Skip to content
2000
Volume 31, Issue 7
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

Peptide drugs are advantageous because they are subject to rational design and exhibit highly diverse structures and broad biological activities. The NS2B-NS3 protein is a particularly promising flavivirus therapeutic target, with extensive research on the development of inhibitors as therapeutic candidates, and was used as a model in this work to determine the mechanism by which GA-Hecate inhibits ZIKV replication.

Objective

The present study aimed to evaluate the potential of GA-Hecate, a new antiviral developed by our group, against the Brazilian Zika virus and to evaluate the mechanism of action of this compound on the flavivirus NS2B-NS3 protein.

Methods

Solid-phase peptide Synthesis, High-Performance Liquid Chromatography, and Mass Spectrometry were used to obtain, purify, and characterize the synthesized compound. Real-time and enzymatic assays were used to determine the antiviral potential of GA-Hecate against ZIKV.

Results

The RT-qPCR results showed that GA-Hecate decreased the number of ZIKV RNA copies in the virucidal, pre-treatment, and post-entry assays, with 5- to 6-fold fewer RNA copies at the higher nontoxic concentration in Vero cells (HNTC: 10 μM) than in the control cells. Enzymatic and kinetic assays indicated that GA-Hecate acts as a competitive ZIKV NS2B-NS3 protease inhibitor with an IC of 32 nM and has activity against the yellow fever virus protease.

Conclusion

The results highlight the antiviral potential of the GA-Hecate bioconjugate and open the door for the development of new antivirals.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665308871240703090408
2024-07-01
2024-11-22
Loading full text...

Full text loading...

