Skip to content
2000
Volume 31, Issue 8
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

This review explores the burgeoning field of macromolecular polymer-based complexes, highlighting their revolutionary potential for the delivery of nucleotides for therapeutic applications. These complexes, ingeniously crafted from a variety of polymers, offer a unique solution to the challenges of nucleotide delivery, including protection from degradation, targeted delivery, and controlled release. The focus of this report is primarily on the design principles, encapsulation strategies, and biological interactions of these complexes, with an emphasis on their biocompatibility, biodegradability, and ability to form diverse structures, such as nanoparticles and micelles. Significant attention is paid to the latest advancements in polymer science that enable the precise tailoring of these complexes for specific nucleotides, such as DNA, RNA, and siRNA. The review discusses the critical role of surface modifications and the incorporation of targeting ligands in enhancing cellular uptake and ensuring delivery to specific tissues or cells, thereby reducing off-target effects and improving therapeutic efficacy. Clinical applications of these polymer-based delivery systems are thoroughly examined with a focus on their use in treating genetic disorders, cancer, and infectious diseases. The review also addresses the challenges and limitations currently faced in this field, such as scalability, manufacturing complexities, and regulatory hurdles. Overall, this review provides a comprehensive overview of the current state and future prospects of macromolecular polymer-based complexes in nucleotide delivery. It underscores the significance of these systems in advancing the field of targeted therapeutics and their potential to reshape the landscape of medical treatment for a wide range of diseases.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665310091240809103048
2024-08-22
2024-12-23
Loading full text...

Full text loading...

References

  1. TorchilinV.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery.Nat. Rev. Drug Discov.2014131181382710.1038/nrd433325287120
    [Google Scholar]
  2. WangH. AgarwalP. ZhaoS. XuR.X. YuJ. LuX. HeX. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells.Biomaterials201572748910.1016/j.biomaterials.2015.08.04826344365
    [Google Scholar]
  3. YangQ. LaiS.K. Anti-PEG immunity: Emergence, characteristics, and unaddressed questions.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157565567710.1002/wnan.133925707913
    [Google Scholar]
  4. RweiA.Y. WangW. KohaneD.S. Photoresponsive nanoparticles for drug delivery.Nano Today201510445146710.1016/j.nantod.2015.06.00426644797
    [Google Scholar]
  5. (a van der MeelR SulheimE ShiY KiesslingF MulderWJ LammersT Smart cancer nanomedicine.Nat. Nanotechnol.2019141110071017
    [Google Scholar]
  6. (b KimJ Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacyNat. Biotechnol.2015331647210.1038/s41565‑019‑0567‑y10.1038/nbt.3074
    [Google Scholar]
  7. WangQ. JiangJ. ChenW. JiangH. ZhangZ. SunX. Tumor- and mitochondria-targeted nanoparticles eradicate drug resistant lung cancer through mitochondrial pathway of apoptosis.J. Nanobiotechnology20191713810.1186/s12951‑020‑00593‑730866971
    [Google Scholar]
  8. ZhouK. WangY. HuangX. Luby-PhelpsK. SumerB.D. GaoJ. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells.Angew. Chem. Int. Ed.201150276109611410.1002/anie.20110088421495146
    [Google Scholar]
  9. StephanopoulosN. Hybrid nanostructures from the self-assembly of proteins and DNA.Chem20206236440510.1016/j.chempr.2020.01.012
