Skip to content
2000
Volume 32, Issue 1
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Alzheimer's disease (AD) treatments currently available have ineffective results. Previously employed Acetylcholine esterase inhibitors and memantine, an NMDA receptor antagonist, target a single target structure that plays a complex role in the multifactorial progression of disease. Memantine moderates the toxic effects of excessive glutamate activity by blocking NMDA receptors, which decreases neurotoxicity in AD, while acetylcholine esterase inhibitors function by blocking cholinergic receptors (muscarinic and nicotinic), preventing the breakdown of acetylcholine, thereby enhancing cholinergic transmission, thus improving cognitive functions in mild to moderate stages of AD. Every drug class targets a distinct facet of the intricate pathophysiology of AD, indicating the diverse strategy required to counteract the advancement of this neurodegenerative disorder. Thus, patients are currently not getting much benefit from current drugs. A closer look at the course of AD revealed several potential target structures for future drug discovery. AD drug development strategies focus on developing new target structures in addition to well-established ones for combination treatment regimens, ideally with a single drug that can target two different target structures. Because of their roles in AD progression pathways like pathologic tau protein phosphorylations as well as amyloid β toxicity, protein kinases have been identified as potential targets. This review will give a quick rundown of the first inhibitors of single protein kinases, such as glycogen synthase kinase (gsk3) β, along with cyclin-dependent kinase 5. We will also look into novel inhibitors that target recently identified protein kinases in Alzheimer's disease, such as dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Additionally, multitargeting inhibitors, which target multiple protein kinases as well as those thought to be involved in other processes related to AD will be discussed. This kind of multitargeting offers prospective hope for improved patient outcomes down the road since it is the most effective way to impede multifactorial disease development.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665348075241121071614
2024-12-23
2025-07-13
Loading full text...

Full text loading...

References

  1. BirksJ. Cholinesterase inhibitors for Alzheimer’s disease.Cochrane Database Syst. Rev.200620061CD00559316437532
    [Google Scholar]
  2. McShaneR. Areosa SastreA. MinakaranN. Memantine for dementia.Cochrane Database Syst. Rev.20062CD00315416625572
    [Google Scholar]
  3. TerryA.V.Jr BuccafuscoJ.J. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development.J. Pharmacol. Exp. Ther.2003306382182710.1124/jpet.102.04161612805474
    [Google Scholar]
  4. RainaP. SantaguidaP. IsmailaA. PattersonC. CowanD. LevineM. BookerL. OremusM. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: Evidence review for a clinical practice guideline.Ann. Intern. Med.2008148537939710.7326/0003‑4819‑148‑5‑200803040‑0000918316756
    [Google Scholar]
  5. IqbalK. Grundke-IqbalI. Alzheimer disease is multifactorial and heterogeneous.Neurobiol. Aging200021690190210.1016/S0197‑4580(00)00191‑311124439
    [Google Scholar]
  6. MohandasE. RajmohanV. RaghunathB. Neurobiology of alzheimer′s disease.Indian J. Psychiatry2009511556110.4103/0019‑5545.4490819742193
    [Google Scholar]
  7. PiauA. NourhashémiF. HeinC. CaillaudC. VellasB. Progress in the development of new drugs in Alzheimer’s disease.J. Nutr. Health Aging2011151455710.1007/s12603‑011‑0012‑x21267520
    [Google Scholar]
  8. MattsonM.P. Secreted forms of β-amyloid precursor protein modulate dendrite outgrowth and calcium responses to glutamate in cultured embryonic hippocampal neurons.J. Neurobiol.199425443945010.1002/neu.4802504097915758
    [Google Scholar]
  9. PákáskiM. KálmánJ. Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease.Neurochem. Int.200853510311110.1016/j.neuint.2008.06.00518602955
    [Google Scholar]
  10. IqbalK. Grundke-IqbalI. Alzheimer neurofibrillary degeneration: Significance, etiopathogenesis, therapeutics and prevention.J. Cell. Mol. Med.2008121385510.1111/j.1582‑4934.2008.00225.x18194444
    [Google Scholar]
  11. Meraz-RíosM.A. Lira-De LeónK.I. Campos-PeñaV. De Anda-HernándezM.A. Mena-LópezR. Tau oligomers and aggregation in Alzheimer’s disease.J. Neurochem.201011261353136710.1111/j.1471‑4159.2009.06511.x19943854
    [Google Scholar]
  12. KrugM. HilgerothA. Recent advances in the development of multi-kinase inhibitors.Mini Rev. Med. Chem.20088131312132710.2174/13895570878636959118991750
    [Google Scholar]
  13. ZhangJ. YangP.L. GrayN.S. Targeting cancer with small molecule kinase inhibitors.Nat. Rev. Cancer200991283910.1038/nrc255919104514
    [Google Scholar]
  14. JeffreyL. RobertA. Targeting protein multiple conformations: A structure-based strategy for kinase drug design.Curr. Top. Med. Chem.20077141394140710.2174/15680260778169678317692028
    [Google Scholar]
  15. WoodgettJ.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A.EMBO J.1990982431243810.1002/j.1460‑2075.1990.tb07419.x2164470
    [Google Scholar]
  16. ShawP.C. DaviesA.F. LauK.F. Garcia-BarceloM. WayeM.M. LovestoneS. MillerC.C. AndertonB.H. Isolation and chromosomal mapping of human glycogen synthase kinase-3 alpha and -3 beta encoding genes.Genome19984157207279809441
    [Google Scholar]
