Skip to content
2000
Volume 31, Issue 8
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

The long-term impact of the COVID-19 pandemic concerns risk to human health, particularly its potential association with protein misfolding and amyloidosis. This review article explores the causality relationship between SARS-CoV-2 infection, and protein misfolding, leading to amyloid-related conditions. It delves into the mechanisms by which viral proteins may accelerate amyloid formation, exacerbating post-infection complications, including neurological sequelae. Drawing from interdisciplinary research and clinical observations, the potential links between COVID-19, vaccination, and amyloidosis, emphasize the importance of understanding the long-term effect of post-COVID symptoms. This review examines the potential role of COVID-19-related proteins in the formation of amyloid in other related proteins of amyloidosis.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665333817240821111641
2024-08-27
2024-12-23
Loading full text...

Full text loading...

References

  1. PerozzoR. FolkersG. ScapozzaL. Thermodynamics of protein-ligand interactions: history, presence, and future aspects.J. Recept. Signal Transduct. Res.2004241-215210.1081/RRS‑12003789615344878
    [Google Scholar]
  2. BaiY. ZhangS. DongH. LiuY. LiuC. ZhangX. Advanced techniques for detecting protein misfolding and aggregation in cellular environments.Chem. Rev.202312321122541231110.1021/acs.chemrev.3c0049437874548
    [Google Scholar]
  3. Díaz-VillanuevaJ. Díaz-MolinaR. García-GonzálezV. Protein folding and mechanisms of proteostasis.Int. J. Mol. Sci.2015168171931723010.3390/ijms16081719326225966
    [Google Scholar]
  4. PignataroM. F. HerreraM. G. DoderoV. I. Evaluation of peptide/protein self-assembly and aggregation by spectroscopic methods.Molecules20202520485410.3390/molecules25204854
    [Google Scholar]
  5. SaibilH. Chaperone machines for protein folding, unfolding and disaggregation.Nat. Rev. Mol. Cell Biol.2013141063064210.1038/nrm365824026055
    [Google Scholar]
  6. ClarkA.H. JudgeF.J. RichardsJ.B. StubbsJ.M. SuggettA. Electron microscopy of network structures in thermally-induced globular protein gels.Int. J. Pept. Protein Res.198117338039210.1111/j.1399‑3011.1981.tb02005.x7026472
    [Google Scholar]
  7. DobsonC.M. Protein misfolding, evolution and disease.Trends Biochem. Sci.199924932933210.1016/S0968‑0004(99)01445‑010470028
    [Google Scholar]
  8. AlmeidaZ. L. BritoR. M. M. Structure and Aggregation Mechanisms in Amyloids.Molecules20202551195
    [Google Scholar]
  9. RashidM.H. senP. Recent advancements in biosensors for the detection and characterization of amyloids: A review.Protein J.2024[Epub ahead of print]10.1007/s10930‑024‑10205‑038824466
    [Google Scholar]
  10. NelsonR. SawayaM.R. BalbirnieM. MadsenA.Ø. RiekelC. GrotheR. EisenbergD. Structure of the cross-β spine of amyloid-like fibrils.Nature2005435704377377810.1038/nature0368015944695
    [Google Scholar]