    [Google Scholar]
  10. DanielsenM.B. MaoH. LouC. Peptide-DNA conjugates as building blocks for de novo design of hybrid nanostructures.Cell Rep. Phys. Sci.202310.1016/j.xcrp.2023.101620
    [Google Scholar]
  11. LuY. LiY. WuW. Injected nanoparticles improve the outcome of cryosurgery with direct killing of tumor cells.Cryobiology201367223524110.1016/j.cryobiol.2013.06.00623948179
    [Google Scholar]
  12. MengF. ChengR. DengC. ZhongZ. Intracellular drug release nanosystems.Mater. Today2012151043644210.1016/S1369‑7021(12)70195‑5
    [Google Scholar]
  13. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.03723036225
    [Google Scholar]
  14. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.10827834398
    [Google Scholar]
  15. FangR.H. KrollA.V. GaoW. ZhangL. Cell membrane coating nanotechnology.Adv. Mater.20183023170675910.1002/adma.20170675929582476
    [Google Scholar]
  16. XiaoY. WangS. ZongQ. YinZ. Co-delivery of metformin and paclitaxel via folate-modified pH-sensitive micelles for enhanced anti-tumor efficacy.AAPS PharmSciTech20181952395240610.1208/s12249‑018‑1070‑829869309
    [Google Scholar]
  17. NelA.E. MädlerL. VelegolD. XiaT. HoekE.M.V. SomasundaranP. KlaessigF. CastranovaV. ThompsonM. Understanding biophysicochemical interactions at the nano–bio interface.Nat. Mater.20098754355710.1038/nmat244219525947
    [Google Scholar]
  18. DashP.R. TonchevaV. SchachtE. SeymourL.W. Synthetic polymers for vectorial delivery of DNA: Characterisation of polymer-DNA complexes by photon correlation spectroscopy and stability to nuclease degradation and disruption by polyanions in vitro.J. Control. Release1997482-326927610.1016/S0168‑3659(97)00043‑6
    [Google Scholar]
  19. AndersonD.G. AkincA. HossainN. LangerR. Structure/property studies of polymeric gene delivery using a library of poly(β-amino esters).Mol. Ther.200511342643410.1016/j.ymthe.2004.11.01515727939
    [Google Scholar]
  20. KabanovKabanov Interpolyelectrolyte and block ionomer complexes for gene delivery: Physico-chemical aspects.Adv. Drug Deliv. Rev.1998301-3496010.1016/S0169‑409X(97)00106‑3
    [Google Scholar]
  21. JuanesM. CreeseO. Fernández-TrilloP. MontenegroJ. Messenger RNA delivery by hydrazone-activated polymers.MedChemComm.20191071138114410.1039/C9MD00231F31391886
    [Google Scholar]
  22. SmiljanićD. WesdemiotisC. Non-covalent complexes between single-stranded oligodeoxynucleotides and poly(ethylene imine).Int. J. Mass Spectrom.20113042-314815310.1016/j.ijms.2010.06.035
    [Google Scholar]
  23. GorzkiewiczM. BuczkowskiA. PałeczB. Klajnert-MaculewiczB. PAMAM and PPI dendrimers in biophysical and thermodynamic studies on the delivery of therapeutic nucleotides, nucleosides and nucleobase derivatives for anticancer applications.Thermodynamics and Biophysics of Biomedical Nanosystems. Series in BioEngineeringSpringer.Singapore201914324310.1007/978‑981‑13‑0989‑2_7
    [Google Scholar]
  24. ZhouP. ShiR. YaoJ. ShengC. LiH. Supramolecular self-assembly of nucleotide–metal coordination complexes: From simple molecules to nanomaterials.Coord. Chem. Rev.201529210714310.1016/j.ccr.2015.02.007
    [Google Scholar]
  25. TokatlianT. SeguraT. siRNA applications in nanomedicine.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20102330531510.1002/wnan.8120135697
    [Google Scholar]
  26. HeissigP. KleinP.M. HadwigerP. WagnerE. DNA as tunable adaptor for siRNA polyplex stabilization and functionalization.Mol. Ther. Nucleic Acids201653e28810.1038/mtna.2016.626928236
    [Google Scholar]
