell cycle progression. Cancer Invest. 2010 28 9 885 895 10.3109/07357907.2010.512816 20919954
    [Google Scholar]
  94. Wu H.H. Chu Y.C. Wang L. Tsai L.H. Lee M.C. Chen C.Y. Shieh S.H. Cheng Y.W. Lee H. Cytoplasmic Ape1 expression elevated by p53 aberration may predict survival and relapse in resected non-small cell lung cancer. Ann. Surg. Oncol. 2013 20 S3 Suppl. 3 336 347 10.1245/s10434‑012‑2431‑2 22688662
    [Google Scholar]
  95. Zawahir Z. Dayam R. Deng J. Pereira C. Neamati N. Pharmacophore guided discovery of small-molecule human apurinic/apyrimidinic endonuclease 1 inhibitors. J. Med. Chem. 2009 52 1 20 32 10.1021/jm800739m 19072053
    [Google Scholar]
  96. Liuzzi M. Weinfeld M. Paterson M.C. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4. Biochemistry 1987 26 12 3315 3321 10.1021/bi00386a011 2443160
    [Google Scholar]
  97. Montaldi A.P. Sakamoto-Hojo E.T. Methoxyamine sensitizes the resistant glioblastoma T98G cell line to the alkylating agent temozolomide. Clin. Exp. Med. 2013 13 4 279 288 10.1007/s10238‑012‑0201‑x 22828727
    [Google Scholar]
  98. Fishel M.L. He Y. Smith M.L. Kelley M.R. Manipulation of base excision repair to sensitize ovarian cancer cells to alkylating agent temozolomide. Clin. Cancer Res. 2007 13 1 260 267 10.1158/1078‑0432.CCR‑06‑1920 17200364
    [Google Scholar]
  99. Madhusudan S. Smart F. Shrimpton P. Parsons J.L. Gardiner L. Houlbrook S. Talbot D.C. Hammonds T. Freemont P.A. Sternberg M.J.E. Dianov G.L. Hickson I.D. Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res. 2005 33 15 4711 4724 10.1093/nar/gki781 16113242
    [Google Scholar]
  100. Simeonov A. Kulkarni A. Dorjsuren D. Jadhav A. Shen M. McNeill D.R. Austin C.P. Wilson D.M. III Wilson D.M. Identification and characterization of inhibitors of human apurinic/apyrimidinic endonuclease APE1. PLoS One 2009 4 6 e5740 10.1371/journal.pone.0005740 19484131
    [Google Scholar]
  101. Rai G. Vyjayanti V.N. Dorjsuren D. Simeonov A. Jadhav A. Wilson D.M. III Maloney D.J. Synthesis, biological evaluation, and structure-activity relationships of a novel class of apurinic/apyrimidinic endonuclease 1 inhibitors. J. Med. Chem. 2012 55 7 3101 3112 10.1021/jm201537d 22455312
    [Google Scholar]
  102. Ruiz F.M. Francis S.M. Tintoré M. Ferreira R. Gil-Redondo R. Morreale A. Ortiz Á.R. Eritja R. Fàbrega C. Receptor-based virtual screening and biological characterization of human apurinic/apyrimidinic endonuclease (Ape1) inhibitors. ChemMedChem 2012 7 12 2168 2178 10.1002/cmdc.201200372 23109358
    [Google Scholar]
  103. Dorjsuren D. Kim D. Vyjayanti V.N. Maloney D.J. Jadhav A. Wilson D.M. III Simeonov A. Simeonov A. Diverse small molecule inhibitors of human apurinic/apyrimidinic endonuclease APE1 identified from a screen of a large public collection. PLoS One 2012 7 10 e47974 10.1371/journal.pone.0047974 23110144
    [Google Scholar]
  104. Pidugu L.S. Servius H.W. Sevdalis S.E. Cook M.E. Varney K.M. Pozharski E. Drohat A.C. Drohat A.C. Characterizing inhibitors of human AP endonuclease 1. PLoS One 2023 18 1 e0280526 10.1371/journal.pone.0280526 36652434
    [Google Scholar]
  105. Feng Z. Kochanek S. Close D. Wang L. Srinivasan A. Almehizia A.A. Iyer P. Xie X.Q. Johnston P.A. Gold B. Design and activity of AP endonuclease-1 inhibitors. J. Chem. Biol. 2015 8 3 79 93 10.1007/s12154‑015‑0131‑7 26101550