  11. NelsonR. EisenbergD. Structural models of amyloid-like fibrils.Adv. Protein Chem.20067323528210.1016/S0065‑3233(06)73008‑X17190616
    [Google Scholar]
  12. Riek, R. The Three-Dimensional Structures of Amyloids. Cold Spring Harb. Perspect. Biol., 2017, 9(2): e023572.10.1101/cshperspect.a02357227793967
  13. BellottiV. MangioneP. StoppiniM. Biological activity and pathological implications of misfolded proteins.Cell. Mol. Life Sci.199955797799110.1007/s00018005034810412375
    [Google Scholar]
  14. BellottiV. NuvoloneM. GiorgettiS. ObiciL. PalladiniG. RussoP. LavatelliF. PerfettiV. MerliniG. The workings of the amyloid diseases.Ann. Med.200739320020710.1080/0785389070120688717457717
    [Google Scholar]
  15. MuchtarE. DispenzieriA. MagenH. GroganM. MauermannM. McPhailE.D. KurtinP.J. LeungN. BuadiF.K. DingliD. KumarS.K. GertzM.A. Systemic amyloidosis from A (AA) to T (ATTR): a review.J. Intern. Med.2021289326829210.1111/joim.1316932929754
    [Google Scholar]
  16. WechalekarA.D. GillmoreJ.D. HawkinsP.N. Systemic amyloidosis.Lancet2016387100382641265410.1016/S0140‑6736(15)01274‑X26719234
    [Google Scholar]
  17. BuxbaumJ.N. DispenzieriA. EisenbergD.S. FändrichM. MerliniG. SaraivaM.J.M. SekijimaY. WestermarkP. Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee.Amyloid202229421321910.1080/13506129.2022.214763636420821
    [Google Scholar]
  18. RavichandranS. LachmannH.J. WechalekarA.D. Epidemiologic and survival trends in amyloidosis, 1987–2019.N. Engl. J. Med.2020382161567156810.1056/NEJMc191732132294353
    [Google Scholar]
  19. WestermarkG.T. FändrichM. WestermarkP. AA amyloidosis: pathogenesis and targeted therapy.Annu. Rev. Pathol.201510132134410.1146/annurev‑pathol‑020712‑16391325387054
    [Google Scholar]
  20. WangC. HorbyP.W. HaydenF.G. GaoG.F. A novel coronavirus outbreak of global health concern.Lancet20203951022347047310.1016/S0140‑6736(20)30185‑931986257
    [Google Scholar]
  21. ZhangY. GengX. TanY. LiQ. XuC. XuJ. HaoL. ZengZ. LuoX. LiuF. WangH. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system.Biomed. Pharmacother.202012711019510.1016/j.biopha.2020.11019532361161
    [Google Scholar]
  22. Singh-NazN. RodríguezW.J. KiddA.H. BrandtC.D. Monoclonal antibody enzyme-linked immunosorbent assay for specific identification and typing of subgroup F adenoviruses.J. Clin. Microbiol.198826229730010.1128/jcm.26.2.297‑300.19883343324
    [Google Scholar]
  23. RamaniA. MüllerL. OstermannP.N. GabrielE. Abida-IslamP. Müller-SchiffmannA. MariappanA. GoureauO. GruellH. WalkerA. AndréeM. HaukaS. HouwaartT. DiltheyA. WohlgemuthK. OmranH. KleinF. WieczorekD. AdamsO. TimmJ. KorthC. SchaalH. GopalakrishnanJ. SARS-CoV-2 targets neurons of 3D human brain organoids.EMBO J.20203920e10623010.15252/embj.202010623032876341
    [Google Scholar]
  24. SinhaN. ThakurA.K. Likelihood of amyloid formation in COVID-19-induced ARDS.Trends Microbiol.2021291196796910.1016/j.tim.2021.03.00833795156
    [Google Scholar]
  25. EmmiA. SandreM. PorzionatoA. AntoniniA. Smell deficits in COVID-19 and possible links with Parkinson’s disease.Int. Rev. Neurobiol.20221659110210.1016/bs.irn.2022.08.00136208908