  27. ÇelikbıçakÖ. SalihB. WesdemiotisC. Strong ionic interactions in noncovalent complexes between poly(ethylene imine), a cationic electrolyte, and Cibacron Blue, a nucleotide mimic – Implications for oligonucleotide vectors.J. Mass Spectrom.201449759760710.1002/jms.337925044844
    [Google Scholar]
  28. NumataK. SubramanianB. CurrieH.A. KaplanD.L. Bioengineered silk protein-based gene delivery systems.Biomaterials200930295775578410.1016/j.biomaterials.2009.06.02819577803
    [Google Scholar]
  29. AliabadiH.M. LandryB. BahadurR.K. NeamnarkA. SuwantongO. UludağH. Impact of lipid substitution on assembly and delivery of siRNA by cationic polymers.Macromol. Biosci.201111566267210.1002/mabi.20100040221322108
    [Google Scholar]
  30. LiF. YuW. ZhangJ. DongY. DingX. RuanX. GuZ. YangD. Spatiotemporally programmable cascade hybridization of hairpin DNA in polymeric nanoframework for precise siRNA delivery.Nat. Commun.2021121113810.1038/s41467‑021‑21442‑733602916
    [Google Scholar]
  31. KimT. HyunH.N. HeoR. NamK. YangK. KimY.M. LeeY.S. AnJ.Y. ParkJ.H. ChoiK.Y. RohY.H. Dual-targeting RNA nanoparticles for efficient delivery of polymeric siRNA to cancer cells.Chem. Commun.202056496624662710.1039/D0CC01848A32463029
    [Google Scholar]
  32. KimY.M. LeeY.S. KimT. YangK. NamK. ChoeD. RohY.H. Cationic cellulose nanocrystals complexed with polymeric siRNA for efficient anticancer drug delivery.Carbohydr. Polym.202024711668410.1016/j.carbpol.2020.11668432829812
    [Google Scholar]
  33. YanY. ZhangG. WuC. RenQ. LiuX. HuangF. CaoY. YeW. Structural exploration of polycationic nanoparticles for siRNA delivery.ACS Biomater. Sci. Eng.2022851964197410.1021/acsbiomaterials.2c0019635380797
    [Google Scholar]
  34. MousazadehH. Pilehvar-SoltanahmadiY. DadashpourM. ZarghamiN. Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy.J. Control. Release20203301046107010.1016/j.jconrel.2020.11.01133188829
    [Google Scholar]
  35. KangT. NiJ.S. LiT. WangJ. LiZ. LiY. ZhaM. ZhangC. WuX. GuoH. XiL. LiK. Efficient and precise delivery of microRNA by photoacoustic force generated from semiconducting polymer-based nanocarriers.Biomaterials202127512090710.1016/j.biomaterials.2021.12090734090050
    [Google Scholar]
  36. KwakE. KimT. YangK. KimY.M. HanH.S. ParkK.H. ChoiK.Y. RohY.H. Surface-functionalized polymeric siRNA nanoparticles for tunable targeting and intracellular delivery to hematologic cancer cells.Biomacromolecules20222362255226310.1021/acs.biomac.1c0149735362323
    [Google Scholar]
  37. XiongQ. LiY. ZhouK. ChenP. GuoH. ChenL. DingJ. SongT. ShiJ. Optimized fluorodendrimer-incorporated hybrid lipid–polymer nanoparticles for efficient siRNA delivery.Biomater. Sci.20208375876210.1039/C9BM01738K31965126
    [Google Scholar]
  38. LiH. HoL.W.C. LeeL.K.C. LiuS. ChanC.K.W. TianX.Y. ChoiC.H.J. Intranuclear delivery of DNA nanostructures via cellular mechanotransduction.Nano Lett.20222283400340910.1021/acs.nanolett.2c0066735436127
    [Google Scholar]
  39. NasrS.S. LeeS. ThiyagarajanD. BoeseA. LoretzB. LehrC.M. Co-delivery of mRNA and pDNA using thermally stabilized coacervate-based core-shell nanosystems.Pharmaceutics20211311192410.3390/pharmaceutics1311192434834339
    [Google Scholar]
  40. GaoH. LuX. MaY. YangY. LiJ. WuG. WangY. FanY. MaJ. Amino poly(glycerol methacrylate)s for oligonucleic acid delivery with enhanced transfection efficiency and low cytotoxicity.Soft Matter20117199239924710.1039/c1sm05756a
    [Google Scholar]
  41. BealsN. KasibhatlaN. BasuS. Efficient delivery of plasmid DNA using incorporated nucleotides for precise conjugation of targeted nanoparticles.ACS Appl. Bio Mater.20192271772710.1021/acsabm.8b0059635016276