  17. MukaiF. IshiguroK. SanoY. FujitaS.C. Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3β.J. Neurochem.20028151073108310.1046/j.1471‑4159.2002.00918.x12065620
    [Google Scholar]
  18. EmbiN. RylattD.B. CohenP. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase.Eur. J. Biochem.1980107251952710.1111/j.1432‑1033.1980.tb06059.x6249596
    [Google Scholar]
  19. RylattD.B. AitkenA. BilhamT. CondonG.D. EmbiN. CohenP. Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase kinase.Eur. J. Biochem.1980107252953710.1111/j.1432‑1033.1980.tb06060.x6772446
    [Google Scholar]
  20. WelshG. I. ProudC. G. Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2BBiochem. J.1993294Pt 362562910.1042/bj2940625
    [Google Scholar]
  21. HooperC. KillickR. LovestoneS. The GSK3 hypothesis of Alzheimer’s disease.J. Neurochem.200810461433143910.1111/j.1471‑4159.2007.05194.x18088381
    [Google Scholar]
  22. RayasamG.V. TulasiV.K. SodhiR. DavisJ.A. RayA. Glycogen synthase kinase 3: More than a namesake.Br. J. Pharmacol.2009156688589810.1111/j.1476‑5381.2008.00085.x19366350
    [Google Scholar]
  23. BeurelE. MichalekS.M. JopeR.S. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3).Trends Immunol.2010311243110.1016/j.it.2009.09.00719836308
    [Google Scholar]
  24. StambolicV. WoodgettJ. R. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylationBiochem J1994303Pt 3701704
    [Google Scholar]
  25. WangQ.M. FiolC.J. DePaoli-RoachA.A. RoachP.J. Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation.J. Biol. Chem.199426920145661457410.1016/S0021‑9258(17)36661‑97514173
    [Google Scholar]
  26. BhatR.V. ShanleyJ. CorrellM.P. FielesW.E. KeithR.A. ScottC.W. LeeC.M. Regulation and localization of tyrosine 216 phosphorylation of glycogen synthase kinase-3β in cellular and animal models of neuronal degeneration.Proc. Natl. Acad. Sci. USA20009720110741107910.1073/pnas.19029759710995469
    [Google Scholar]
  27. AliA. HoeflichK.P. WoodgettJ.R. Glycogen synthase kinase-3: Properties, functions, and regulation.Chem. Rev.200110182527254010.1021/cr000110o11749387
    [Google Scholar]
  28. ColeA. FrameS. CohenP. Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event.Biochem. J.2004377124925510.1042/bj2003125914570592
    [Google Scholar]
  29. ThorntonT.M. Pedraza-AlvaG. DengB. WoodC.D. AronshtamA. ClementsJ.L. SabioG. DavisR.J. MatthewsD.E. DobleB. RinconM. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation.Science2008320587666767010.1126/science.115603718451303
    [Google Scholar]
  30. SutherlandC. CampbellD.G. CohenP. Identification of insulin-stimulated protein kinase-1 as the rabbit equivalent of rskmo-2. Identification of two threonines phosphorylated during activation by mitogen-activated protein kinase.Eur. J. Biochem.1993212258158810.1111/j.1432‑1033.1993.tb17696.x8444194
    [Google Scholar]
  31. FangX. YuS.X. LuY. BastR.C.Jr WoodgettJ.R. MillsG.B. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A.Proc. Natl. Acad. Sci. USA20009722119601196510.1073/pnas.22041359711035810
    [Google Scholar]
  32. CrossD.A.E. AlessiD.R. CohenP. AndjelkovichM. HemmingsB.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.Nature1995378655978578910.1038/378785a08524413
    [Google Scholar]
  33. GoodeN. HughesK. WoodgettJ.R. ParkerP.J. Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes.J. Biol. Chem.199226724168781688210.1016/S0021‑9258(18)41866‑21324914
    [Google Scholar]
  34. DajaniR. FraserE. RoeS.M. YoungN. GoodV. DaleT.C. PearlL.H. Crystal structure of glycogen synthase kinase 3 beta: Structural basis for phosphate-primed substrate specificity and autoinhibition.Cell2001105672173210.1016/S0092‑8674(01)00374‑911440715
    [Google Scholar]
  35. SergeantN. BrettevilleA. HamdaneM. Caillet-BoudinM.L. GrognetP. BomboisS. BlumD. DelacourteA. PasquierF. VanmechelenE. Schraen-MaschkeS. BuéeL. Biochemistry of Tau in Alzheimer’s disease and related neurological disorders.Expert Rev. Proteomics20085220722410.1586/14789450.5.2.20718466052
    [Google Scholar]
  36. HangerD.P. AndertonB.H. NobleW. Tau phosphorylation: The therapeutic challenge for neurodegenerative disease.Trends Mol. Med.200915311211910.1016/j.molmed.2009.01.00319246243
    [Google Scholar]
  37. LucasJ.J. HernándezF. Gómez-RamosP. MoránM.A. HenR. AvilaJ. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice.EMBO J.2001201273910.1093/emboj/20.1.2711226152
    [Google Scholar]
  38. EngelT. Goñi-OliverP. LucasJ.J. AvilaJ. HernándezF. Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert.J. Neurochem.20069961445145510.1111/j.1471‑4159.2006.04139.x17059563
    [Google Scholar]
  39. BhatR.V. LeonovS. LuthmanJ. ScottC.W. LeeC.M. Interactions between GSK3β and caspase signalling pathways during NGF deprivation induced cell death.J. Alzheimers Dis.20024429130110.3233/JAD‑2002‑440412446931
    [Google Scholar]
  40. HernándezF. Gómez de BarredaE. Fuster-MatanzoA. LucasJ.J. AvilaJ. GSK3: A possible link between beta amyloid peptide and tau protein.Exp. Neurol.2010223232232510.1016/j.expneurol.2009.09.01119782073
    [Google Scholar]
  41. TakashimaA. NoguchiK. MichelG. MerckenM. HoshiM. IshiguroK. ImahoriK. Exposure of rat hippocampal neurons to amyloid β peptide (25–35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3β.Neurosci. Lett.19962031333610.1016/0304‑3940(95)12257‑58742040
    [Google Scholar]
  42. HoshiM. TakashimaA. NoguchiK. MurayamaM. SatoM. KondoS. SaitohY. IshiguroK. HoshinoT. ImahoriK. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain.Proc. Natl. Acad. Sci. USA19969372719272310.1073/pnas.93.7.27198610107
    [Google Scholar]