References

  1. MeertensL. CarnecX. LecoinM.P. Guivel-benhassineF. LewE. LemkeG. SchwartzO. AmaraA. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry.Cell Host Microbe2013124544557
    [Google Scholar]
  2. PetersenE. WilsonM.E. TouchS. McCloskeyB. MwabaP. BatesM. DarO. MattesF. KiddM. IppolitoG. AzharE.I. ZumlaA. Rapid spread of zika virus in the americas : Implications for public health preparedness for mass gatherings at the 2016 brazil olympic games.Int. J. Infect. Dis.201644111510.1016/j.ijid.2016.02.00126854199
    [Google Scholar]
  3. SimoninY. LoustalotF. DesmetzC. FoulongneV. ConstantO. Fournier-WirthC. LeonF. MolèsJ.P. GoubaudA. LemaitreJ.M. MaquartM. Leparc-GoffartI. BriantL. NagotN. Van de PerreP. SalinasS. Zika virus strains potentially display different infectious profiles in human neural cells.EBioMedicine20161216116910.1016/j.ebiom.2016.09.02027688094
    [Google Scholar]
  4. PielnaaP. Al-SaadaweM. SaroA. DamaM.F. ZhouM. HuangY. HuangJ. XiaZ. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development.Virology2020543344210.1016/j.virol.2020.01.01532056845
    [Google Scholar]
  5. BeaverJ.T. LelutiuN. HabibR. SkountzouI. Evolution of two major Zika virus lineages: Implications for pathology, immune response, and vaccine development.Front. Immunol.20189164010.3389/fimmu.2018.0164030072993
    [Google Scholar]
  6. BarrettA.D.T. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation /692/308/153 /631/326/590/1883 perspective.NPJ Vaccines201831410.1038/s41541‑018‑0061‑929900012
    [Google Scholar]
  7. MorrisonC. DNA vaccines against Zika virus speed into clinical trials.Nat. Rev. Drug Discov.201615852152210.1038/nrd.2016.15927469223
    [Google Scholar]
  8. NoorbakhshF. AbdolmohammadiK. FatahiY. DaliliH. RasoolinejadM. RezaeiF. Salehi-VaziriM. Zahra Shafiei-JandaghiN. Shamsi GooshkiE. ZaimM. NicknamM.H. Zika virus infection, basic and clinical aspects: A review article.Iran. J. Public Health2019481203110.18502/ijph.v48i1.77930847308
    [Google Scholar]
  9. PiersonT.C. DiamondM.S. The emergence of Zika virus and its new clinical syndromes.Nature2018560772057358110.1038/s41586‑018‑0446‑y30158602
    [Google Scholar]
  10. PiersonT.C. DiamondM.S. The continued threat of emerging flaviviruses.Nat. Microbiol.20205679681210.1038/s41564‑020‑0714‑032367055
    [Google Scholar]
  11. VossS. NitscheC. Inhibitors of the Zika virus protease NS2B-NS3.Bioorg. Med. Chem. Lett.202030512696510.1016/j.bmcl.2020.12696531980339
    [Google Scholar]
  12. WuH. BockS. SnitkoM. BergerT. WeidnerT. HollowayS. KanitzM. DiederichW.E. SteuberH. WalterC. HofmannD. WeißbrichB. SpannausR. AcostaE.G. BartenschlagerR. EngelsB. SchirmeisterT. BodemJ. Novel dengue virus NS2B/NS3 protease inhibitors.Antimicrob. Agents Chemother.20155921100110910.1128/AAC.03543‑1425487800
    [Google Scholar]
  13. ChenX. YangK. WuC. ChenC. HuC. BuzovetskyO. WangZ. JiX. XiongY. YangH. Mechanisms of activation and inhibition of Zika virus NS2B-NS3 protease.Cell Res.201626111260126310.1038/cr.2016.11627752039
    [Google Scholar]
  14. PhooW.W. LiY. ZhangZ. LeeM.Y. LohY.R. TanY.B. NgE.Y. LescarJ. KangC. LuoD. Structure of the NS2B-NS3 protease from Zika virus after self-cleavage.Nat. Commun.2016711341010.1038/ncomms1341027845325
    [Google Scholar]
  15. NunesD.A.F. SantosF.R.S. da FonsecaS.T.D. de LimaW.G. NizerW.S.C. FerreiraJ.M.S. de MagalhãesJ.C. D.A NS2B-NS3 protease inhibitors as promising compounds in the development of antivirals against Zika virus: A systematic review.J. Med. Virol.202294244245310.1002/jmv.27386
    [Google Scholar]
  16. ShiryaevS.A. FarhyC. PintoA. HuangC.T. SimonettiN. NgonoA.E. DewingA. ShrestaS. PinkertonA.B. CieplakP. StronginA.Y. TerskikhA.V. Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists.Antiviral Res.201714321822910.1016/j.antiviral.2017.04.01528461069