    [Google Scholar]
  42. NumataK. HamasakiJ. SubramanianB. KaplanD.L. Gene delivery mediated by recombinant silk proteins containing cationic and cell binding motifs.J. Control. Release2010146113614310.1016/j.jconrel.2010.05.00620457191
    [Google Scholar]
  43. LindbergS. RegbergJ. ErikssonJ. HelmforsH. Muñoz-AlarcónA. SrimaneeA. FigueroaR.A. HallbergE. EzzatK. LangelÜ. A convergent uptake route for peptide- and polymer-based nucleotide delivery systems.J. Control. Release2015206586610.1016/j.jconrel.2015.03.00925769688
    [Google Scholar]
  44. MitragotriS. LahannJ. Physical approaches to biomaterial design.Nat. Mater.200981152310.1038/nmat234419096389
    [Google Scholar]
  45. DavisM.E. ChenZ. ShinD.M. Nanoparticle therapeutics: An emerging treatment modality for cancer.Nat. Rev. Drug Discov.20087977178210.1038/nrd261418758474
    [Google Scholar]
  46. ZhangL. GuF.X. ChanJ.M. WangA.Z. LangerR.S. FarokhzadO.C. Nanoparticles in medicine: Therapeutic applications and developments.Clin. Pharmacol. Ther.200883576176910.1038/sj.clpt.610040017957183
    [Google Scholar]
  47. SizovsA. SongX. WaxhamM.N. JiaY. FengF. ChenJ. WickerA.C. XuJ. YuY. WangJ. Precisely tunable engineering of sub-30 nm monodisperse oligonucleotide nanoparticles.J. Am. Chem. Soc.2014136123424010.1021/ja408879b24344996
    [Google Scholar]
  48. GösslI. ShuL. SchlüterA.D. RabeJ.P. Molecular structure of single DNA complexes with positively charged dendronized polymers.J. Am. Chem. Soc.2002124246860686510.1021/ja017828l12059206
    [Google Scholar]
  49. MadyM.M. MohammedW.A. El-GuendyN. ElsayedA. Mohsen M. Mady Interaction of DNA and polyethylenimine: Fourier-transform infrared (FTIR) and differential scanning calorimetry (DSC) studies.Int. J. Phys. Sci.20116327328733410.5897/IJPS11.1005
    [Google Scholar]
  50. NamvarA. BolhassaniA. KhairkhahN. MotevalliF. Physicochemical properties of polymers: An important system to overcome the cell barriers in gene transfection.Biopolymers2015103736337510.1002/bip.2263825761628
    [Google Scholar]
  51. LinW. HansonS. HanW. ZhangX. YaoN. LiH. ZhangL. WangC. Well-defined star polymers for co-delivery of plasmid DNA and imiquimod to dendritic cells.Acta Biomater.20174837838910.1016/j.actbio.2016.10.03827989922
    [Google Scholar]
  52. WitzigmannD. WuD. SchenkS.H. BalasubramanianV. MeierW. HuwylerJ. Biocompatible polymer-Peptide hybrid-based DNA nanoparticles for gene delivery.ACS Appl. Mater. Interfaces2015719104461045610.1021/acsami.5b0168425907363
    [Google Scholar]
  53. Reyes-RevelesJ. Sedaghat-HeratiR. GilleyD.R. SchaefferA.M. GhoshK.C. GreeneT.D. GannH.E. DowlerW.A. KramerS. DeanJ.M. DelongR.K. mPEG-PAMAM-G4 nucleic acid nanocomplexes: Enhanced stability, RNase protection, and activity of splice switching oligomer and poly I:C RNA.Biomacromolecules201314114108411510.1021/bm401242524164501
    [Google Scholar]
  54. RieraR. Feiner-GraciaN. FornagueraC. CascanteA. BorrósS. AlbertazziL. Tracking the DNA complexation state of pBAE polyplexes in cells with super resolution microscopy.Nanoscale20191138178691787710.1039/C9NR02858G31552987
    [Google Scholar]
  55. MelvinR.L. GmeinerW.H. SalsburyF.R.Jr All-atom molecular dynamics reveals mechanism of zinc complexation with therapeutic F10.J. Phys. Chem. B201612039102691027910.1021/acs.jpcb.6b0775327606431
    [Google Scholar]
  56. ZhangP. WagnerE. History of polymeric gene delivery systems.Top. Curr. Chem.201737522610.1007/s41061‑017‑0112‑028181193
    [Google Scholar]
  57. BishopC.J. KozielskiK.L. GreenJ.J. Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles.J. Control. Release201521948849910.1016/j.jconrel.2015.09.04626433125