    [Google Scholar]
  106. Arlt A. Gehrz A. Müerköster S. Vorndamm J. Kruse M.L. Fölsch U.R. Schäfer H. Role of NF-κB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 2003 22 21 3243 3251 10.1038/sj.onc.1206390 12761494
    [Google Scholar]
  107. Arlt A. Vorndamm J. Breitenbroich M. Fölsch U.R. Kalthoff H. Schmidt W.E. Schäfer H. Inhibition of NF-κB sensitizes human pancreatic carcinoma cells to apoptosis induced by etoposide (VP16) or doxorubicin. Oncogene 2001 20 7 859 868 10.1038/sj.onc.1204168 11314019
    [Google Scholar]
  108. Raffoul J.J. Heydari A.R. Hillman G.G. DNA repair and cancer therapy: Targeting APE1/Ref-1 using dietary agents. J. Oncol. 2012 2012 1 11 10.1155/2012/370481 22997517
    [Google Scholar]
  109. Sarkar F.H. Li Y. Wang Z. Kong D. Cellular signaling perturbation by natural products. Cell. Signal. 2009 21 11 1541 1547 10.1016/j.cellsig.2009.03.009 19298854
    [Google Scholar]
  110. Sarkar F.H. Li Y. Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics. Cancer Treat. Rev. 2009 35 7 597 607 10.1016/j.ctrv.2009.07.001 19660870
    [Google Scholar]
  111. Yang S. Irani K. Heffron S.E. Jurnak F. Meyskens F.L. Jr Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor. Mol. Cancer Ther. 2005 4 12 1923 1935 10.1158/1535‑7163.MCT‑05‑0229 16373707
    [Google Scholar]
  112. Boocock D.J. Faust G.E.S. Patel K.R. Schinas A.M. Brown V.A. Ducharme M.P. Booth T.D. Crowell J.A. Perloff M. Gescher A.J. Steward W.P. Brenner D.E. Phase I. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol. Biomarkers Prev. 2007 16 6 1246 1252 10.1158/1055‑9965.EPI‑07‑0022 17548692
    [Google Scholar]
  113. Seo Y.R. Sweeney C. Smith M.L. Selenomethionine induction of DNA repair response in human fibroblasts. Oncogene 2002 21 23 3663 3669 10.1038/sj.onc.1205468 12032834
    [Google Scholar]
  114. Shimizu N. Sugimoto K. Tang J. Nishi T. Sato I. Hiramoto M. Aizawa S. Hatakeyama M. Ohba R. Hatori H. Yoshikawa T. Suzuki F. Oomori A. Tanaka H. Kawaguchi H. Watanabe H. Handa H. High-performance affinity beads for identifying drug receptors. Nat. Biotechnol. 2000 18 8 877 881 10.1038/78496 10932159
    [Google Scholar]
  115. Zou G.M. Maitra A. Small-molecule inhibitor of the AP endonuclease 1/REF-1 E3330 inhibits pancreatic cancer cell growth and migration. Mol. Cancer Ther. 2008 7 7 2012 2021 10.1158/1535‑7163.MCT‑08‑0113 18645011
    [Google Scholar]
  116. Manguinhas R. Fernandes A.S. Costa J.G. Saraiva N. Camões S.P. Gil N. Rosell R. Castro M. Miranda J.P. Oliveira N.G. Impact of the APE1 redox function inhibitor E3330 in non-small cell lung cancer cells exposed to cisplatin: Increased cytotoxicity and impairment of cell migration and invasion. Antioxidants 2020 9 6 550 10.3390/antiox9060550 32599967
    [Google Scholar]
  117. Guerreiro P.S. Corvacho E. Costa J.G. Saraiva N. Fernandes A.S. Castro M. Miranda J.P. Oliveira N.G. The APE1 redox inhibitor E3330 reduces collective cell migration of human breast cancer cells and decreases chemoinvasion and colony formation when combined with docetaxel. Chem. Biol. Drug Des. 2017 90 4 561 571 10.1111/cbdd.12979 28303665
    [Google Scholar]