    [Google Scholar]
  17. ShinH.J. KimM.H. LeeJ.Y. HwangI. YoonG.Y. KimH.S. KwonY.C. AhnD.G. KimK.D. KimB.T. KimS.J. KimC. Structure-based virtual screening: Identification of a novel NS2B-NS3 protease inhibitor with potent antiviral activity against zika and dengue viruses.Microorganisms20219354510.3390/microorganisms903054533800763
    [Google Scholar]
  18. WahaabA. MustafaB.E. HameedM. StevensonN.J. AnwarM.N. LiuK. WeiJ. QiuY. MaZ. Potential role of flavivirus ns2b-ns3 proteases in viral pathogenesis and anti-flavivirus drug discovery employing animal cells and models: A review.Viruses20211414410.3390/v1401004435062249
    [Google Scholar]
  19. WangL. WangN. ZhangW. ChengX. YanZ. ShaoG. WangX. WangR. FuC. Therapeutic peptides: current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑435165272
    [Google Scholar]
  20. WangG. Natural antimicrobial peptides as promising anti-HIV candidates.Curr. Top. Pept. Protein Res.2012139311026834391
    [Google Scholar]
  21. BatistaM.N. SanchesP.R.S. CarneiroB.M. BragaA.C.S. CamposG.R.F. CilliE.M. RahalP. GA-Hecate antiviral properties on HCV whole cycle represent a new antiviral class and open the door for the development of broad spectrum antivirals.Sci. Rep.2018811432910.1038/s41598‑018‑32176‑w30254334
    [Google Scholar]
  22. GaldieroS. FalangaA. TaralloR. RussoL. GaldieroE. CantisaniM. MorelliG. GaldieroM. Peptide inhibitors against herpes simplex virus infections.J. Pept. Sci.201319314815810.1002/psc.248923389903
    [Google Scholar]
  23. Vilas BoasL.C.P. CamposM.L. BerlandaR.L.A. de Carvalho NevesN. FrancoO.L. Antiviral peptides as promising therapeutic drugs.Cell. Mol. Life Sci.201976183525354210.1007/s00018‑019‑03138‑w31101936
    [Google Scholar]
  24. ColomboT.E. TerzianA.C.B. JúniorJ.P.A. ParreiraR. CabreraE.M.S. SantosI.N.P. ReisA.F.N. CostaF.R. CruzL.E.A.A. RombolaP.L. NogueiraM.L. Zika detection: comparison of methodologies.Braz. J. Microbiol.201849114414710.1016/j.bjm.2017.04.01128927874
    [Google Scholar]
  25. NoskeG.D. GawriljukV.O. FernandesR.S. FurtadoN.D. BonaldoM.C. OlivaG. GodoyA.S. Structural characterization and polymorphism analysis of the NS2B-NS3 protease from the 2017 Brazilian circulating strain of Yellow Fever virus.Biochim. Biophys. Acta Gen. Subj.20201864412952110.1016/j.bbagen.2020.129521
    [Google Scholar]
  26. MottinM. CaesarL.K. BrodskyD. MesquitaN.C.M.R. de OliveiraK.Z. NoskeG.D. SousaB.K.P. RamosP.R.P.S. JarmerH. LohB. ZornK.M. FoilD.H. TorresP.M. GuidoR.V.C. OlivaG. ScholleF. EkinsS. CechN.B. AndradeC.H. LasterS.M. Chalcones from Angelica keiskei (ashitaba) inhibit key Zika virus replication proteins.Bioorg. Chem.202212010564910.1016/j.bioorg.2022.10564935124513
    [Google Scholar]
  27. AslanidisC. de JongP.J. Ligation-independent cloning of PCR products (LIC-PCR).Nucleic Acids Res.199018206069607410.1093/nar/18.20.60692235490
    [Google Scholar]
  28. LiY. ZhangZ. PhooW.W. LohY.R. LiR. YangH.Y. JanssonA.E. HillJ. KellerT.H. NacroK. LuoD. KangC. Structural insights into the inhibition of zika virus NS2B-NS3 protease by a small-molecule inhibitor.Structure2018264555564.e310.1016/j.str.2018.02.00529526431
    [Google Scholar]
  29. NobleC.G. SehC.C. ChaoA.T. ShiP.Y. Ligand-bound structures of the dengue virus protease reveal the active conformation.J. Virol.201286143844610.1128/JVI.06225‑1122031935
    [Google Scholar]
  30. XuS. CiY. WangL. YangY. ZhangL. XuC. QinC. ShiL. Zika virus NS3 is a canonical RNA helicase stimulated by NS5 RNA polymerase.Nucleic Acids Res.201947168693870710.1093/nar/gkz65031361901
    [Google Scholar]