    [Google Scholar]
  58. CookA.B. PeltierR. HartliebM. WhitfieldR. MoriceauG. BurnsJ.A. HaddletonD.M. PerrierS. Cationic and hydrolysable branched polymers by RAFT for complexation and controlled release of dsRNA.Polym. Chem.20189294025403510.1039/C8PY00804C
    [Google Scholar]
  59. WagnerE. The silent (R)evolution of polymeric nucleic acid therapeutics.Pharm. Res.200825122920292310.1007/s11095‑008‑9689‑x18679773
    [Google Scholar]
  60. SunM. WangK. OupickýD. Advances in stimulus-responsive polymeric materials for systemic delivery of nucleic acids.Adv. Healthc. Mater.201874170107010.1002/adhm.20170107029227047
    [Google Scholar]
  61. Piotrowski-DaspitA.S. KauffmanA.C. BracagliaL.G. SaltzmanW.M. Polymeric vehicles for nucleic acid delivery.Adv. Drug Deliv. Rev.202015611913210.1016/j.addr.2020.06.01432585159
    [Google Scholar]
  62. ShiB. ZhangH. DaiS. DuX. BiJ. QiaoS.Z. Intracellular microenvironment responsive polymers: A multiple-stage transport platform for high-performance gene delivery.Small201410587187710.1002/smll.20130243024115742
    [Google Scholar]
  63. MidouxP. PichonC. YaouancJ.J. JaffrèsP.A. Chemical vectors for gene delivery: A current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers.Br. J. Pharmacol.2009157216617810.1111/j.1476‑5381.2009.00288.x19459843
    [Google Scholar]
  64. SurinM. From nucleobase to DNA templates for precision supramolecular assemblies and synthetic polymers.Polym. Chem.20167254137415010.1039/C6PY00480F
    [Google Scholar]
  65. PenaS.A. IyengarR. EshraghiR.S. BencieN. MittalJ. AljohaniA. MittalR. EshraghiA.A. Gene therapy for neurological disorders: Challenges and recent advancements.J. Drug Target.202028211112810.1080/1061186X.2019.163041531195838
    [Google Scholar]
  66. XiangY. OoN.N.L. LeeJ.P. LiZ. LohX.J. Recent development of synthetic nonviral systems for sustained gene delivery.Drug Discov. Today20172291318133510.1016/j.drudis.2017.04.00128428056
    [Google Scholar]
  67. PinheiroV.B. HolligerP. Towards XNA nanotechnology: New materials from synthetic genetic polymers.Trends Biotechnol.201432632132810.1016/j.tibtech.2014.03.01024745974
    [Google Scholar]
  68. GhoshP. KroppH.M. BetzK. LudmannS. DiederichsK. MarxA. SrivatsanS.G. Microenvironment-sensitive fluorescent nucleotide probes from benzofuran, benzothiophene, and selenophene as substrates for DNA polymerases.J. Am. Chem. Soc.202214423105561056910.1021/jacs.2c0345435666775
    [Google Scholar]
  69. GentileS. Del GrossoE. PrinsL.J. RicciF. Reorganization of self-assembled DNA-based polymers using orthogonally addressable building blocks.Angew. Chem. Int. Ed.20216023129111291710.1002/anie.20210137833783934
    [Google Scholar]
  70. ParkD.H. CuiC. AhnD.J. Photoluminescent response of poly(3-methylthiophene)-DNA single nanowire correlating to nucleotide-mismatch locus in DNA-DNA hybridization.Macromol. Rapid Commun.20204121200016410.1002/marc.20200016432578310
    [Google Scholar]
  71. ZhangS. TangL. ZhangJ. SunW. LiuD. ChenJ. HuB. HuangZ. Single-atom-directed inhibition of de novo DNA synthesis in isothermal amplifications.Anal. Chem.20229445157631577110.1021/acs.analchem.2c0348936322989
    [Google Scholar]
  72. RuffY. MartinezR. PelléX. NimsgernP. FilleP. RatnikovM. BerstF. An amphiphilic polymer-supported strategy enables chemical transformations under anhydrous conditions for DNA-encoded library synthesis.ACS Comb. Sci.202022312012810.1021/acscombsci.9b0016432040908
    [Google Scholar]