    [Google Scholar]
  26. MerelloM. BhatiaK.P. ObesoJ.A. SARS-CoV-2 and the risk of Parkinson’s disease: facts and fantasy.Lancet Neurol.2021202949510.1016/S1474‑4422(20)30442‑733253627
    [Google Scholar]
  27. FangX. LiS. YuH. WangP. ZhangY. ChenZ. LiY. ChengL. LiW. JiaH. MaX. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis.Aging (Albany NY)20201213124931250310.18632/aging.10357932658868
    [Google Scholar]
  28. BeaumontA. VignesD. SterpuR. BussoneG. KansauI. PignonC. IsmailR. FavierM. MolitorJ. L. BrahamD. G. FiorR. RoyS. MionM. MeyerL. AndronikofM. DamoiselC. ChaguéP. AuréganJ. C. Bourgeois-NicolaosN. AbgrallS. Factors associated with hospital admission and adverse outcome for COVID-19: Role of social factors and medical care.Infectious Diseases Now202252313013710.1016/j.idnow.2022.02.001
    [Google Scholar]
  29. VijenthiraA. GongI.Y. FoxT.A. BoothS. CookG. FattizzoB. Martín-MoroF. RazanamaheryJ. RichesJ.C. ZwickerJ. PatellR. VekemansM.C. ScarfòL. ChatzikonstantinouT. YildizH. LattenistR. MantzarisI. WoodW.A. HicksL.K. Outcomes of patients with hematologic malignancies and COVID-19: a systematic review and meta-analysis of 3377 patients.Blood2020136252881289210.1182/blood.202000882433113551
    [Google Scholar]
  30. GulyaevaA.A. GorbalenyaA.E. A nidovirus perspective on SARS-CoV-2.Biochem. Biophys. Res. Commun.2021538243410.1016/j.bbrc.2020.11.01533413979
    [Google Scholar]
  31. WangM.Y. ZhaoR. GaoL.J. GaoX.F. WangD.P. CaoJ.M. SARS-CoV-2: Structure, biology, and structure-based therapeutics development.Front. Cell. Infect. Microbiol.20201058726910.3389/fcimb.2020.58726933324574
    [Google Scholar]
  32. ShinH.J. KuK.B. KimH.S. MoonH.W. JeongG.U. HwangI. YoonG.Y. LeeS. LeeS. AhnD.G. KimK.D. KwonY.C. KimB.T. KimS.J. KimC. Receptor-binding domain of SARS-CoV-2 spike protein efficiently inhibits SARS-CoV-2 infection and attachment to mouse lung.Int. J. Biol. Sci.202117143786379410.7150/ijbs.6132034671199
    [Google Scholar]
  33. LiW. MooreM.J. VasilievaN. SuiJ. WongS.K. BerneM.A. SomasundaranM. SullivanJ.L. LuzuriagaK. GreenoughT.C. ChoeH. FarzanM. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus.Nature2003426696545045410.1038/nature0214514647384
    [Google Scholar]
  34. PerdikariT.M. MurthyA.C. RyanV.H. WattersS. NaikM.T. FawziN.L. SARS-CoV-2 nucleocapsid protein phase-separates with RNA and with human hnRNPs.EMBO J.20203924e10647810.15252/embj.202010647833200826
    [Google Scholar]
  35. SemerdzhievS.A. FakhreeM.A.A. Segers-NoltenI. BlumC. ClaessensM.M.A.E. 2021Interactions between SARS-CoV-2 N-protein and α-synuclein accelerate amyloid formation.bioRxiv10.1101/2021.04.12.439549
    [Google Scholar]
  36. IdreesD. KumarV. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration.Biochem. Biophys. Res. Commun.2021554949810.1016/j.bbrc.2021.03.10033789211
    [Google Scholar]
  37. SasikalaM. ShashidharJ. DeepikaG. RavikanthV. KrishnaV. V. SadhanaY. PragathiK. ReddyD. N. Immunological memory and neutralizing activity to a single dose of COVID-19 vaccine in previously infected individuals.Int J Infect Dis202110818318610.1016/j.ijid.2021.05.034