  118. Jiang A. Gao H. Kelley M.R. Qiao X. Inhibition of APE1/Ref-1 redox activity with APX3330 blocks retinal angiogenesis in vitro and in vivo. Vision Res. 2011 51 1 93 100 10.1016/j.visres.2010.10.008 20937296
    [Google Scholar]
  119. Kelley M.R. Wikel J.H. Guo C. Pollok K.E. Bailey B.J. Wireman R. Fishel M.L. Vasko M.R. Identification and characterization of new chemical entities targeting Apurinic/Apyrimidinic Endonuclease 1 for the prevention of Chemotherapy-induced Peripheral neuropathy. J. Pharmacol. Exp. Ther. 2016 359 2 300 309 10.1124/jpet.116.235283 27608656
    [Google Scholar]
  120. Luo M. Delaplane S. Jiang A. Reed A. He Y. Fishel M. Nyland R.L. II Borch R.F. Qiao X. Georgiadis M.M. Kelley M.R. Role of the multifunctional DNA repair and redox signaling protein Ape1/Ref-1 in cancer and endothelial cells: small-molecule inhibition of the redox function of Ape1. Antioxid. Redox Signal. 2008 10 11 1853 1867 10.1089/ars.2008.2120 18627350
    [Google Scholar]
  121. Nyland R.L. II Luo M. Kelley M.R. Borch R.F. Design and synthesis of novel quinone inhibitors targeted to the redox function of apurinic/apyrimidinic endonuclease 1/redox enhancing factor-1 (Ape1/ref-1). J. Med. Chem. 2010 53 3 1200 1210 10.1021/jm9014857 20067291
    [Google Scholar]
  122. Zou G.M. Luo M.H. Reed A. Kelley M.R. Yoder M.C. Ape1 regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain. Blood 2007 109 5 1917 1922 10.1182/blood‑2006‑08‑044172 17053053
    [Google Scholar]
  123. Kelley M.R. Luo M. Reed A. Su D. Delaplane S. Borch R.F. Nyland R.L. II Gross M.L. Georgiadis M.M. Functional analysis of novel analogues of E3330 that block the redox signaling activity of the multifunctional AP Endonuclease/Redox signaling Enzyme APE1/Ref-1. Antioxid. Redox Signal. 2011 14 8 1387 1401 10.1089/ars.2010.3410
    [Google Scholar]
  124. Sun Z. Zhu Y. Aminbuhe Q. Fan Q. Peng J. Zhang N. Differential expression of APE1 in hepatocellular carcinoma and the effects on proliferation and apoptosis of cancer cells. Biosci. Trends 2018 12 5 456 462 10.5582/bst.2018.01239 30473552
    [Google Scholar]
  125. Di Maso V. Mediavilla M.G. Vascotto C. Lupo F. Baccarani U. Avellini C. Tell G. Tiribelli C. Crocè L.S. Crocè L.S. Transcriptional up-regulation of APE1/Ref-1 in hepatic tumor: Role in hepatocytes resistance to oxidative stress and apoptosis. PLoS One 2015 10 12 e0143289 10.1371/journal.pone.0143289 26624999
    [Google Scholar]
  126. Chen T. Liu C. Lu H. Yin M. Shao C. Hu X. Wu J. Wang Y. The expression of APE1 in triple-negative breast cancer and its effect on drug sensitivity of olaparib. Tumour Biol. 2017 39 10 10.1177/1010428317713390 29064327
    [Google Scholar]
  127. Jian D. Li X.M. Dai N. Liang D.D. Zhang G. Mao C.Y. Wang D. Song G.B. Li M.X. Luo H. Kabra A. Inhibition of APE1 expression enhances the antitumor activity of Olaparib in triple-negative breast cancer. Evid. Based Complement. Alternat. Med. 2022 2022 1 10 10.1155/2022/6048017 35463096
    [Google Scholar]
  128. Qing Y. Li Q. Ren T. Xia W. Peng Y. Liu G. Luo H. Yang Y. Dai X. Zhou S.F. Wang D. Upregulation of PD-L1 and APE1 is associated with tumorigenesis and poor prognosis of gastric cancer. Drug Des. Devel. Ther. 2015 9 901 909 10.2147/DDDT.S75152 25733810
    [Google Scholar]
