Skip to content
2000
Volume 31, Issue 7
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

Glycogen Storage Disease type III (GSD III) is a metabolic disorder resulting from a deficiency of the Glycogen Debranching Enzyme (GDE), a large monomeric protein (approximately 170 kDa) with cytoplasmic localization and two distinct enzymatic activities: 4-α-glucantransferase and amylo-α-1,6-glucosidase. Mutations in the gene, with consequent deficiency in GDE, lead to the accumulation of abnormal/toxic glycogen with shorter chains (phosphorylase limit dextrin, PLD) in skeletal and/or heart muscle and/or in the liver. Currently, there is no targeted therapy, and available treatments are symptomatic, relying on specific diets.

Methods

Enzyme Replacement Therapy (ERT) might represent a potential therapeutic strategy for GSD III. Moreover, the single-gene nature of GSD III, the subcellular localization of GDE, and the type of affected tissues represent ideal conditions for exploring gene therapy approaches. Toward this direction, we designed a synthetic, codon-optimized cDNA encoding the human GDE.

Results

This gene yielded high amounts of soluble, enzymatically active protein in . Moreover, when transfected in Human Embryonic Kidney cells (HEK-293), it successfully encoded a functional GDE.

Conclusion

These results suggest that our gene or protein might complement the missing function in GSD III patients, opening the door to further exploration of therapeutic approaches for this disease.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665307430240628063339
2024-07-01
2024-11-22
Loading full text...

Full text loading...