    [Google Scholar]
  38. JainJ. SaurabhS. KumarP. VermaM.K. GoelA.D. GuptaM.K. BhardwajP. RaghavP.R. COVID-19 vaccine hesitancy among medical students in India.Epidemiol. Infect.2021149e13210.1017/S095026882100120534011421
    [Google Scholar]
  39. BarzenG. RieberF. StanglK. HahnK. SpethmannS. mRNA vaccines for COVID-19 are safe and clinically effective in patients with cardiac amyloidosis.Vaccine 2024, 42(4), 723-6.10.1016/j.vaccine.2023.12.04138158299
    [Google Scholar]
  40. SchmidtA.L. LabakiC. HsuC.Y. BakounyZ. BalanchivadzeN. BergS.A. BlauS. DaherA. El ZarifT. FrieseC.R. GriffithsE.A. HawleyJ.E. Hayes-LattinB. KariveduV. LatifT. MavromatisB.H. McKayR.R. NagarajG. NguyenR.H. PanagiotouO.A. PortugueseA.J. PucM. Santos DutraM. SchroederB.A. ThakkarA. Wulff-BurchfieldE.M. MishraS. FarmakiotisD. ShyrY. WarnerJ.L. ChoueiriT.K. ChoueiriT.K. DumaN. FarmakiotisD. GrivasP. de Lima LopesG.Jr PainterC.A. PetersS. RiniB.I. ShahD.P. ThompsonM.A. WarnerJ.L. COVID-19 vaccination and breakthrough infections in patients with cancer.Ann. Oncol.202233334034610.1016/j.annonc.2021.12.00634958894
    [Google Scholar]
  41. StoutenV. HubinP. HaarhuisF. van LoenhoutJ. BilluartM. BrondeelR. BraeyeT. Van OyenH. Wyndham-ThomasC. CatteauL. Incidence and Risk Factors of COVID-19 Vaccine Breakthrough Infections: A Prospective Cohort Study in Belgium.Viruses202214480210.3390/v1404080235458532
    [Google Scholar]
  42. FaksovaK. WalshD. JiangY. GriffinJ. PhillipsA. GentileA. KwongJ.C. MacartneyK. NausM. GrangeZ. EscolanoS. SepulvedaG. ShettyA. PillsburyA. SullivanC. NaveedZ. JanjuaN.Z. GiglioN. PeräläJ. NasreenS. GiddingH. HoviP. VoT. CuiF. DengL. CullenL. ArtamaM. LuH. ClothierH.J. BattyK. PaynterJ. Petousis-HarrisH. ButteryJ. BlackS. HviidA. COVID-19 vaccines and adverse events of special interest: A multinational Global Vaccine Data Network (GVDN) cohort study of 99 million vaccinated individuals.Vaccine20244292200221110.1016/j.vaccine.2024.01.10038350768
    [Google Scholar]
  43. JameelS. Covishield’s ‘rare’ side-effects: In election season, dangers of politicising the vaccine.2024Available from: https://indianexpress.com/article/opinion/columns/covishield-side-effects-election-season-dangers-politicising-vaccine-9303640/
  44. GalkinA.P. Hypothesis: AA amyloidosis is a factor causing systemic complications after coronavirus disease.Prion2021151535510.1080/19336896.2021.191046833876719
    [Google Scholar]
  45. LeungW.Y. WuH.H.L. FloydL. PonnusamyA. ChinnaduraiR. COVID-19 infection and vaccination and its relation to amyloidosis: What do we know currently?Vaccines (Basel)2023117113910.3390/vaccines1107113937514955
    [Google Scholar]
  46. LuJ. YuY. ZhuI. ChengY. SunP.D. Structural mechanism of serum amyloid A-mediated inflammatory amyloidosis.Proc. Natl. Acad. Sci. USA2014111145189519410.1073/pnas.132235711124706838
    [Google Scholar]