  129. and Alternative Medicine E-B.C. In silico identification of hub genes as observing biomarkers for gastric cancer Metastasis. Evid. Based Complement. Alternat. Med. 2023 2023 1 9780939 10.1155/2023/9780939
    [Google Scholar]
  130. Poletto M. Malfatti M.C. Dorjsuren D. Scognamiglio P.L. Marasco D. Vascotto C. Jadhav A. Maloney D.J. Wilson D.M. III Simeonov A. Tell G. Inhibitors of the apurinic/apyrimidinic endonuclease 1 (APE1)/nucleophosmin (NPM1) interaction that display anti-tumor properties. Mol. Carcinog. 2016 55 5 688 704 10.1002/mc.22313 25865359
    [Google Scholar]
  131. Hong J. Chen Z. Peng D. Zaika A. Revetta F. Washington M.K. Belkhiri A. El-Rifai W. APE1-mediated DNA damage repair provides survival advantage for esophageal adenocarcinoma cells in response to acidic bile salts. Oncotarget 2016 7 13 16688 16702 10.18632/oncotarget.7696 26934647
    [Google Scholar]
  132. Bhat A.A. Lu H. Soutto M. Capobianco A. Rai P. Zaika A. El-Rifai W. Exposure of Barrett’s and esophageal adenocarcinoma cells to bile acids activates EGFR–STAT3 signaling axis via induction of APE1. Oncogene 2018 37 46 6011 6024 10.1038/s41388‑018‑0388‑8 29991802
    [Google Scholar]
  133. Sak S.C. Harnden P. Johnston C.F. Paul A.B. Kiltie A.E. APE1 and XRCC1 protein expression levels predict cancer-specific survival following radical radiotherapy in bladder cancer. Clin. Cancer Res. 2005 11 17 6205 6211 10.1158/1078‑0432.CCR‑05‑0045 16144922
    [Google Scholar]
  134. Lou D. Zhu L. Ding H. Dai H.Y. Zou G.M. Aberrant expression of redox protein Ape1 in colon cancer stem cells. Oncol. Lett. 2014 7 4 1078 1082 10.3892/ol.2014.1864 24944672
    [Google Scholar]
  135. Codrich M. Comelli M. Malfatti M.C. Mio C. Ayyildiz D. Zhang C. Kelley M.R. Terrosu G. Pucillo C.E.M. Tell G. Inhibition of APE1-endonuclease activity affects cell metabolism in colon cancer cells via a p53-dependent pathway. DNA Repair (Amst.) 2019 82 102675 10.1016/j.dnarep.2019.102675 31450087
    [Google Scholar]
  136. Kühl Svoboda Baldin R. Austrália Paredes Marcondes Ribas C. de Noronha L. Veloso da Silva-Camargo C.C. Santos Sotomaior V. Martins Sebastião A.P. Vasconcelos de Castilho A.P. Rodrigues Montemor Netto M. Expression of Parkin, APC, APE1, and Bcl-xL in Colorectal Polyps. J. Histochem. Cytochem. 2021 69 7 437 449 10.1369/00221554211026296 34126796
    [Google Scholar]
  137. Zhang Q. Dong G. Wang F. Ding W. Correlation between the changes of serum COX 2, APE1, VEGF, TGF-β and TSGF levels and prognosis in patients with osteosarcoma before and after treatment. J. Cancer Res. Ther. 2020 16 2 335 342 10.4103/jcrt.JCRT_11_20 32474521
    [Google Scholar]
  138. Chen Y. Yang Y. Yuan Z. Wang C. Shi Y. Predicting chemosensitivity in osteosarcoma prior to chemotherapy: An investigational study of biomarkers with immunohistochemistry. Oncol. Lett. 2012 3 5 1011 1016 10.3892/ol.2012.604 22783382
    [Google Scholar]
  139. Jiang X. Shan J. Dai N. Zhong Z. Qing Y. Yang Y. Zhang S. Li C. Sui J. Ren T. Li M. Wang D. Apurinic/apyrimidinic endonuclease 1 regulates angiogenesis in a transforming growth factor β‐dependent manner in human osteosarcoma. Cancer Sci. 2015 106 10 1394 1401 10.1111/cas.12763 26250694
    [Google Scholar]
