Skip to content
2000
Volume 31, Issue 9
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

Polycystic Ovary Syndrome (PCOS), the ubiquitous reproductive disorder, has been documented as highly prevalent (6-9%) in India. 10% of women globally are predicted to have the disease. The highly mutable endocrinopathy, with differential clinical criteria for each diagnosis of PCOS, can mask the severity of the syndrome by influencing the incidence and occurrence of PCOS.

Area Covered

When there is a solid theoretical hypothesis between the neuroendocrine origin and ovarian origin of PCOS, recent evidence supports the neuroendocrine derivation of the pathology. It is considered of neuroendocrine basis – as it controls the ovarian axis and acts as a delicate target because it possesses receptors for various gonadal hormones, neurotransmitters & neuropeptides. Can these neuroendocrine alterations, variations in central brain circuits, and neuropeptide dysregulation be the tie that would link the pathophysiology of the disorder, the occurrence of all the 1˚ and 2˚ symptoms like polycystic ovaries, hyperandrogenism, obesity, insulin resistance, in PCOS?

Conclusion

This review anticipates providing a comprehensive overview of how neuropeptides such as Kisspeptin, Neurokinin B, Dynorphin A, β-Endorphin, Nesfatin, Neuropeptide Y, Phoenixin, Leptin, Ghrelin, Orexin, and Neudesin influence PCOS, the understanding of which may help to establish potential drug candidates against precise targets in these central circuits.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665309949240822105900
2024-09-11
2025-02-17
Loading full text...

Full text loading...