  43. Gómez-SintesR. HernándezF. LucasJ.J. AvilaJ. GSK-3 mouse models to study neuronal apoptosis and neurodegeneration.Front. Mol. Neurosci.201144510.3389/fnmol.2011.0004522110426
    [Google Scholar]
  44. YamaguchiH. IshiguroK. UchidaT. TakashimaA. LemereC.A. ImahoriK. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3β and cyclin-dependent kinase 5, a component of TPK II.Acta Neuropathol.199692323224110.1007/s0040100505138870824
    [Google Scholar]
  45. PeiJ.J. TanakaT. TungY.C. BraakE. IqbalK. Grundke-IqbalI. Distribution, levels, and activity of glycogen synthase kinase-3 in the alzheimer disease brain.J. Neuropathol. Exp. Neurol.1997561707810.1097/00005072‑199701000‑000078990130
    [Google Scholar]
  46. LeroyK. YilmazZ. BrionJ.P. Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration.Neuropathol. Appl. Neurobiol.2007331435510.1111/j.1365‑2990.2006.00795.x17239007
    [Google Scholar]
  47. CohenP. GoedertM. GSK3 inhibitors: Development and therapeutic potential.Nat. Rev. Drug Discov.20043647948710.1038/nrd141515173837
    [Google Scholar]
  48. BhatR.V. Budd HaeberleinS.L. AvilaJ. Glycogen synthase kinase 3: A drug target for CNS therapies.J. Neurochem.20048961313131710.1111/j.1471‑4159.2004.02422.x15189333
    [Google Scholar]
  49. KleinP.S. MeltonD.A. A molecular mechanism for the effect of lithium on development.Proc. Natl. Acad. Sci. USA199693168455845910.1073/pnas.93.16.84558710892
    [Google Scholar]
  50. RyvesW.J. HarwoodA.J. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium.Biochem. Biophys. Res. Commun.2001280372072510.1006/bbrc.2000.416911162580
    [Google Scholar]
  51. Chalecka-FranaszekE. ChuangD.M. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons.Proc. Natl. Acad. Sci. USA199996158745875010.1073/pnas.96.15.874510411946
    [Google Scholar]
  52. De SarnoP. LiX. JopeR.S. Regulation of Akt and glycogen synthase kinase-3β phosphorylation by sodium valproate and lithium.Neuropharmacology20024371158116410.1016/S0028‑3908(02)00215‑012504922
    [Google Scholar]
  53. MartinezA. AlonsoM. CastroA. PérezC. MorenoF.J. First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: Thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease.J. Med. Chem.20024561292129910.1021/jm011020u11881998
    [Google Scholar]
  54. SmithD.G. BuffetM. FenwickA.E. HaighD. IfeR.J. SaundersM. SlingsbyB.P. StaceyR. WardR.W. 3-Anilino-4-arylmaleimides: Potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3).Bioorg. Med. Chem. Lett.200111563563910.1016/S0960‑894X(00)00721‑611266159
    [Google Scholar]
  55. LeclercS. GarnierM. HoesselR. MarkoD. BibbJ.A. SnyderG.L. GreengardP. BiernatJ. WuY.Z. MandelkowE.M. EisenbrandG. MeijerL. Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors?J. Biol. Chem.2001276125126010.1074/jbc.M00246620011013232
    [Google Scholar]
  56. LeostM. SchultzC. LinkA. WuY.Z. BiernatJ. MandelkowE.M. BibbJ.A. SnyderG.L. GreengardP. ZaharevitzD.W. GussioR. SenderowiczA.M. SausvilleE.A. KunickC. MeijerL. Paullones are potent inhibitors of glycogen synthase kinase-3β and cyclin-dependent kinase 5/p25.Eur. J. Biochem.2000267195983599410.1046/j.1432‑1327.2000.01673.x10998059
    [Google Scholar]
  57. NguyenT.B. LuceroG.R. ChanaG. HultB.J. TatroE.T. MasliahE. GrantI. AchimC.L. EverallI.P. Glycogen synthase kinase-3β (GSK-3β) inhibitors AR-A014418 and B6B3O prevent human immunodeficiency virus–mediated neurotoxicity in primary human neurons.J. Neurovirol.2009155-643443810.3109/1355028090316813119688630
    [Google Scholar]
  58. CoghlanM.P. CulbertA.A. CrossD.A.E. CorcoranS.L. YatesJ.W. PearceN.J. RauschO.L. MurphyG.J. CarterP.S. Roxbee CoxL. MillsD. BrownM.J. HaighD. WardR.W. SmithD.G. MurrayK.J. ReithA.D. HolderJ.C. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription.Chem. Biol.200071079380310.1016/S1074‑5521(00)00025‑911033082
    [Google Scholar]
  59. HuS. BegumA.N. JonesM.R. OhM.S. BeechW.K. BeechB.H. YangF. ChenP. UbedaO.J. KimP.C. DaviesP. MaQ. ColeG.M. FrautschyS.A. GSK3 inhibitors show benefits in an Alzheimer’s disease (AD) model of neurodegeneration but adverse effects in control animals.Neurobiol. Dis.200933219320610.1016/j.nbd.2008.10.00719038340
    [Google Scholar]
  60. MeijerL. RaymondE. Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials.Acc. Chem. Res.200336641742510.1021/ar020119812809528
    [Google Scholar]
  61. VougogiannopoulouK. FerandinY. BettayebK. MyrianthopoulosV. LozachO. FanY. JohnsonC.H. MagiatisP. SkaltsounisA.L. MikrosE. MeijerL. Soluble 3′,6-substituted indirubins with enhanced selectivity toward glycogen synthase kinase -3 alter circadian period.J. Med. Chem.200851206421643110.1021/jm800648y18816110
    [Google Scholar]
  62. MussmannR. GeeseM. HarderF. KegelS. AndagU. LomowA. BurkU. OnichtchoukD. DohrmannC. AustenM. Inhibition of GSK3 promotes replication and survival of pancreatic beta cells.J. Biol. Chem.200728216120301203710.1074/jbc.M60963720017242403
    [Google Scholar]
  63. MartinL. LatypovaX. TerroF. Post-translational modifications of tau protein: Implications for Alzheimer’s disease.Neurochem. Int.201158445847110.1016/j.neuint.2010.12.02321215781
    [Google Scholar]
  64. MartinL. PageG. TerroF. Tau phosphorylation and neuronal apoptosis induced by the blockade of PP2A preferentially involve GSK3β.Neurochem. Int.201159223525010.1016/j.neuint.2011.05.01021672577
    [Google Scholar]
  65. DhariwalaF.A. RajadhyakshaM.S. An unusual member of the Cdk family: Cdk5.Cell. Mol. Neurobiol.200828335136910.1007/s10571‑007‑9242‑118183483
    [Google Scholar]