  73. JiangZ. CuiW. MagerJ. ThayumanavanS. Postfunctionalization of Noncationic RNA–Polymer Complexes for RNA Delivery.Ind. Eng. Chem. Res.201958176982699110.1021/acs.iecr.9b00666
    [Google Scholar]
  74. LeeJ.B. HongJ. BonnerD.K. PoonZ. HammondP.T. Self-assembled RNA interference microsponges for efficient siRNA delivery.Nat. Mater.201211431632210.1038/nmat325322367004
    [Google Scholar]
  75. JiangY. GaudinA. ZhangJ. AgarwalT. SongE. KauffmanA.C. TietjenG.T. WangY. JiangZ. ChengC.J. SaltzmanW.M. A “top-down” approach to actuate poly(amine-co-ester) terpolymers for potent and safe mRNA delivery.Biomaterials201817612213010.1016/j.biomaterials.2018.05.04329879653
    [Google Scholar]
  76. UzM. Alsoy AltinkayaS. MallapragadaS.K. Stimuli responsive polymer-based strategies for polynucleotide delivery.J. Mater. Res.201732152930295310.1557/jmr.2017.116
    [Google Scholar]
  77. JogaM.R. MogilicherlaK. SmaggheG. RoyA. RNA interference-based forest protection products (FPPs) against wood-boring coleopterans: Hope or hype?Front. Plant Sci.20211273360810.3389/fpls.2021.73360834567044
    [Google Scholar]
  78. YangD.C. EldredgeA.C. HickeyJ.C. MuradyanH. GuanZ. Multivalent peptide-functionalized bioreducible polymers for cellular delivery of various RNAs.Biomacromolecules20202141613162410.1021/acs.biomac.0c0021132091881
    [Google Scholar]
  79. RileyM.II VermerrisW. Recent advances in nanomaterials for gene delivery—a review.Nanomaterials2017759410.3390/nano705009428452950
    [Google Scholar]
  80. KimT. NamK. KimY.M. YangK. RohY.H. DNA-assisted smart nanocarriers: Progress, challenges, and opportunities.ACS Nano20211521942195110.1021/acsnano.0c0890533492127
    [Google Scholar]
  81. SahleF.F. LoweT.L. Design strategies for programmable oligonucleotide nanotherapeutics.Drug Discov. Today2020251738810.1016/j.drudis.2019.09.00631525462
    [Google Scholar]
  82. WuL. ZhouW. LinL. ChenA. FengJ. QuX. ZhangH. YueJ. Delivery of therapeutic oligonucleotides in nanoscale.Bioact. Mater.2022729232310.1016/j.bioactmat.2021.05.03834466734
    [Google Scholar]
  83. Mirón-BarrosoS. DomènechE.B. TriguerosS. Nanotechnology-based strategies to overcome current barriers in gene delivery.Int. J. Mol. Sci.20212216853710.3390/ijms2216853734445243
    [Google Scholar]
  84. AzeemF. IjazU. RashidS. NadeemH. ManzoorH. HussainS. In micro and nano technologies.Nanomedicine Manufacturing and Applications.Elsevier202124726010.1016/B978‑0‑12‑820773‑4.00007‑X
    [Google Scholar]
  85. XuF. XiaQ. WangP. Rationally designed DNA nanostructures for drug delivery.Front Chem.2020875110.3389/fchem.2020.0075133195016
    [Google Scholar]
  86. YuJ. ZhangJ. JinJ. JiangW. Microenvironment-responsive DNA-conjugated albumin nanocarriers for targeted therapy.J. Mater. Chem. B20219408424843610.1039/D1TB01022K34542145
    [Google Scholar]
  87. NeshatS.Y. TzengS.Y. GreenJ.J. Gene delivery for immunoengineering.Curr. Opin. Biotechnol.20206611010.1016/j.copbio.2020.05.00832554325
    [Google Scholar]
  88. ZhuL. LuoJ. RenK. Nucleic acid-based artificial nanocarriers for gene therapy.J. Mater. Chem. B202311226127910.1039/D2TB01179D36524395
    [Google Scholar]
  89. ThakorP. BhavanaV. SharmaR. SrivastavaS. SinghS.B. MehraN.K. Polymer–drug conjugates: Recent advances and future perspectives.Drug Discov. Today20202591718172610.1016/j.drudis.2020.06.02832629170
    [Google Scholar]
  90. GrigolettoA. TedeschiniT. CanatoE. PasutG. The evolution of polymer conjugation and drug targeting for the delivery of proteins and bioactive molecules.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.202012610.1002/wnan.168933314717
    [Google Scholar]