  47. ZinelluA. PaliogiannisP. CarruC. MangoniA.A. Serum amyloid A concentrations, COVID-19 severity and mortality: An updated systematic review and meta-analysis.Int. J. Infect. Dis.202110566867410.1016/j.ijid.2021.03.02533737133
    [Google Scholar]
  48. MorrowJ.F. StearmanR.S. PeltzmanC.G. PotterD.A. Induction of hepatic synthesis of serum amyloid A protein and actin.Proc. Natl. Acad. Sci. USA19817884718472210.1073/pnas.78.8.47186946420
    [Google Scholar]
  49. De BuckM. GouwyM. WangJ.M. Van SnickJ. ProostP. StruyfS. Van DammeJ. The cytokine-serum amyloid A-chemokine network.Cytokine Growth Factor Rev.201630556910.1016/j.cytogfr.2015.12.01026794452
    [Google Scholar]
  50. LamersM.M. HaagmansB.L. SARS-CoV-2 pathogenesis.Nat. Rev. Microbiol.202220527028410.1038/s41579‑022‑00713‑035354968
    [Google Scholar]
  51. ScapiniP. Lapinet-VeraJ.A. GasperiniS. CalzettiF. BazzoniF. CassatellaM.A. The neutrophil as a cellular source of chemokines.Immunol. Rev.2000177119520310.1034/j.1600‑065X.2000.17706.x11138776
    [Google Scholar]
  52. TecchioC. MichelettiA. CassatellaM.A. Neutrophil-derived cytokines: facts beyond expression.Front. Immunol.2014550810.3389/fimmu.2014.0050825374568
    [Google Scholar]
  53. NyströmS. HammarströmP. Amyloidogenesis of SARS-CoV-2 Spike Protein.J. Am. Chem. Soc.2022144208945895010.1021/jacs.2c0392535579205
    [Google Scholar]
  54. KozlovE.M. IvanovaE.A. GrechkoA.V. WuW. Cтapoдyбoвa, & Orekhov, A. N. (2021, February 24). Involvement of Oxidative Stress and the Innate Immune System in SARS-CoV-2.Infect. Dis. 2021, 9(1), 17.10.3390/diseases901001733668325
    [Google Scholar]
  55. FernandesI.G. de BritoC.A. dos ReisV.M.S. SatoM.N. PereiraN.Z. SARS-CoV-2 and Other Respiratory Viruses: What Does Oxidative Stress Have to Do with It?Oxid. Med. Cell. Longev.202011310.1155/2020/884428033381273
    [Google Scholar]
  56. MunblitD. NicholsonT.R. NeedhamD.M. SeylanovaN. ParrC. ChenJ. KokorinaA. SigfridL. BuonsensoD. BhatnagarS. ThiruvengadamR. ParkerA.M. PrellerJ. AvdeevS. KlokF.A. TongA. DiazJ.V. GrooteW.D. SchiessN. AkramiA. SimpsonF. OlliaroP. ApfelbacherC. RosaR.G. ChevinskyJ.R. SaydahS. SchmittJ. GuekhtA. GorstS.L. GenuneitJ. ReyesL.F. AsmanovA. O’HaraM.E. ScottJ.T. MichelenM. StavropoulouC. WarnerJ.O. HerridgeM. WilliamsonP.R. Studying the post-COVID-19 condition: research challenges, strategies, and importance of Core Outcome Set development.BMC Med.20222015010.1186/s12916‑021‑02222‑y35114994
    [Google Scholar]
  57. Domènech-MontoliuS. Puig-BarberàJ. Pac-SaM. Vidal-UtrillasP. Latorre-PovedaM. Del Rio-GonzálezA. Ferrando-RubertS. Ferrer-AbadG. Sánchez-UrbanoM. Aparisi-EsteveL. Badenes-MarquesG. Cervera-FerrerB. Clerig-ArnauU. Dols-BernadC. Fontal-CarcelM. Gomez-LanasL. Jovani-SalesD. León-DomingoM. Llopico-VilanovaM. Moros-BlascoM. Notari-RodríguezC. Ruíz-PuigR. Valls-LópezS. Arnedo-PenaA. Complications Post-COVID-19 and Risk Factors among Patients after Six Months of a SARS-CoV-2 Infection: A Population-Based Prospective Cohort Study.Epidemiologia202231496710.3390/epidemiologia301000636417267
    [Google Scholar]