  66. HumbertS. DhavanR. TsaiL.H. p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton.J. Cell Sci.2000113697598310.1242/jcs.113.6.97510683146
    [Google Scholar]
  67. MiyajimaM. NornesH.O. NeumanT. Cyclin E is expressed in neurons and forms complexes with cdk5.Neuroreport1995681130113210.1097/00001756‑199505300‑000147662893
    [Google Scholar]
  68. GuidatoS. McLoughlinD.M. GriersonA.J. MillerC.C.J. Cyclin D2 interacts with cdk-5 and modulates cellular cdk-5/p35 activity.J. Neurochem.199870133534010.1046/j.1471‑4159.1998.70010335.x9422379
    [Google Scholar]
  69. PagliniG. CáceresA. The role of the Cdk5–p35 kinase in neuronal development.Eur. J. Biochem.200126861528153310.1046/j.1432‑1327.2001.02023.x11248669
    [Google Scholar]
  70. NikolicM. DudekH. KwonY.T. RamosY.F. TsaiL.H. The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation.Genes Dev.199610781682510.1101/gad.10.7.8168846918
    [Google Scholar]
  71. HallowsJ.L. ChenK. DePinhoR.A. VincentI. Decreased cyclin-dependent kinase 5 (cdk5) activity is accompanied by redistribution of cdk5 and cytoskeletal proteins and increased cytoskeletal protein phosphorylation in p35 null mice.J. Neurosci.20032333106331064410.1523/JNEUROSCI.23‑33‑10633.200314627648
    [Google Scholar]
  72. SmithD. Cdk5 in neuroskeletal dynamics.Neurosignals2003124-523925110.1159/00007462614673211
    [Google Scholar]
  73. BarclayJ.W. AldeaM. CraigT.J. MorganA. BurgoyneR.D. Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5.J. Biol. Chem.200427940414954150310.1074/jbc.M40667020015273248
    [Google Scholar]
  74. SamuelsB.A. HsuehY.P. ShuT. LiangH. TsengH.C. HongC.J. SuS.C. VolkerJ. NeveR.L. YueD.T. TsaiL.H. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK.Neuron200756582383710.1016/j.neuron.2007.09.03518054859
    [Google Scholar]
  75. DhavanR. TsaiL.H. A decade of CDK5.Nat. Rev. Mol. Cell Biol.200121074975910.1038/3509601911584302
    [Google Scholar]
  76. ZukerbergL.R. PatrickG.N. NikolicM. HumbertS. WuC.L. LanierL.M. GertlerF.B. VidalM. Van EttenR.A. TsaiL.H. Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth.Neuron200026363364610.1016/S0896‑6273(00)81200‑310896159
    [Google Scholar]
  77. KameiH. SaitoT. OzawaM. FujitaY. AsadaA. BibbJ.A. SaidoT.C. SorimachiH. HisanagaS. Suppression of calpain-dependent cleavage of the CDK5 activator p35 to p25 by site-specific phosphorylation.J. Biol. Chem.200728231687169410.1074/jbc.M61054120017121855
    [Google Scholar]
  78. ZhengY.L. LiB.S. KanungoJ. KesavapanyS. AminN. GrantP. PantH.C. Cdk5 Modulation of mitogen-activated protein kinase signaling regulates neuronal survival.Mol. Biol. Cell200718240441310.1091/mbc.e06‑09‑085117108320
    [Google Scholar]
  79. ChangK.H. De PabloY. LeeH. LeeH. SmithM.A. ShahK. Cdk5 is a major regulator of p38 cascade: Relevance to neurotoxicity in Alzheimer’s disease.J. Neurochem.201011351221122910.1111/j.1471‑4159.2010.06687.x20345761
    [Google Scholar]
  80. LeeM. KwonY.T. LiM. PengJ. FriedlanderR.M. TsaiL.H. Neurotoxicity induces cleavage of p35 to p25 by calpain.Nature2000405678436036410.1038/3501263610830966
    [Google Scholar]
  81. PatzkeH. TsaiL.H. Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29.J. Biol. Chem.2002277108054806010.1074/jbc.M10964520011784720
    [Google Scholar]
  82. PatrickG.N. ZukerbergL. NikolicM. de la MonteS. DikkesP. TsaiL.H. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration.Nature1999402676261562210.1038/4515910604467
    [Google Scholar]
  83. PlanelE. BrettevilleA. LiuL. ViragL. DuA.L. YuW.H. DicksonD.W. WhittingtonR.A. DuffK.E. Acceleration and persistence of neurofibrillary pathology in a mouse model of tauopathy following anesthesia.FASEB J.20092382595260410.1096/fj.08‑12242419279139
    [Google Scholar]
  84. CruzJ.C. TsengH.C. GoldmanJ.A. ShihH. TsaiL.H. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles.Neuron200340347148310.1016/S0896‑6273(03)00627‑514642273
    [Google Scholar]
  85. PiedrahitaD. HernándezI. López-TobónA. FedorovD. ObaraB. ManjunathB.S. BoudreauR.L. DavidsonB. LaFerlaF. Gallego-GómezJ.C. KosikK.S. Cardona-GómezG.P. Silencing of CDK5 reduces neurofibrillary tangles in transgenic Alzheimer’s mice.J. Neurosci.20103042139661397610.1523/JNEUROSCI.3637‑10.201020962218
    [Google Scholar]
  86. SenguptaA. WuQ. Grundke-IqbalI. IqbalK. SinghT.J. Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5.Mol. Cell. Biochem.19971671-29910510.1023/A:10068839247759059986
    [Google Scholar]
  87. BaumannK. MandelkowE.M. BiernatJ. Piwnica-WormsH. MandelkowE. Abnormal alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5.FEBS Lett.1993336341742410.1016/0014‑5793(93)80849‑P8282104
    [Google Scholar]
  88. HollanderB.A. BennettG.S. ShawG. Localization of sites in the tail domain of the middle molecular mass neurofilament subunit phosphorylated by a neurofilament-associated kinase and by casein kinase I.J. Neurochem.199666141242010.1046/j.1471‑4159.1996.66010412.x8522982
    [Google Scholar]
  89. IijimaK. AndoK. TakedaS. SatohY. SekiT. ItoharaS. GreengardP. KirinoY. NairnA.C. SuzukiT. Neuron-specific phosphorylation of Alzheimer’s beta-amyloid precursor protein by cyclin-dependent kinase 5.J. Neurochem.20007531085109110.1046/j.1471‑4159.2000.0751085.x10936190
    [Google Scholar]
  90. LauK.F. HowlettD.R. KesavapanyS. StandenC.L. DingwallC. McLoughlinD.M. MillerC.C.J. Cyclin-dependent kinase-5/p35 phosphorylates Presenilin 1 to regulate carboxy-terminal fragment stability.Mol. Cell. Neurosci.2002201132010.1006/mcne.2002.110812056836
    [Google Scholar]