References

  1. ChenM.A. WeinsteinD.A. Glycogen storage diseases: Diagnosis, treatment and outcome.Transl. Sci. Rare Dis.201611457210.3233/TRD‑160006
    [Google Scholar]
  2. KanungoS. WellsK. TribettT. El-GharbawyA. Glycogen metabolism and glycogen storage disorders.Ann. Transl. Med.201862447410.21037/atm.2018.10.5930740405
    [Google Scholar]
  3. StoneW.L. BasitH. AdilA. Glycogen Storage Disease.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  4. RoachP.J. Depaoli-RoachA.A. HurleyT.D. TagliabracciV.S. Glycogen and its metabolism: Some new developments and old themes.Biochem. J.2012441376378710.1042/BJ2011141622248338
    [Google Scholar]
  5. SzymańskaE. Jóźwiak-DzięcielewskaD.A. GronekJ. NiewczasM. CzarnyW. RokickiD. GronekP. Hepatic glycogen storage diseases: Pathogenesis, clinical symptoms and therapeutic management.Arch. Med. Sci.202117230431310.5114/aoms.2019.8306333747265
    [Google Scholar]
  6. SchreuderA.B. RossiA. GrünertS.C. DerksT.G.J. Glycogen Storage Disease Type III.GeneReviews. AdamM.P. MirzaaG.M. PagonR.A. SeattleUniversity of Washington2010
    [Google Scholar]
  7. KishnaniP.S. AustinS.L. ArnP. BaliD.S. BoneyA. CaseL.E. ChungW.K. DesaiD.M. El-GharbawyA. HallerR. SmitG.P.A. SmithA.D. Hobson-WebbL.D. WechslerS.B. WeinsteinD.A. WatsonM.S. ACMG Glycogen Storage Disease Type III diagnosis and management guidelines.Genet. Med.201012744646310.1097/GIM.0b013e3181e655b620631546
    [Google Scholar]
  8. SentnerC.P. HoogeveenI.J. WeinsteinD.A. SanterR. MurphyE. McKiernanP.J. SteuerwaldU. BeauchampN.J. TaybertJ. LaforêtP. PetitF.M. HubertA. LabruneP. SmitG.P.A. DerksT.G.J. Glycogen storage disease type III: diagnosis, genotype, management, clinical course and outcome.J. Inherit. Metab. Dis.201639569770410.1007/s10545‑016‑9932‑227106217
    [Google Scholar]
  9. TaylorC. CoxA.J. KernohanJ.C. CohenP. Debranching enzyme from rabbit skeletal muscle. Purification, properties and physiological role.Eur. J. Biochem.197551110511510.1111/j.1432‑1033.1975.tb03911.x1122910
    [Google Scholar]
  10. ZhaiL. FengL. XiaL. YinH. XiangS. Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations.Nat. Commun.2016711122910.1038/ncomms1122927088557
    [Google Scholar]
  11. BatesE.J. HeatonG.M. TaylorC. KernohanJ.C. CohenP. Debranching enzyme from rabbit skeletal muscle; Evidence for the location of two active centres on a single polypeptide chain.FEBS Lett.1975581-218118510.1016/0014‑5793(75)80254‑71063726
    [Google Scholar]
  12. ZmasekC.M. GodzikA. Phylogenomic analysis of glycogen branching and debranching enzymatic duo.BMC Evol. Biol.201414118310.1186/s12862‑014‑0183‑225148856
    [Google Scholar]
  13. NguyenD.H.D. ParkJ.T. ShimJ.H. TranP.L. OktavinaE.F. NguyenT.L.H. LeeS.J. ParkC.S. LiD. ParkS.H. StapletonD. LeeJ.S. ParkK.H. Reaction kinetics of substrate transglycosylation catalyzed by TreX of Sulfolobus solfataricus and effects on glycogen breakdown.J. Bacteriol.2014196111941194910.1128/JB.01442‑1324610710
    [Google Scholar]
  14. Yang-FengT.L. ZhengK. YuJ. YangB.Z. ChenY.T. KaoF.T. Assignment of the human glycogen debrancher gene to chromosome 1p21.Genomics199213493193410.1016/0888‑7543(92)90003‑B1505983
    [Google Scholar]
  15. BaoY. DawsonT.L.Jr ChenY.T. Human glycogen debranching enzyme gene (AGL): complete structural organization and characterization of the 5′ flanking region.Genomics199638215516510.1006/geno.1996.06118954797
    [Google Scholar]
  16. BaoY. YangB.Z. DawsonT.L.Jr ChenY.T. Isolation and nucleotide sequence of human liver glycogen debranching enzyme mRNA: Identification of multiple tissue-specific isoforms.Gene19971971-238939810.1016/S0378‑1119(97)00291‑69332391
    [Google Scholar]
  17. LucchiariS. SantoroD. PagliaraniS. ComiG.P. Clinical, biochemical and genetic features of glycogen debranching enzyme deficiency.Acta Myol.2007261727417915576
    [Google Scholar]
  18. GoldsteinJ.L. AustinS.L. BoyetteK. KanalyA. VeerapandiyanA. RehderC. KishnaniP.S. BaliD.S. Molecular analysis of the AGL gene: Identification of 25 novel mutations and evidence of genetic heterogeneity in patients with Glycogen Storage Disease Type III.Genet. Med.201012742443010.1097/GIM.0b013e3181d94eaa20648714
    [Google Scholar]
  19. EndoY. HorinishiA. VorgerdM. AoyamaY. EbaraT. MuraseT. OdawaraM. PodskarbiT. ShinY.S. OkuboM. Molecular analysis of the AGL gene: heterogeneity of mutations in patients with glycogen storage disease type III from Germany, Canada, Afghanistan, Iran, and Turkey.J. Hum. Genet.2006511195896310.1007/s10038‑006‑0045‑x17047887
    [Google Scholar]
  20. BerlingÉ. LaforêtP. WahbiK. LabruneP. PetitF. RonzittiG. O’BrienA. Narrative review of glycogen storage disorder type III with a focus on neuromuscular, cardiac and therapeutic aspects.J. Inherit. Metab. Dis.202144352153310.1002/jimd.1235533368379
    [Google Scholar]
  21. Glycogen Storage Disease Type III.2012Available from: https://www.ncbi.nlm.nih.gov/medgen/6641#:~:text=Glycogen%20storage%20disease%20type%20III%20(also%20known%20as%20GSDIII%20or,especially%20the%20liver%20and%20muscles. (accessed on 22-5-2024)