  91. GeZ. GuoL. WuG. LiJ. SunY. HouY. ShiJ. SongS. WangL. FanC. LuH. LiQ. DNA origami-enabled engineering of ligand–drug conjugates for targeted drug delivery.Small20201616190485710.1002/smll.20190485732191376
    [Google Scholar]
  92. TranB.T. KimJ. AhnD.R. Systemic delivery of aptamer–drug conjugates for cancer therapy using enzymatically generated self-assembled DNA nanoparticles.Nanoscale20201245229452295110.1039/D0NR05652A33188383
    [Google Scholar]
  93. StevensC.A. KaurK. KlokH.A. Self-assembly of protein-polymer conjugates for drug delivery.Adv. Drug Deliv. Rev.202117444746010.1016/j.addr.2021.05.00233984408
    [Google Scholar]
  94. SungY.K. KimS.W. Recent advances in polymeric drug delivery systems.Biomater. Res.20202411210.1186/s40824‑020‑00190‑732537239
    [Google Scholar]
  95. GargC. PriyamA. KumarP. SharmaA.K. GuptaA. In vitro assessment of core-shell micellar nanostructures of amphiphilic cationic polymer-peptide conjugates as efficient gene and drug carriers.J. Pharm. Sci.202010992847285310.1016/j.xphs.2020.05.01632473212
    [Google Scholar]
  96. ManandharS. SjöholmE. BobackaJ. RosenholmJ.M. BansalK.K. Polymer-drug conjugates as nanotheranostic agents.J. Nanotheranostics202121638110.3390/jnt2010005
    [Google Scholar]
  97. SunT. KrishnanV. PanD.C. FilippovS.K. RavidS. SarodeA. KimJ. ZhangY. PowerC. AdayS. GuoJ. KarpJ.M. McDannoldN.J. MitragotriS.S. Ultrasound-mediated delivery of flexibility-tunable polymer drug conjugates for treating glioblastoma.Bioeng. Transl. Med.202382e1040810.1002/btm2.1040836925708
    [Google Scholar]
  98. GiraseM.L. PatilP.G. IgeP.P. Polymer-drug conjugates as nanomedicine: A review.Int. J. Polym. Mater.20206915990101410.1080/00914037.2019.1655745
    [Google Scholar]
  99. GajbhiyeK.R. PawarA. MahadikK.R. GajbhiyeV. PEGylated nanocarriers: A promising tool for targeted delivery to the brain.Colloids Surf. B. Biointerfaces202018711077010.1016/j.colsurfb.2019.11077031926790
    [Google Scholar]
  100. SalekdehP.R. Ma’maniL. Tavakkoly-BazzazJ. MousaviH. ModarressiM.H. SalekdehG.H. Bi-functionalized aminoguanidine-PEGylated periodic mesoporous organosilica nanoparticles: A promising nanocarrier for delivery of Cas9-sgRNA ribonucleoproteine.J. Nanobiotechnology20211919510.1186/s12951‑021‑00838‑z33789675
    [Google Scholar]
  101. BergerM. ToussaintF. DjemaaS.B. MaquoiE. PendevilleH. EvrardB. Poly(N-methyl-N-vinylacetamide): A strong alternative to peg for lipid-based nanocarriers delivering SiRNA.Adv. Healthc. Mater.2023e230271210.1002/adhm.20230271237994483
    [Google Scholar]
  102. LaskarP. SomaniS. MullinM. TateR. WarzechaM. BoweringD. Octadecyl chain-bearing PEGylated poly(propyleneimine)-based dendrimersomes: physicochemical studies, redox-responsiveness, DNA condensation, cytotoxicity and gene delivery to cancer cells.Biomater. Sci.2021941431144810.1039/D0BM01441A33404026
    [Google Scholar]
  103. IqbalS. MartinsA.F. SohailM. ZhaoJ. DengQ. LiM. ZhaoZ. Synthesis and characterization of poly (β-amino Ester) and applied pegylated and Non-PEGylated Poly (β-amino ester)/Plasmid DNA nanoparticles for efficient gene delivery.Front. Pharmacol.20221385485910.3389/fphar.2022.85485935462891
    [Google Scholar]
  104. ArangoD. CifuentesJ. PuentesP.R. BeltránT. BittarA. OcasiónC. Muñoz-CamargoC. BlochN.I. ReyesL.H. CruzJ.C. Tailoring magnetite-nanoparticle-based nanocarriers for gene delivery: Exploiting CRISPRa potential in reducing conditions.Nanomaterials20231311178210.3390/nano1311178237299685
    [Google Scholar]
  105. MalloryD.P. FreedmanA. KaliszewskiM.J. Montenegro-GalindoG.R. PughC. SmithA.W. Direct quantification of serum protein interactions with PEGylated micelle nanocarriers.Biomacromolecules20232462479248810.1021/acs.biomac.2c0153837224421