  91. MorfiniG. SzebenyiG. BrownH. PantH.C. PiginoG. DeBoerS. BeffertU. BradyS.T. A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons.EMBO J.200423112235224510.1038/sj.emboj.760023715152189
    [Google Scholar]
  92. LiB.S. ZhangL. TakahashiS. MaW. JaffeH. KulkarniA.B. PantH.C. Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3.EMBO J.200221332433310.1093/emboj/21.3.32411823425
    [Google Scholar]
  93. HamdaneM. BrettevilleA. SamboA.V. SchindowskiK. BégardS. DelacourteA. BertrandP. BuéeL. p25/Cdk5-mediated retinoblastoma phosphorylation is an early event in neuronal cell death.J. Cell Sci.200511861291129810.1242/jcs.0172415741232
    [Google Scholar]
  94. CheungZ.H. GongK. IpN.Y. Cyclin-dependent kinase 5 supports neuronal survival through phosphorylation of Bcl-2.J. Neurosci.200828194872487710.1523/JNEUROSCI.0689‑08.200818463240
    [Google Scholar]
  95. AlvarezA. ToroR. CáceresA. MaccioniR.B. Inhibition of tau phosphorylating protein kinase cdk5 prevents β-amyloid-induced neuronal death.FEBS Lett.1999459342142610.1016/S0014‑5793(99)01279‑X10526177
    [Google Scholar]
  96. LopesJ.P. OliveiraC.R. AgostinhoP. Neurodegeneration in an Aβ-induced model of Alzheimer’s disease: The role of Cdk5.Aging Cell201091647710.1111/j.1474‑9726.2009.00536.x19895631
    [Google Scholar]
  97. UtrerasE. MaccioniR. González-BillaultC. Cyclin-dependent kinase 5 activator p35 over-expression and amyloid beta synergism increase apoptosis in cultured neuronal cells.Neuroscience2009161497898710.1016/j.neuroscience.2009.04.00219362124
    [Google Scholar]
  98. CaminsA. VerdaguerE. FolchJ. CanudasA.M. PallàsM. The role of CDK5/P25 formation/inhibition in neurodegeneration.Drug News Perspect.200619845346010.1358/dnp.2006.19.8.104396117160145
    [Google Scholar]
  99. MeijerL. BorgneA. MulnerO. ChongJ.P.J. BlowJ.J. InagakiN. InagakiM. DelcrosJ.G. MoulinouxJ.P. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5.Eur. J. Biochem.19972431-252753610.1111/j.1432‑1033.1997.t01‑2‑00527.x9030781
    [Google Scholar]
  100. BettayebK. OumataN. EchalierA. FerandinY. EndicottJ.A. GalonsH. MeijerL. CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases.Oncogene200827445797580710.1038/onc.2008.19118574471
    [Google Scholar]
  101. MonacoE.III VallanoM. Cyclin-dependent kinase inhibitors: Cancer killers to neuronal guardians.Curr. Med. Chem.200310536737910.2174/092986703336827712570697
    [Google Scholar]
  102. LiuS.L. WangC. JiangT. TanL. XingA. YuJ.T. The role of Cdk5 in Alzheimer’s disease.Mol. Neurobiol.20165374328434210.1007/s12035‑015‑9369‑x26227906
    [Google Scholar]
  103. OvcharenkoD. MukhinD. OvcharenkoG. Alternative cancer therapeutics: Unpatentable compounds and their potential in oncology.Pharmaceutics2024169123710.3390/pharmaceutics1609123739339273
    [Google Scholar]
  104. SerafinoA. SferrazzaG. Colini BaldeschiA. NicoteraG. AndreolaF. PittalugaE. PierimarchiP. Developing drugs that target the Wnt pathway: Recent approaches in cancer and neurodegenerative diseases.Expert Opin. Drug Discov.201712216918610.1080/17460441.2017.127132127960558
    [Google Scholar]
  105. NeveR.L. McPhieD.L. The cell cycle as a therapeutic target for Alzheimer’s disease.Pharmacol. Ther.200611119911310.1016/j.pharmthera.2005.09.00516274748
    [Google Scholar]
  106. RibasJ. BoixJ. MeijerL. (R)-Roscovitine (CYC202, Seliciclib) sensitizes SH-SY5Y neuroblastoma cells to nutlin-3-induced apoptosis.Exp. Cell Res.2006312122394240010.1016/j.yexcr.2006.04.02116765943
    [Google Scholar]
  107. OumataN. BettayebK. FerandinY. DemangeL. Lopez-GiralA. GoddardM.L. MyrianthopoulosV. MikrosE. FlajoletM. GreengardP. MeijerL. GalonsH. Roscovitine-derived, dual-specificity inhibitors of cyclin-dependent kinases and casein kinases 1.J. Med. Chem.200851175229524210.1021/jm800109e18698753
    [Google Scholar]
  108. Efficacy study of oral seliciclib to treat non-small cell lung cancer.Patent NCT003720732021
    [Google Scholar]
  109. PardridgeW.M. The blood-brain barrier: Bottleneck in brain drug development.NeuroRx20052131410.1602/neurorx.2.1.315717053
    [Google Scholar]
  110. DemangeL. AbdellahF.N. LozachO. FerandinY. GreshN. MeijerL. GalonsH. Potent inhibitors of CDK5 derived from roscovitine: Synthesis, biological evaluation and molecular modelling.Bioorg. Med. Chem. Lett.201323112513110.1016/j.bmcl.2012.10.14123218601
    [Google Scholar]
  111. MartinL. LatypovaX. WilsonC.M. MagnaudeixA. PerrinM.L. YardinC. TerroF. Tau protein kinases: Involvement in Alzheimer’s disease.Ageing Res. Rev.201312128930910.1016/j.arr.2012.06.00322742992
    [Google Scholar]
  112. RojoL.E. FernándezJ.A. MaccioniA.A. JimenezJ.M. MaccioniR.B. Neuroinflammation: Implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease.Arch. Med. Res.200839111610.1016/j.arcmed.2007.10.00118067990
    [Google Scholar]
  113. ShaftelS.S. GriffinW.S.T. O’BanionM.K. The role of interleukin-1 in neuroinflammation and alzheimer disease: An evolving perspective.J. Neuroinflammation200851710.1186/1742‑2094‑5‑718302763
    [Google Scholar]
  114. TellV. HilgerothA. Recent developments of protein kinase inhibitors as potential AD therapeutics.Front. Cell. Neurosci.2013718910.3389/fncel.2013.0018924312003
    [Google Scholar]
  115. PeiJ.J. BraakH. AnW.L. WinbladB. CowburnR.F. IqbalK. Grundke-IqbalI. Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer’s disease.Brain Res. Mol. Brain Res.20021091-2455510.1016/S0169‑328X(02)00488‑612531514
    [Google Scholar]