  22. MayorandanS. MeyerU. HartmannH. DasA.M. Glycogen storage disease type III: Modified Atkins diet improves myopathy.Orphanet J. Rare Dis.20149119610.1186/s13023‑014‑0196‑325431232
    [Google Scholar]
  23. PagliaraniS. LucchiariS. UlziG. RipoloneM. ViolanoR. FortunatoF. BordoniA. CortiS. MoggioM. BresolinN. ComiG.P. Glucose-free/high-protein diet improves hepatomegaly and exercise intolerance in glycogen storage disease type III mice.Biochim. Biophys. Acta Mol. Basis Dis.20181864103407341710.1016/j.bbadis.2018.07.03130076962
    [Google Scholar]
  24. RossK.M. FerrecchiaI.A. DahlbergK.R. DambskaM. RyanP.T. WeinsteinD.A. Dietary management of the glycogen storage diseases: Evolution of treatment and ongoing controversies.Adv. Nutr.202011243944610.1093/advances/nmz09231665208
    [Google Scholar]
  25. VidalP. PagliaraniS. ColellaP. Costa VerderaH. JauzeL. GjorgjievaM. PuzzoF. MarmierS. CollaudF. Simon SolaM. CharlesS. LucchiariS. van WittenbergheL. VignaudA. GjataB. RichardI. LaforetP. MalfattiE. MithieuxG. RajasF. ComiG.P. RonzittiG. MingozziF. Rescue of GSDIII phenotype with gene transfer requires liver- and muscle-targeted GDE expression.Mol. Ther.201826389090110.1016/j.ymthe.2017.12.01929396266
    [Google Scholar]
  26. LimJ.A. ChoiS.J. GaoF. KishnaniP.S. SunB. A novel gene therapy approach for GSD III using an aav vector encoding a bacterial glycogen debranching enzyme.Mol. Ther. Methods Clin. Dev.20201824024910.1016/j.omtm.2020.05.03432637453
    [Google Scholar]
  27. DemurtasO.C. MassaS. IllianoE. De MartinisD. ChanP.K.S. Di BonitoP. FranconiR. Antigen production in plant to tackle infectious diseases flare up: The case of SARS.Front. Plant Sci.201675410.3389/fpls.2016.0005426904039
    [Google Scholar]
  28. HersH.G. VerhueW. HoofF. The determination of amylo-1,6-glucosidase.Eur. J. Biochem.19672325726410.1111/j.1432‑1033.1967.tb00133.x6078537
    [Google Scholar]
  29. Rodriguez-HernandezM. TriggianiD. IvisonF. DemurtasO.C. IllianoE. MarinoC. FranconiR. MassaS. Expression of a functional recombinant human glycogen debranching enzyme (hgde) in N. benthamiana plants and in hairy root cultures.Protein Pept. Lett.202027214515710.2174/092986652666619101415404731622193
    [Google Scholar]
  30. DemurtasO.C. MassaS. FerranteP. VenutiA. FranconiR. GiulianoG. A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection.PLoS One201384e6147310.1371/journal.pone.006147323626690
    [Google Scholar]
  31. KikuchiT. YangH.W. PennybackerM. IchiharaN. MizutaniM. Van HoveJ.L. ChenY.T. Clinical and metabolic correction of pompe disease by enzyme therapy in acid maltase-deficient quail.J. Clin. Invest.1998101482783310.1172/JCI17229466978
    [Google Scholar]
  32. ConcolinoD. DeodatoF. PariniR. Enzyme replacement therapy: efficacy and limitations.Ital. J. Pediatr.201844S2Suppl. 211712610.1186/s13052‑018‑0562‑130442189
    [Google Scholar]
  33. Van den HoutJ.M.P. KamphovenJ.H.J. WinkelL.P.F. ArtsW.F.M. KlerkJ.B.C.D. LoonenM.C.B. VultoA.G. Cromme-DijkhuisA. Weisglas-KuperusN. HopW. HirtumH.V. DiggelenO.P.V. BoerM. KroosM.A. DoornP.A.V. VoortE.V. SibblesB. CorvenE.J.J.M.V. BrakenhoffJ.P.J. HoveJ.V. SmeitinkJ.A.M. JongG. ReuserA.J.J. PloegA.T.V. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk.Pediatrics20041135e448e45710.1542/peds.113.5.e44815121988
    [Google Scholar]
  34. KishnaniP.S. CorzoD. NicolinoM. ByrneB. MandelH. HwuW.L. LeslieN. LevineJ. SpencerC. McDonaldM. LiJ. DumontierJ. HalberthalM. ChienY.H. HopkinR. VijayaraghavanS. GruskinD. BartholomewD. van der PloegA. ClancyJ.P. PariniR. MorinG. BeckM. De la GastineG.S. JokicM. ThurbergB. RichardsS. BaliD. DavisonM. WordenM.A. ChenY.T. WraithJ.E. Recombinant human acid α-glucosidase.Neurology20076829910910.1212/01.wnl.0000251268.41188.0417151339
    [Google Scholar]
  35. ZhuY. JiangJ.L. GumlawN.K. ZhangJ. BercuryS.D. ZieglerR.J. LeeK. KudoM. CanfieldW.M. EdmundsT. JiangC. MattalianoR.J. ChengS.H. Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease.Mol. Ther.200917695496310.1038/mt.2009.3719277015
    [Google Scholar]
  36. BaneyxF. MujacicM. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol.200422111399140810.1038/nbt102915529165
    [Google Scholar]
  37. AlexakiA. HettiarachchiG.K. AtheyJ.C. KatneniU.K. SimhadriV. Hamasaki-KatagiriN. NanavatyP. LinB. TakedaK. FreedbergD. MonroeD. McGillJ.R. PetersR. KamesJ.M. HolcombD.D. HuntR.C. SaunaZ.E. GelinasA. JanjicN. DiCuccioM. BarH. KomarA.A. Kimchi-SarfatyC. Effects of codon optimization on coagulation factor IX translation and structure: Implications for protein and gene therapies.Sci. Rep.2019911544910.1038/s41598‑019‑51984‑231664102
    [Google Scholar]
  38. KudlaG. LipinskiL. CaffinF. HelwakA. ZyliczM. High guanine and cytosine content increases mRNA levels in mammalian cells.PLoS Biol.200646e18010.1371/journal.pbio.004018016700628
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665307430240628063339
Loading
/content/journals/ppl/10.2174/0109298665307430240628063339
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test