  140. Schindl M. Oberhuber G. Pichlbauer E. Obermair A. Birner P. Kelley M. DNA repair-redox enzyme apurinic endonuclease in cervical cancer: Evaluation of redox control of HIF-1α and prognostic significance. Int. J. Oncol. 2001 19 4 799 802 10.3892/ijo.19.4.799 11562758
    [Google Scholar]
  141. Pramanik S. Chen Y. Song H. Khutsishvili I. Marky L.A. Ray S. Natarajan A. Pankaj K. The human AP-endonuclease 1 (APE1) is a DNA G-quadruplex structure binding protein and regulatesKRASexpression in pancreatic ductal adenocarcinoma cells. Nucleic Acids Res. 2022 50 3394 3412 10.1093/nar/gkac172 35286386
    [Google Scholar]
  142. Bhakat K.K. Sengupta S. Adeniyi V.F. Roychoudhury S. Nath S. Bellot L.J. Feng D. Mantha A.K. Sinha M. Qiu S. Luxon B.A. Regulation of limited N-terminal proteolysis of APE1 in tumor via acetylation and its role in cell proliferation. Oncotarget 2016 7 16 22590 22604 http://dx.doi.org/ 10.18632/oncotarget.8026
    [Google Scholar]
  143. Kelley M.R. Cheng L. Foster R. Tritt R. Jiang J. Broshears J. Koch M. Elevated and altered expression of the multifunctional DNA base excision repair and redox enzyme Ape1/ref-1 in prostate cancer. Clin. Cancer Res. 2001 7 4 824 830 11309329
    [Google Scholar]
  144. Escobar I. Xu J. Jackson C.W. Stegelmann S.D. Fagerli E.A. Dave K.R. Perez-Pinzon M.A. Resveratrol preconditioning protects against Ischemia-induced Synaptic dysfunction and cofilin Hyperactivation in the mouse Hippocampal slice. Neurotherapeutics 2023 20 4 1177 1197 10.1007/s13311‑023‑01386‑0 37208551
    [Google Scholar]
  145. Zhong C. Xu M. Wang Y. Xu J. Yuan Y. Yuan Y. An APE1 inhibitor reveals critical roles of the redox function of APE1 in KSHV replication and pathogenic phenotypes. PLoS Pathog. 2017 13 4 e1006289 10.1371/journal.ppat.1006289 28380040
    [Google Scholar]
  146. Xue Z. Demple B. Knockout and inhibition of Ape1: Roles of Ape1 in base excision DNA repair and modulation of Gene expression. Antioxidants 2022 11 9 1817 10.3390/antiox11091817 36139891
    [Google Scholar]
  147. Naidu M.D. Agarwal R. Pena L.A. Cunha L. Mezei M. Shen M. Wilson D.M. III Liu Y. Sanchez Z. Chaudhary P. Wilson S.H. Waring M.J. Waring M.J. Lucanthone and its derivative hycanthone inhibit apurinic endonuclease-1 (APE1) by direct protein binding. PLoS One 2011 6 9 e23679 10.1371/journal.pone.0023679 21935361
    [Google Scholar]
  148. Luo M. Kelley M.R. Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. Anticancer Res. 2004 24 4 2127 2134 15330152
    [Google Scholar]
  149. Srinivasan A. Wang L. Cline C.J. Xie Z. Sobol R.W. Xie X.Q. Gold B. Identification and characterization of human apurinic/apyrimidinic endonuclease-1 inhibitors. Biochemistry 2012 51 31 6246 6259 10.1021/bi300490r 22788932
    [Google Scholar]
  150. Seiple L.A. Cardellina J.H. II Akee R. Stivers J.T. Potent inhibition of human apurinic/apyrimidinic endonuclease 1 by arylstibonic acids. Mol. Pharmacol. 2008 73 3 669 677 10.1124/mol.107.042622 18042731
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665338519241114103223
Loading
/content/journals/ppl/10.2174/0109298665338519241114103223
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: protein ; tumor ; diagnosis ; APE1 ; biomacromolecule ; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test