  31. SanchesP.R.S. CarneiroB.M. BatistaM.N. BragaA.C.S. LorenzónE.N. RahalP. CilliE.M. A conjugate of the lytic peptide Hecate and gallic acid: Structure, activity against cervical cancer, and toxicity.Amino Acids20154771433144310.1007/s00726‑015‑1980‑725868656
    [Google Scholar]
  32. AyussoG.M. da Silva SanchesP.R. CarvalhoT. SantosI.A. MartinsD.O.S. LimaM.L.D. da ConceiçãoP.J.P. BittarC. MeritsA. CilliE.M. JardimA.C.G. RahalP. CalmonM.F. The synthetic peptide ga-hecate and its analogs inhibit multiple steps of the chikungunya virus infection cycle in vitro.Pharmaceuticals20231610138910.3390/ph1610138937895860
    [Google Scholar]
  33. NgW.C. Soto-AcostaR. BradrickS.S. Garcia-BlancoM.A. OoiE.E. The 5ʹ and 3ʹ untranslated regions of the flaviviral genome.Viruses2017911410.3390/v906013728587300
    [Google Scholar]
  34. DomingoE. SheldonJ. PeralesC. Viral quasispecies evolution.Microbiol. Mol. Biol. Rev.201276215921610.1128/MMBR.05023‑1122688811
    [Google Scholar]
  35. MandaryM.B. MasomianM. PohC.L. Impact of RNA virus evolution on quasispecies formation and virulence.Int. J. Mol. Sci.20192018465710.3390/ijms2018465731546962
    [Google Scholar]
  36. AgrelliA. de MouraR.R. CrovellaS. BrandãoL.A.C. ZIKA virus entry mechanisms in human cells.Infect. Genet. Evol.201969222910.1016/j.meegid.2019.01.01830658214
    [Google Scholar]
  37. HasanS.S. SevvanaM. KuhnR.J. RossmannM.G. Structural biology of Zika virus and other flaviviruses.Nat. Struct. Mol. Biol.2018251132010.1038/s41594‑017‑0010‑829323278
    [Google Scholar]
  38. LeiJ. HansenG. NitscheC. KleinC.D. ZhangL. HilgenfeldR. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor.Science2016353629850350510.1126/science.aag241927386922
    [Google Scholar]
  39. HuberS. BraunN.J. SchmackeL.C. QuekJ.P. MurraR. BenderD. HildtE. LuoD. HeineA. SteinmetzerT. Structure-based optimization and characterization of macrocyclic zika virus NS2B-NS3 protease inhibitors.J. Med. Chem.202110.1021/acs.jmedchem.1c0186035475620
    [Google Scholar]
  40. LeungD. SchroderK. WhiteH. FangN.X. StoermerM.J. AbbenanteG. MartinJ.L. YoungP.R. FairlieD.P. Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors.J. Biol. Chem.200127649457624577110.1074/jbc.M10736020011581268
    [Google Scholar]
  41. GrubaN. Rodriguez MartinezJ.I. GrzywaR. WysockaM. SkoreńskiM. BurmistrzM. ŁęckaM. LesnerA. SieńczykM. PyrćK. Substrate profiling of Zika virus NS2B-NS3 protease.FEBS Lett.2016590203459346810.1002/1873‑3468.1244327714789
    [Google Scholar]
  42. KhumthongR. AngsuthanasombatC. PanyimS. KatzenmeierG. In vitro determination of dengue virus type 2 NS2B-NS3 protease activity with fluorescent peptide substrates.J. Biochem. Mol. Biol.2002352206212
    [Google Scholar]
  43. KondoM.Y. OliveiraL.C.G. OkamotoD.N. de AraujoM.R.T. Duarte dos SantosC.N. JulianoM.A. JulianoL. GouveaI.E. Yellow fever virus NS2B/NS3 protease: Hydrolytic properties and substrate specificity.Biochem. Biophys. Res. Commun.2011407464064410.1016/j.bbrc.2011.03.05421419753
    [Google Scholar]
  44. LuoD. VasudevanS.G. LescarJ. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development.Antiviral Res.201511814815810.1016/j.antiviral.2015.03.014
    [Google Scholar]
  45. Du PontK.E. GeissB.J. Conserved motifs in the flavivirus NS3 RNA helicase enzyme.Wiley Interdiscip Rev. RNA2022132e168810.1002/wrna.1688
    [Google Scholar]
  46. HeatonN.S. PereraR. BergerK.L. KhadkaS. LaCountD.J. KuhnR.J. RandallG. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis.Proc. Natl. Acad. Sci.201010740173451735010.1073/pnas.101081110720855599
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665308871240703090408
Loading
/content/journals/ppl/10.2174/0109298665308871240703090408
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): bioconjugate; flavivirus; NS2B-NS3; peptides; protease; Zika virus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test