References

  1. KabelA. Polycystic ovarian syndrome: Insights into pathogenesis, diagnosis.Pathog. Pcos20161115
    [Google Scholar]
  2. LiznevaD. SuturinaL. WalkerW. BraktaS. Gavrilova-JordanL. AzzizR. Criteria, prevalence, and phenotypes of polycystic ovary syndrome.Fertil. Steril.2016106161510.1016/j.fertnstert.2016.05.00327233760
    [Google Scholar]
  3. RamanandS. GhonganeB. RamanandJ. PatwardhanM. GhanghasR. JainS. Clinical characteristics of polycystic ovary syndrome in Indian women.Indian J. Endocrinol. Metab.201317113814510.4103/2230‑8210.10785823776867
    [Google Scholar]
  4. CussonsA.J. StuckeyB.G.A. WattsG.F. Cardiovascular disease in the polycystic ovary syndrome: New insights and perspectives.Atherosclerosis2006185222723910.1016/j.atherosclerosis.2005.10.00716313910
    [Google Scholar]
  5. AbbottD.H. BarnettD.K. BrunsC.M. DumesicD.A. Androgen excess fetal programming of female reproduction: A developmental aetiology for polycystic ovary syndrome?Hum. Reprod. Update200511435737410.1093/humupd/dmi01315941725
    [Google Scholar]
  6. VinkJ.M. SadrzadehS. LambalkC.B. BoomsmaD.I. Heritability of polycystic ovary syndrome in a Dutch twin-family study.J. Clin. Endocrinol. Metab.20069162100210410.1210/jc.2005‑149416219714
    [Google Scholar]
  7. IndranI.R. LeeB.H. YongE.L. Cellular and animal studies: Insights into pathophysiology and therapy of PCOS.Best Pract Res Clin Obstet Gynaecol201637122410.1016/j.bpobgyn.2016.03.006.
    [Google Scholar]
  8. MoolhuijsenL.M.E. VisserJ.A. AMH in PCOS: Controlling the ovary, placenta, or brain?Curr. Opin. Endocr. Metab. Res.202012919710.1016/j.coemr.2020.04.006
    [Google Scholar]
  9. Medical progress polycystic ovary syndrome.Endocrinol. Metab. Clin. North Am.200526412231236
    [Google Scholar]
  10. BalenA. The pathophysiology of polycystic ovary syndrome: Trying to understand PCOS and its endocrinology.Best Pract Res Clin Obstet Gynaecol200418568570610.1016/j.bpobgyn.2004.05.004
    [Google Scholar]
  11. KotaniM. DetheuxM. VandenbogaerdeA. CommuniD. VanderwindenJ.M. Le PoulE. BrézillonS. TyldesleyR. Suarez-HuertaN. VandeputF. BlanpainC. SchiffmannS.N. VassartG. ParmentierM. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54.J. Biol. Chem.200127637346313463610.1074/jbc.M10484720011457843
    [Google Scholar]
  12. de RouxN. GeninE. CarelJ.C. MatsudaF. ChaussainJ.L. MilgromE. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54.Proc. Natl. Acad. Sci. USA200310019109721097610.1073/pnas.183439910012944565
    [Google Scholar]
  13. TopalogluA.K. ReimannF. GucluM. YalinA.S. KotanL.D. PorterK.M. SerinA. MunganN.O. CookJ.R. OzbekM.N. ImamogluS. AkalinN.S. YukselB. O’RahillyS. SempleR.K. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction.Nat. Genet.200941335435810.1038/ng.30619079066
    [Google Scholar]
  14. PageN.M. Neurokinin B and pre-eclampsia: A decade of discovery.Reprod. Biol. Endocrinol.201081410.1186/1477‑7827‑8‑420074343
    [Google Scholar]
  15. PageN.M. MorrishD.W. Weston-BellN.J. Differential mRNA splicing and precursor processing of neurokinin B in neuroendocrine tissues.Peptides20093081508151310.1016/j.peptides.2009.04.02319433124
    [Google Scholar]
  16. GoldsteinA. TachibanaS. LowneyL.I. HunkapillerM. HoodL. Dynorphin-(1-13), an extraordinarily potent opioid peptide.Proc. Natl. Acad. Sci. USA197976126666667010.1073/pnas.76.12.6666230519
    [Google Scholar]
  17. VoigtC. BennettN. Reproductive status-dependent dynorphin and neurokinin B gene expression in female Damaraland mole-rats.J. Chem. Neuroanat.201910210170510.1016/j.jchemneu.2019.10170531669432
    [Google Scholar]
  18. GargA. PatelB. AbbaraA. DhilloW.S. Treatments targeting neuroendocrine dysfunction in polycystic ovary syndrome (PCOS).Clin. Endocrinol. (Oxf.)202297215616410.1111/cen.1470435262967
    [Google Scholar]
  19. MooreA.M. LohrD.B. CoolenL.M. LehmanM.N. Prenatal androgen exposure alters kndy neurons and their afferent network in a model of polycystic ovarian syndrome.Endocrinology20211621110.1210/endocr/bqab15834346492
    [Google Scholar]
  20. MatsuzakiT. TungalagsuvdA. IwasaT. MunkhzayaM. YanagiharaR. TokuiT. YanoK. MayilaY. KatoT. KuwaharaA. MatsuiS. IraharaM. Kisspeptin mRNA expression is increased in the posterior hypothalamus in the rat model of polycystic ovary syndrome.Endocr. J.201764171410.1507/endocrj.EJ16‑028227665725
    [Google Scholar]
  21. XuG. ZhaoX. LiZ. HuJ. LiX. LiJ. ChenY. Effects of electroacupuncture on the kisspeptin-gonadotropin-releasing hormone (GnRH) /luteinizing hormone (LH) neural circuit abnormalities and androgen receptor expression of kisspeptin/neurokinin B/dynorphin neurons in PCOS rats.J. Ovarian Res.20231611510.1186/s13048‑022‑01078‑x36650561
    [Google Scholar]
  22. PorterD.T. MooreA.M. CobernJ.A. PadmanabhanV. GoodmanR.L. CoolenL.M. LehmanM.N. Prenatal testosterone exposure alters GABAergic synaptic inputs to GnRH and KNDy neurons in a sheep model of polycystic ovarian syndrome.Endocrinology2019160112529254210.1210/en.2019‑0013731415088
    [Google Scholar]
  23. OkadaH. KanasakiH. TumurbaatarT. TumurganZ. OrideA. KyoS. Hyperandrogenism induces proportional changes in the expression of Kiss-1, Tac2, and DynA in hypothalamic KNDy neurons.Reprod. Biol. Endocrinol.20222019110.1186/s12958‑022‑00963‑w35729637
    [Google Scholar]