  58. KamilovaU. ErmekbaevaA. NuritdinovN. KhamraevA. ZakirovaG. Occurrence of comorbid diseases in patients after COVID-19.J. Med. Life202316344745010.25122/jml‑2022‑016837168295
    [Google Scholar]
  59. AkiyamaS. HamdehS. MicicD. SakurabaA. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: a systematic review and meta-analysis.Ann. Rheum. Dis.202180338439110.1136/annrheumdis‑2020‑21894633051220
    [Google Scholar]
  60. GünsterC. BusseR. SpodenM. RombeyT. SchillingerG. HoffmannW. Weber-CarstensS. SchuppertA. KaragiannidisC. 6-month mortality and readmissions of hospitalized COVID-19 patients: A nationwide cohort study of 8,679 patients in Germany.PLoS One2021168e025542710.1371/journal.pone.025542734351975
    [Google Scholar]
  61. MirT.H. ZargarP.A. SharmaA. JabeenB. SharmaS. ParvaizM.O. BashirS. JaveedR. Post COVID-19 AA amyloidosis of the kidneys with rapidly progressive renal failure.Prion202317111111510.1080/19336896.2023.220115137055928
    [Google Scholar]
  62. JanaA.K. GreenwoodA.B. HansmannU.H.E. Presence of a SARS-CoV-2 protein enhances amyloid formation of serum amyloid A.J. Phys. Chem. B2021125329155916710.1021/acs.jpcb.1c0487134370466
    [Google Scholar]
  63. MilaniP. BassetM. RussoF. FoliA. PalladiniG. MerliniG. The lung in amyloidosis.Eur. Respir. Rev.20172614517004610.1183/16000617.0046‑201728877975
    [Google Scholar]
  64. UtzJ.P. SwensenS.J. GertzM.A. Pulmonary amyloidosis. The Mayo Clinic experience from 1980 to 1993.Ann. Intern. Med.1996124440741310.7326/0003‑4819‑124‑4‑199602150‑000048554249
    [Google Scholar]
  65. CreesZ.D. Stockerl-GoldsteinK. COVID-19 and Light Chain Amyloidosis, Adding Insult to Injury.Am. J. Med.2022135Suppl.1S49S5210.1016/j.amjmed.2022.01.00535081378
    [Google Scholar]
  66. GuptaA. MadhavanM.V. SehgalK. NairN. MahajanS. SehrawatT.S. BikdeliB. AhluwaliaN. AusielloJ.C. WanE.Y. FreedbergD.E. KirtaneA.J. ParikhS.A. MaurerM.S. NordvigA.S. AcciliD. BathonJ.M. MohanS. BauerK.A. LeonM.B. KrumholzH.M. UrielN. MehraM.R. ElkindM.S.V. StoneG.W. SchwartzA. HoD.D. BilezikianJ.P. LandryD.W. Extrapulmonary manifestations of COVID-19.Nat. Med.20202671017103210.1038/s41591‑020‑0968‑332651579
    [Google Scholar]
  67. Russe-RusseJ.R. AbramowitzC. PellegriniJ.R. Alvarez BetancourtA. CohenR. BaldinoM. CrandallR. KagolanuD. MejiaJ. RizvonK. COVID-19 exposure unmasking systemic amyloidosis with hepatic predominance.Cureus20221411e3109210.7759/cureus.3109236475164
    [Google Scholar]
  68. KizawaM. IwasakiY. Amyloid β-related angiitis of the central nervous system occurring after COVID-19 vaccination: A case report.World J. Clin. Cases20221034126171262210.12998/wjcc.v10.i34.1261736579089
    [Google Scholar]
  69. LiuC. MaN. FengY. ZhouM. LiH. ZhangX. MaX. From probiotics to postbiotics: Concepts and applications.Animal Research and One Health2023119211410.1002/aro2.7
    [Google Scholar]
  70. MaN. ChenX. JohnstonL.J. MaX. Gut microbiota-stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis.iMeta202214e5410.1002/imt2.5438867904
    [Google Scholar]
  71. NeurathM.F. COVID-19 and immunomodulation in IBD.Gut20206971335134210.1136/gutjnl‑2020‑32126932303609