    [Google Scholar]
  106. GrunM.K. SuberiA. ShinK. LeeT. GomerdingerV. MoscatoZ.M. Piotrowski-DaspitA.S. SaltzmanW.M. PEGylation of poly(amine-co-ester) polyplexes for tunable gene delivery.Biomaterials202127212078010.1016/j.biomaterials.2021.12078033813260
    [Google Scholar]
  107. CurrieS. KimS. GuX. RenX. LinF. LiuS. YangC. KimJ.H. LiuS. Mucus-penetrating PEGylated polysuccinimide-based nanocarrier for intravaginal delivery of siRNA battling sexually transmitted infections.Colloids Surf. B Biointerfaces202019611128710.1016/j.colsurfb.2020.11128732768985
    [Google Scholar]
  108. Pędziwiatr-WerbickaE. GorzkiewiczM. HorodeckaK. LachD. Barrios-GumielA. Sánchez-NievesJ. GómezR. de la MataF.J. BryszewskaM. PEGylation of dendronized gold nanoparticles affects their interaction with thrombin and siRNA.J. Phys. Chem. B202112541196120610.1021/acs.jpcb.0c1017733481607
    [Google Scholar]
  109. SolomunJ.I. CinarG. MapfumoP. RichterF. MoekE. HausigF. Solely aqueous formulation of hydrophobic cationic polymers for efficient gene delivery.Int. J. Pharm.202012008010.1016/j.ijpharm.2020.12008033246046
    [Google Scholar]
  110. PitorreM. GazailleC. PhamL.T.T. FrankovaK. BéjaudJ. LautramN. RiouJ. PerrotR. GenevièveF. MoalV. BenoitJ.P. BastiatG. Polymer-free hydrogel made of lipid nanocapsules, as a local drug delivery platform.Mater. Sci. Eng. C202112611218810.1016/j.msec.2021.11218834082987
    [Google Scholar]
  111. AkbariV. RezazadehM. HanaieN.S. HasanzadehF. Preparation and in vitro characterization of histidine trimethyl chitosan conjugated nanocomplex incorporated into injectable thermosensitive hydrogels for localized gene delivery.Biotechnol. Appl. Biochem.20226931047105710.1002/bab.217533878804
    [Google Scholar]
  112. KurtE. SeguraT. Nucleic acid delivery from granular hydrogels.Adv. Healthc. Mater.2022113210186710.1002/adhm.20210186734742164
    [Google Scholar]
  113. Mo, F.; Jiang, K.; Zhao, D.; Wang, Y.; Song, J.; Tan, W. DNA hydrogel-based gene editing and drug delivery systems. Adv. Drug Deliv. Rev., 2021, 168, 79-98.10.1016/j.addr.2020.07.01832712197
  114. JiangT. MaY. XuX. JiQ. FengM. ChengC. FengY. HeB. MoR. Enzyme-instructed hybrid nanogel/nanofiber oligopeptide hydrogel for localized protein delivery.Acta Pharm. Sin. B20211172070207910.1016/j.apsb.2020.11.01034386339
    [Google Scholar]
  115. FuX. ChenT. SongY. FengC. ChenH. ZhangQ. ChenG. ZhuX. mRNA delivery by a ph-responsive DNA nano-hydrogel.Small20211729210122410.1002/smll.20210122434145748
    [Google Scholar]
  116. LuY.J. LanY.H. ChuangC.C. LuW.T. ChanL.Y. HsuP.W. ChenJ.P. Injectable thermo-sensitive chitosan hydrogel containing CPT-11-loaded EGFR-targeted graphene oxide and SLP2 shRNA for localized drug/gene delivery in glioblastoma therapy.Int. J. Mol. Sci.20202119711110.3390/ijms2119711132993166
    [Google Scholar]
  117. MassiL. NajerA. ChapmanR. SpicerC.D. NeleV. CheJ. BoothM.A. DoutchJ.J. StevensM.M. Tuneable peptide cross-linked nanogels for enzyme-triggered protein delivery.J. Mater. Chem. B20208388894890710.1039/D0TB01546F33026394
    [Google Scholar]
  118. WuX.R. ZhangJ. ZhangJ.H. XiaoY.P. HeX. LiuY.H. YuX.Q. Amino acid-linked low molecular weight polyethylenimine for improved gene delivery and biocompatibility.Molecules202025497510.3390/molecules2504097532098282
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665310091240809103048
Loading
/content/journals/ppl/10.2174/0109298665310091240809103048
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test