  116. OhoriM. KinoshitaT. OkuboM. SatoK. YamazakiA. ArakawaH. NishimuraS. InamuraN. NakajimaH. NeyaM. MiyakeH. FujiiT. Identification of a selective ERK inhibitor and structural determination of the inhibitor–ERK2 complex.Biochem. Biophys. Res. Commun.2005336135736310.1016/j.bbrc.2005.08.08216139248
    [Google Scholar]
  117. PhilpottK. FacciL. MAP kinase pathways in neuronal cell death.CNS Neurol. Disord. Drug Targets200871839710.2174/18715270878388512918289035
    [Google Scholar]
  118. ShenC. ChenY. LiuH. ZhangK. ZhangT. LinA. JingN. Hydrogen peroxide promotes Aβ production through JNK-dependent activation of gamma-secretase.J. Biol. Chem.200828325177211773010.1074/jbc.M80001320018436531
    [Google Scholar]
  119. ZhuX. RottkampC.A. BouxH. TakedaA. PerryG. SmithM.A. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in alzheimer disease.J. Neuropathol. Exp. Neurol.2000591088088810.1093/jnen/59.10.88011079778
    [Google Scholar]
  120. BennettB.L. SasakiD.T. MurrayB.W. O’LearyE.C. SakataS.T. XuW. LeistenJ.C. MotiwalaA. PierceS. SatohY. BhagwatS.S. ManningA.M. AndersonD.W. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase.Proc. Natl. Acad. Sci. USA20019824136811368610.1073/pnas.25119429811717429
    [Google Scholar]
  121. KnippschildU. GochtA. WolffS. HuberN. LöhlerJ. StöterM. The casein kinase 1 family: Participation in multiple cellular processes in eukaryotes.Cell. Signal.200517667568910.1016/j.cellsig.2004.12.01115722192
    [Google Scholar]
  122. YasojimaK. KuretJ. DeMaggioA.J. McGeerE. McGeerP.L. Casein kinase 1 delta mRNA is upregulated in alzheimer disease brain.Brain Res.2000865111612010.1016/S0006‑8993(00)02200‑910814741
    [Google Scholar]
  123. KuretJ. JohnsonG.S. ChaD. ChristensonE.R. DeMaggioA.J. HoekstraM.F. Casein kinase 1 is tightly associated with paired-helical filaments isolated from Alzheimer’s disease brain.J. Neurochem.19976962506251510.1046/j.1471‑4159.1997.69062506.x9375684
    [Google Scholar]
  124. SchwabC. DeMaggioA.J. GhoshalN. BinderL.I. KuretJ. McGeerP.L. Casein kinase 1 delta is associated with pathological accumulation of tau in several neurodegenerative diseases.Neurobiol. Aging200021450351010.1016/S0197‑4580(00)00110‑X10924763
    [Google Scholar]
  125. FlajoletM. HeG. HeimanM. LinA. NairnA.C. GreengardP. Regulation of Alzheimer’s disease amyloid-β formation by casein kinase I.Proc. Natl. Acad. Sci. USA2007104104159416410.1073/pnas.061123610417360493
    [Google Scholar]
  126. MashhoonN. DeMaggioA.J. TereshkoV. BergmeierS.C. EgliM. HoekstraM.F. KuretJ. Crystal structure of a conformation-selective casein kinase-1 inhibitor.J. Biol. Chem.200027526200522006010.1074/jbc.M00171320010749871
    [Google Scholar]
  127. PaganoM.A. PolettoG. Di MairaG. CozzaG. RuzzeneM. SarnoS. BainJ. ElliottM. MoroS. ZagottoG. MeggioF. PinnaL.A. Tetrabromocinnamic acid (TBCA) and related compounds represent a new class of specific protein kinase CK2 inhibitors.ChemBioChem20078112913910.1002/cbic.20060029317133643
    [Google Scholar]
  128. YangE.J. AhnY.S. ChungK.C. Protein kinase Dyrk1 activates cAMP response element-binding protein during neuronal differentiation in hippocampal progenitor cells.J. Biol. Chem.200127643398193982410.1074/jbc.M10409120011518709
    [Google Scholar]
  129. KimuraR. KaminoK. YamamotoM. NuripaA. KidaT. KazuiH. HashimotoR. TanakaT. KudoT. YamagataH. TabaraY. MikiT. AkatsuH. KosakaK. FunakoshiE. NishitomiK. SakaguchiG. KatoA. HattoriH. UemaT. TakedaM. The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between β-amyloid production and tau phosphorylation in alzheimer disease.Hum. Mol. Genet.2007161152310.1093/hmg/ddl43717135279
    [Google Scholar]
  130. SeifertA. AllanL.A. ClarkeP.R. DYRK1A phosphorylates caspase 9 at an inhibitory site and is potently inhibited in human cells by harmine.FEBS J.2008275246268628010.1111/j.1742‑4658.2008.06751.x19016842
    [Google Scholar]
  131. LoidreauY. MarchandP. Dubouilh-BenardC. NourrissonM.R. DuflosM. LozachO. LoaëcN. MeijerL. BessonT. Synthesis and biological evaluation of N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amines and their pyrido and pyrazino analogues as Ser/Thr kinase inhibitors.Eur. J. Med. Chem.20125817118310.1016/j.ejmech.2012.10.00623124214
    [Google Scholar]
  132. Luna-MedinaR. Cortes-CanteliM. Sanchez-GalianoS. Morales-GarciaJ.A. MartinezA. SantosA. Perez-CastilloA. NP031112, a thiadiazolidinone compound, prevents inflammation and neurodegeneration under excitotoxic conditions: Potential therapeutic role in brain disorders.J. Neurosci.200727215766577610.1523/JNEUROSCI.1004‑07.200717522320
    [Google Scholar]
  133. AshabiG. RaminM. AziziP. TaslimiZ. AlamdaryS.Z. HaghparastA. AnsariN. MotamediF. KhodagholiF. ERK and p38 inhibitors attenuate memory deficits and increase CREB phosphorylation and PGC-1α levels in Aβ-injected rats.Behav. Brain Res.2012232116517310.1016/j.bbr.2012.04.00622510382
    [Google Scholar]
  134. KudoK. WatiH. QiaoC. AritaJ. KanbaS. Age-related disturbance of memory and CREB phosphorylation in CA1 area of hippocampus of rats.Brain Res.200510541303710.1016/j.brainres.2005.06.04516054117
    [Google Scholar]
  135. VercauterenK. PaskoR.A. GleyzerN. MarinoV.M. ScarpullaR.C. PGC-1-related coactivator: Immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth.Mol. Cell. Biol.200626207409741910.1128/MCB.00585‑0616908542
    [Google Scholar]
  136. MunozL. RanaivoH.R. RoyS.M. HuW. CraftJ.M. McNamaraL.K. ChicoL.W. Van EldikL.J. WattersonD.M. A novel p38α MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer’s disease mouse model.J. Neuroinflammation2007412110.1186/1742‑2094‑4‑2117784957
    [Google Scholar]