    [Google Scholar]
  72. AMYPred-FRLAvailable from: https://pmlabstack.pythonanywhere.com/AMYPred-FRL
  73. BhardwajT. GadhaveK. KapugantiS.K. KumarP. BrotzakisZ.F. SaumyaK.U. NayakN. KumarA. JoshiR. MukherjeeB. BhardwajA. ThakurK.G. GargN. VendruscoloM. GiriR. Amyloidogenic proteins in the SARS-CoV and SARS-CoV-2 proteomes.Nat. Commun.202314194510.1038/s41467‑023‑36234‑436806058
    [Google Scholar]
  74. LarssonJ. HellstrandE. HammarströmP. NyströmS. 2023SARS-CoV-2 Spike amyloid fibrils specifically and selectively accelerates amyloid fibril formation of human prion protein and the amyloid β peptide, 2023, 2023-09.10.1101/2023.09.01.555834
  75. ChakrabartiS.S. GuptaS. GangulyU. KaushalA. YadavA. K. KaurU. SainiA.K. ChakrabartiS. Effects of the SARS-CoV-2 spike protein on in vitro aggregation of alpha synuclein- probable molecular interactions and clinical implications.Qeios.202210.32388/4425WE
    [Google Scholar]
  76. WuZ. ZhangX. HuangZ. MaK. SARS-CoV-2 proteins interact with alpha synuclein and induce lewy body-like pathology in vitro.Int. J. Mol. Sci.2022236339410.3390/ijms2306339435328814
    [Google Scholar]
  77. MonjeM. IwasakiA. The neurobiology of long COVID.Neuron2022110213484349610.1016/j.neuron.2022.10.00636288726
    [Google Scholar]
  78. CrunfliF. CarregariV.C. VerasF.P. SilvaL.S. NogueiraM.H. AntunesA.S.L.M. VendraminiP.H. ValençaA.G.F. Brandão-TelesC. ZuccoliG.S. Reis-de-OliveiraG. Silva-CostaL.C. Saia-CeredaV.M. SmithB.J. CodoA.C. de SouzaG.F. MuraroS.P. PariseP.L. Toledo-TeixeiraD.A. Santos de CastroÍ.M. MeloB.M. AlmeidaG.M. FirminoE.M.S. PaivaI.M. SilvaB.M.S. GuimarãesR.M. MendesN.D. LudwigR.L. RuizG.P. KnittelT.L. DavanzoG.G. GerhardtJ.A. RodriguesP.B. ForatoJ. AmorimM.R. BrunettiN.S. MartiniM.C. BenattiM.N. BatahS.S. SiyuanL. JoãoR.B. AventuratoÍ.K. Rabelo de BritoM. MendesM.J. da CostaB.A. AlvimM.K.M. da Silva JúniorJ.R. DamiãoL.L. de SousaI.M.P. da RochaE.D. GonçalvesS.M. Lopes da SilvaL.H. BettiniV. CamposB.M. LudwigG. TavaresL.A. PontelliM.C. VianaR.M.M. MartinsR.B. VieiraA.S. Alves-FilhoJ.C. ArrudaE. Podolsky-GondimG.G. SantosM.V. NederL. DamasioA. RehenS. VinoloM.A.R. MunhozC.D. Louzada-JuniorP. OliveiraR.D. CunhaF.Q. NakayaH.I. MauadT. Duarte-NetoA.N. Ferraz da SilvaL.F. DolhnikoffM. SaldivaP.H.N. FariasA.S. CendesF. Moraes-VieiraP.M.M. FabroA.T. SebollelaA. Proença-ModenaJ.L. YasudaC.L. MoriM.A. CunhaT.M. Martins-de-SouzaD. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients.Proc. Natl. Acad. Sci. USA202211935e220096011910.1073/pnas.220096011935951647
    [Google Scholar]
  79. SteinS.R. RamelliS.C. GrazioliA. ChungJ.Y. SinghM. YindaC.K. WinklerC.W. SunJ. DickeyJ.M. YlayaK. KoS.H. PlattA.P. BurbeloP.D. QuezadoM. PittalugaS. PurcellM. MunsterV.J. BelinkyF. Ramos-BenitezM.J. BoritzE.A. LachI.A. HerrD.L. RabinJ. SahariaK.K. MadathilR.J. TabatabaiA. SoherwardiS. McCurdyM.T. BabyakA.L. Perez ValenciaL.J. CurranS.J. RichertM.E. YoungW.J. YoungS.P. GasmiB. Sampaio De