  137. KimS.H. SmithC.J. Van EldikL.J. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1β production.Neurobiol. Aging200425443143910.1016/S0197‑4580(03)00126‑X15013563
    [Google Scholar]
  138. PetratosS. LiQ.X. GeorgeA.J. HouX. KerrM.L. UnabiaS.E. HatzinisiriouI. MakselD. AguilarM.I. SmallD.H. The β-amyloid protein of Alzheimer’s disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism.Brain200813119010810.1093/brain/awm26018000012
    [Google Scholar]
  139. QinW. YangT. HoL. ZhaoZ. WangJ. ChenL. ZhaoW. ThiyagarajanM. MacGroganD. RodgersJ.T. PuigserverP. SadoshimaJ. DengH. PedriniS. GandyS. SauveA.A. PasinettiG.M. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of alzheimer disease amyloid neuropathology by calorie restriction.J. Biol. Chem.200628131217452175410.1074/jbc.M60290920016751189
    [Google Scholar]
  140. VoigtB. KrugM. SchächteleC. TotzkeF. HilgerothA. Probing novel 1-aza-9-oxafluorenes as selective GSK-3β inhibitors.ChemMedChem20083112012610.1002/cmdc.20070017518000938
    [Google Scholar]
  141. TellV. MahmoudK.A. WichapongK. SchächteleC. TotzkeF. SipplW. HilgerothA. Novel aspects in structure–activity relationships of profiled 1-aza-9-oxafluorenes as inhibitors of Alzheimer’s disease-relevant kinases cdk1, cdk5 and gsk3β.MedChemComm20123111413141810.1039/c2md20201h
    [Google Scholar]
  142. de SousaN.F. ScottiL. de MouraÉ.P. dos Santos MaiaM. RodriguesG.C.S. de MedeirosH.I.R. LopesS.M. ScottiM.T. Computer aided drug design methodologies with natural products in the drug research against Alzheimer’s disease.Curr. Neuropharmacol.202220585788510.2174/1570159X1966621100514595234636299
    [Google Scholar]
  143. BridgesA.J. Chemical inhibitors of protein kinases.Chem. Rev.200110182541257210.1021/cr000250y11749388
    [Google Scholar]
  144. TaghizadehM.S. TaherishiraziM. NiaziA. AfsharifarA. MoghadamA. Structure-guided design and cloning of peptide inhibitors targeting CDK9/cyclin T1 protein-protein interaction.Front. Pharmacol.202415132782010.3389/fphar.2024.132782038808256
    [Google Scholar]
  145. ChengS. Discovery of CDK9-Cyclin T1 Protein-Protein Interaction Inhibitors for Triple-Negative Breast Cancer Therapy.University of Macau2022
    [Google Scholar]
  146. NisbetR.M. PolancoJ.C. IttnerL.M. GötzJ. Tau aggregation and its interplay with amyloid-β.Acta Neuropathol.2015129220722010.1007/s00401‑014‑1371‑225492702
    [Google Scholar]
  147. MakhouriF.R. GhasemiJ.B. In silico studies in drug research against neurodegenerative diseases.Curr. Neuropharmacol.201816666472510.2174/1570159X1566617082309562828831921
    [Google Scholar]
  148. HelmsH.C.C. KristensenM. SaabyL. FrickerG. BrodinB. Drug delivery strategies to overcome the blood–brain barrier (BBB).Physiology, Pharmacology and Pathology of the Blood-Brain Barrier.Springer202015118310.1007/164_2020_403
    [Google Scholar]
  149. OlğaçA. OrhanI.E. BanogluE. The potential role of in silico approaches to identify novel bioactive molecules from natural resources.Future Med. Chem.20179141665168610.4155/fmc‑2017‑012428841048
    [Google Scholar]
  150. AwasthiM. SinghS. PandeyV.P. DwivediU.N. Alzheimer’s disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products.J. Neurol. Sci.201636125627110.1016/j.jns.2016.01.00826810552
    [Google Scholar]
  151. ShengC. DongG. MiaoZ. ZhangW. WangW. State-of-the-art strategies for targeting protein–protein interactions by small-molecule inhibitors.Chem. Soc. Rev.201544228238825910.1039/C5CS00252D26248294
    [Google Scholar]
  152. DokaK.J. Counseling Individuals with Life Threatening Illness.Springer Publishing Company2013
    [Google Scholar]
  153. WongK.H. RiazM.K. XieY. ZhangX. LiuQ. ChenH. BianZ. ChenX. LuA. YangZ. Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier.Int. J. Mol. Sci.201920238110.3390/ijms2002038130658419
    [Google Scholar]
  154. FasinuP. PillayV. NdesendoV.M.K. du ToitL.C. ChoonaraY.E. Diverse approaches for the enhancement of oral drug bioavailability.Biopharm. Drug Dispos.201132418520910.1002/bdd.75021480294
    [Google Scholar]
  155. PardridgeW.M. Alzheimer’s disease drug development and the problem of the blood-brain barrier.Alzheimers Dement.20095542743210.1016/j.jalz.2009.06.00319751922
    [Google Scholar]
  156. TaghizadehM.S. NiaziA. AfsharifarA. Virus-like particles (VLPs): A promising platform for combating against Newcastle disease virus.Vaccine X20241610044010.1016/j.jvacx.2024.10044038283623
    [Google Scholar]
  157. Mirzapour-KouhdashtA. McClementsD. J. TaghizadehM. S. NiaziA. Garcia-VaqueroM. Strategies for oral delivery of bioactive peptides with focus on debittering and masking.npj Sci Food20237122
    [Google Scholar]
  158. EibenS. KochC. AltintoprakK. SouthanA. TovarG. LaschatS. WeissI.M. WegeC. Plant virus-based materials for biomedical applications: Trends and prospects.Adv. Drug Deliv. Rev.20191459611810.1016/j.addr.2018.08.01130176280
    [Google Scholar]
  159. AnthonyD.P. HegdeM. ShettyS.S. RaficT. MutalikS. RaoB.S.S. Targeting receptor-ligand chemistry for drug delivery across blood-brain barrier in brain diseases.Life Sci.202127411932610.1016/j.lfs.2021.11932633711385
    [Google Scholar]
  160. IkwuagwuB. Tullman-ErcekD. Virus-like particles for drug delivery: A review of methods and applications.Curr. Opin. Biotechnol.20227810278510.1016/j.copbio.2022.10278536099859
    [Google Scholar]
  161. WaisU. JacksonA.W. HeT. ZhangH. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles.Nanoscale2016841746176910.1039/C5NR07161E26731460
    [Google Scholar]
  162. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials (Basel)2020107140310.3390/nano1007140332707641
    [Google Scholar]
  163. Martín-RapunR. De MatteisL. AmbrosoneA. Garcia-EmbidS. GutierrezL. de la FuenteJ.M. Targeted nanoparticles for the treatment of Alzheimer’s disease.Curr. Pharm. Des.201723131927195210.2174/138161282266616122615101128025949
    [Google Scholar]
  164. GopalanD. PandeyA. UdupaN. MutalikS. Receptor specific, stimuli responsive and subcellular targeted approaches for effective therapy of Alzheimer: Role of surface engineered nanocarriers.J. Control. Release202031918320010.1016/j.jconrel.2019.12.03431866505
    [Google Scholar]
  165. HampelH. O’BryantS.E. DurrlemanS. YounesiE. RojkovaK. Escott-PriceV. CorvolJ-C. BroichK. DuboisB. ListaS. A Precision Medicine Initiative for Alzheimer’s disease: the road ahead to biomarker-guided integrative disease modeling.Climacteric201720210711810.1080/13697137.2017.128786628286989
    [Google Scholar]
  166. DesaiN. Challenges in development of nanoparticle-based therapeutics.AAPS J.201214228229510.1208/s12248‑012‑9339‑422407288
    [Google Scholar]
  167. KumarJ. KarimA. SweetyU.H. SarmaH. NurunnabiM. NarayanM. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery.ACS Appl. Bio Mater.202338100377
    [Google Scholar]
  168. NathanD.G. The Cancer Treatment Revolution: How Smart Drugs and Other New Therapies are Renewing Our Hope and Changing the Face of Medicine.Turner Publishing Company2009
    [Google Scholar]
  169. VyasS. KothariS.L. KachhwahaS. Nootropic medicinal plants: Therapeutic alternatives for Alzheimer’s disease.J. Herb. Med.201917-1810029110.1016/j.hermed.2019.100291
    [Google Scholar]
  170. DeheleanC.A. MarcoviciI. SoicaC. MiocM. CoricovacD. IurciucS. CretuO.M. PinzaruI. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy.Molecules2021264110910.3390/molecules2604110933669817
    [Google Scholar]
  171. UddinM.S. Al MamunA. KabirM.T. AhmadJ. JeandetP. SarwarM.S. AshrafG.M. AleyaL. Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration.Eur. J. Pharmacol.202088617341210.1016/j.ejphar.2020.17341232771668
    [Google Scholar]
  172. MoghadamA. ForoozanE. TahmasebiA. TaghizadehM.S. BolhassaniM. JafariM. System network analysis of Rosmarinus officinalis transcriptome and metabolome—Key genes in biosynthesis of secondary metabolites.PLoS One2023183e028231610.1371/journal.pone.028231636862714
    [Google Scholar]
  173. ShahrakiZ. TaghizadehM.S. NiaziA. RowshanV. MoghadamA. Enhancing bioactive compound production in Salvia mirzayanii through elicitor application: Insights from in vitro and in silico studies.Food Biosci.20246010418510.1016/j.fbio.2024.104185
    [Google Scholar]
  174. MoghadamA. TaghizadehM.S. HaghiR. TahmasebiA. NiaziA. EbrahimieE. Exploring novel insights: Methyl jasmonate treatment reveals novel lncRNA-mediated regulation of secondary metabolite biosynthesis pathways in Echinacea purpurea.Food Biosci.20245710345710.1016/j.fbio.2023.103457
    [Google Scholar]
  175. SantosB.S. SilvaL.C.N. SilvaT.D. RodriguesJ.F.S. GrisottoM.A.G. CorreiaM.T.S. NapoleãoT.H. SilvaM.V. PaivaP.M.G. Application of omics technologies for evaluation of antibacterial mechanisms of action of plant-derived products.Front. Microbiol.20167146610.3389/fmicb.2016.0146627729901
    [Google Scholar]
  176. CrispinM.C. WurteleE.S. Use of metabolomics and transcriptomics to gain insights into the regulation and biosynthesis of medicinal compounds: Hypericum as a model.Biotechnology for Medicinal Plants: Micropropagation and Improvement.Springer2012395411
    [Google Scholar]
  177. AhmadS. S. KhanS. KamalM. A. WasiU. The structure and function of α, β and γ-Secretase as therapeutic target enzymes in the development of Alzheimer’s disease. A reviewCNS Neurol. Disord. Drug Targets2019189657667
    [Google Scholar]
  178. Ramirez-EstradaK. Vidal-LimonH. HidalgoD. MoyanoE. GolenioswkiM. CusidóR. PalazonJ. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories.Molecules201621218210.3390/molecules2102018226848649
    [Google Scholar]
  179. Aguirre-BecerraH. Vazquez-HernandezM. C. Role of stress and defense in plant secondary metabolites productionBioNatProd. Pharma. Appl.2021151195
    [Google Scholar]
  180. PantA. VasundharaM. Endophytic fungi: A potential source for drugs against central nervous system disorders.Braz. J. Microbiol.20235431479149910.1007/s42770‑023‑00997‑137165297
    [Google Scholar]
  181. JeyasriR. MuthuramalingamP. KarthickK. ShinH. ChoiS.H. RameshM. Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: An updated review.Plant Cell Tissue Organ Cult.2023153344745810.1007/s11240‑023‑02485‑837197003
    [Google Scholar]
  182. SharmaL. MauryaB. RaiS.P. An overview of biotechnological interventions and abiotic elicitors on biomass and withanolide biosynthesis in Withania somnifera (L.) Dunal.Ind. Crops Prod.202319311623810.1016/j.indcrop.2023.116238
    [Google Scholar]
  183. DzoboK. The role of natural products as sources of therapeutic agents for innovative drug discovery.Comprehensive Pharmacol.2022408422
    [Google Scholar]
  184. ZakiA.G. El-SayedE.S.R. Abd ElkodousM. El-SayyadG.S. Microbial acetylcholinesterase inhibitors for Alzheimer’s therapy: Recent trends on extraction, detection, irradiation-assisted production improvement and nano-structured drug delivery.Appl. Microbiol. Biotechnol.2020104114717473510.1007/s00253‑020‑10560‑932285176
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665348075241121071614
Loading
/content/journals/ppl/10.2174/0109298665348075241121071614
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test