MeloM. DesarS. TadrosS. NasirN. JinX. RajanS. DikogluE. OzkayaN. SmithG. EmanuelE.R. KelsallB.L. OliveraJ.A. BlawasM. StarR.A. HaysN. SingireddyS. WuJ. RajaK. CurtoR. ChungJ.E. BorthA.J. BowersK.A. WeicholdA.M. MinorP.A. MoshrefM.A.N. KellyE.E. SajadiM.M. ScaleaT.M. TranD. DahiS. DeatrickK.B. KrauseE.M. HerroldJ.A. HochbergE.S. CornachioneC.R. LevineA.R. RichardsJ.E. ElderJ. BurkeA.P. MazzeffiM.A. ChristensonR.H. ChancerZ.A. AbdulmahdiM. SophaS. GoldbergT. SangwanY. SudanoK. BlumeD. RadinB. ArnoukM. EaganJ.W.Jr PalermoR. HarrisA.D. PohidaT. Garmendia-CedillosM. DoldG. SaglioE. PhamP. PetersonK.E. CohenJ.I. de WitE. VannellaK.M. HewittS.M. KleinerD.E. ChertowD.S. SARS-CoV-2 infection and persistence in the human body and brain at autopsy.Nature2022612794175876310.1038/s41586‑022‑05542‑y36517603
    [Google Scholar]
  80. YangR.C. HuangK. ZhangH.P. LiL. ZhangY.F. TanC. ChenH.C. JinM.L. WangX.R. SARS-CoV-2 productively infects human brain microvascular endothelial cells.J. Neuroinflammation202219114910.1186/s12974‑022‑02514‑x35705998
    [Google Scholar]
  81. MiltonN.G.N. SARS-CoV-2 amyloid, is COVID-19-exacerbated dementia an amyloid disorder in the making?Frontiers in Dementia20232123334010.3389/frdem.2023.123334039081980
    [Google Scholar]
  82. ChungS.J. ChangY. JeonJ. ShinJ.I. SongT.J. KimJ. Association of Alzheimer’s Disease with COVID-19 Susceptibility and Severe Complications: A Nationwide Cohort Study.J. Alzheimers Dis.202287270171010.3233/JAD‑22003135275548
    [Google Scholar]
  83. AnandP. SinghB. A review on cholinesterase inhibitors for Alzheimer’s disease.Arch. Pharm. Res.201336437539910.1007/s12272‑013‑0036‑323435942
    [Google Scholar]
  84. WangH. LuJ. ZhaoX. QinR. SongK. XuY. ZhangJ. ChenY. Alzheimer’s disease in elderly COVID-19 patients: potential mechanisms and preventive measures.Neurol. Sci.202142124913492010.1007/s10072‑021‑05616‑134550494
    [Google Scholar]
  85. LiuS. HossingerA. HeumüllerS.E. HornbergerA. BuravlovaO. KonstantouleaK. MüllerS.A. PaulsenL. RousseauF. SchymkowitzJ. LichtenthalerS.F. NeumannM. DennerP. VorbergI.M. Highly efficient intercellular spreading of protein misfolding mediated by viral ligand-receptor interactions.Nat. Commun.2021121573910.1038/s41467‑021‑25855‑234667166
    [Google Scholar]
  86. Martínez-MármolR. Giordano-SantiniR. KaulichE. ChoA.N. PrzybylaM. RiyadhM.A. RobinsonE. ChewK.Y. AmorR. MeunierF.A. BalistreriG. ShortK.R. KeY.D. IttnerL.M. HilliardM.A. SARS-CoV-2 infection and viral fusogens cause neuronal and glial fusion that compromises neuronal activity.Sci. Adv.2023923eadg224810.1126/sciadv.adg224837285437
    [Google Scholar]
  87. SferaA. RahmanL. Zapata-Martín del CampoC.M. KozlakidisZ. Long COVID as a Tauopathy: Of “Brain Fog” and “Fusogen Storms”.Int. J. Mol. Sci.202324161264810.3390/ijms24161264837628830
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665333817240821111641
Loading
/content/journals/ppl/10.2174/0109298665333817240821111641
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): amyloid β; amyloidosis; COVID-19; protein misfolding; SARS-CoV-2; spike protein
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test