  24. GibsonA.G. JaimeJ. BurgerL.L. MoenterS.M. Prenatal androgen treatment does not alter the firing activity of hypothalamic arcuate kisspeptin neurons in female mice.eNeuro20218510.1523/ENEURO.0306‑21.202134503965
    [Google Scholar]
  25. SunP. ZhangY. SunL. SunN. WangJ. MaH. Kisspeptin regulates the proliferation and apoptosis of ovary granulosa cells in polycystic ovary syndrome by modulating the PI3K/AKT/ERK signalling pathway.BMC Womens Health20232311510.1186/s12905‑022‑02154‑636627631
    [Google Scholar]
  26. GuzelkasI. OrbakZ. DonerayH. OzturkN. SagsozN. Serum kisspeptin, leptin, neuropeptide Y, and neurokinin B levels in adolescents with polycystic ovary syndrome.J. Pediatr. Endocrinol. Metab.202235448148710.1515/jpem‑2021‑048735170267
    [Google Scholar]
  27. YuanC. HuangW.Q. GuoJ.H. LiuX.Y. YangJ.Z. ChenJ.J. WuY. RuanY.C. LiuJ.Y. CuiY.G. DiaoF.Y. ChanH.C. Involvement of kisspeptin in androgen-induced hypothalamic endoplasmic reticulum stress and its rescuing effect in PCOS rats.Biochim. Biophys. Acta Mol. Basis Dis.202118671216624210.1016/j.bbadis.2021.16624234389474
    [Google Scholar]
  28. OsukaS. IwaseA. NakaharaT. KondoM. SaitoA. Bayasula NakamuraT. TakikawaS. GotoM. KotaniT. KikkawaF. Kisspeptin in the hypothalamus of two rat models of polycystic ovary syndrome.Endocrinology2016158210.1210/en.2016‑133327983870
    [Google Scholar]
  29. UenoyamaY. NagaeM. TsuchidaH. InoueN. TsukamuraH. Role of KNDy neurons expressing kisspeptin, neurokinin B, and dynorphin A as a GnRH pulse generator controlling mammalian reproduction.Front. Endocrinol. (Lausanne)20211272463272463210.3389/fendo.2021.72463234566891
    [Google Scholar]
  30. RuddenklauA. CampbellR.E. Neuroendocrine impairments of polycystic ovary syndrome.Endocrinology2019160102230224210.1210/en.2019‑0042831265059
    [Google Scholar]
  31. HughesJ. SmithT.W. KosterlitzH.W. FothergillL.A. MorganB.A. MorrisH.R. Identification of two related pentapeptides from the brain with potent opiate agonist activity.Nature1975258553657757910.1038/258577a01207728
    [Google Scholar]
  32. WallachE.E. SeiferD.B. CollinsR.L. Current concepts of β-endorphin physiology in female reproductive dysfunction.Fertil. Steril.199054575777110.1016/S0015‑0282(16)53928‑42226908
    [Google Scholar]
  33. EyvazzadehA.D. PenningtonK.P. Pop-BusuiR. SowersM. ZubietaJ.K. SmithY.R. The role of the endogenous opioid system in polycystic ovary syndrome.Fertil. Steril.200992111210.1016/j.fertnstert.2009.05.01219560572
    [Google Scholar]
  34. KiałkaM. MilewiczT. SpałkowskaM. Krzyczkowska-SendrakowskaM. WasylB. PełkaA. KrzysiekJ. β-endorphins plasma level is higher in lean Polycystic Ovary Syndrome (PCOS) Women.Exp. Clin. Endocrinol. Diabetes20161241556010.1055/s‑0035‑156409426797863
    [Google Scholar]
  35. NappiC. PetragliaF. CudemoV. VolpeA. FacchinettiU. GenazzaniAR. MontemagnoU. Plasma beta-endorphin levels in obese and non-obese patients with polycystic ovarian disease.Eur. J. Obstet. Gynecol. Reprod. Biol.198930215115610.1016/0028‑2243(89)90062‑22522898
    [Google Scholar]
  36. CarminaE. DitkoffE.C. MaliziaG. VijodA.G. JanniA. LoboR.A. Increased circulating levels of immunoreactive β-endorphin in polycystic ovary syndrome is not caused by increased pituitary secretion.Am. J. Obstet. Gynecol.199216761819182410.1016/0002‑9378(92)91781‑51471704
    [Google Scholar]
  37. ZangenehF. NaghizadehM. AbdollahiA. AbediniaN. Opioid system (β-endorphin) and stress hormones profiling in women with polycystic ovary syndrome.Annu. Res. Rev. Biol.20155540941810.9734/ARRB/2015/12932
    [Google Scholar]
  38. Stener-VictorinE. LindholmC. Immunity and β-endorphin concentrations in hypothalamus and plasma in rats with steroid-induced polycystic ovaries: Effect of low-frequency electroacupuncture.Biol. Reprod.200470232933310.1095/biolreprod.103.02236814561641
    [Google Scholar]
  39. LinE.J.D. SainsburyA. LeeN.J. BoeyD. CouzensM. EnriquezR. SlackK. BlandR. DuringM.J. HerzogH. Combined deletion of Y1, Y2, and Y4 receptors prevents hypothalamic neuropeptide Y overexpression-induced hyper- insulinemia despite persistence of hyperphagia and obesity.Endocrinology2006147115094510110.1210/en.2006‑009716873543
    [Google Scholar]
  40. KoseciT. KayaO. HaksoylerV. DericiV.D. SezerK. Investigation of the relationship between insulin resistance and neuropeptide Y levels in polycystic ovary syndrome.Marmara Med. J.20193211610.5472/marumj.500032
    [Google Scholar]
  41. AllenY.S. AdrianTE. AllenJM. TatemotoK. CrowTJ. BloomSR. PolakJM. Neuropeptide Y distribution in the rat brain.Science19832214613877910.1126/science.6136091
    [Google Scholar]
  42. BaranowskaB. RadzikowskaM. Wasilewska-DziubińskaE. KaplińskiA. RoguskiK. PłonowskiA. Neuropeptide Y, leptin, galanin and insulin in women with polycystic ovary syndrome.Gynecol. Endocrinol.199913534435110.3109/0951359990916757810599552
    [Google Scholar]
  43. RosenbergS.L. The relationship between PCOS and obesity: Which comes first?Sci. J. Lander Coll. Arts Sci.2019131
    [Google Scholar]
  44. ParkerR.M.C. HerzogH. Regional distribution of Y-receptor subtype mRNAs in rat brain.Eur. J. Neurosci.19991141431144810.1046/j.1460‑9568.1999.00553.x10103138
    [Google Scholar]
  45. TuriG.F. LipositsZ. MoenterS.M. FeketeC. HrabovszkyE. Origin of neuropeptide Y-containing afferents to gonadotropin-releasing hormone neurons in male mice.Endocrinology2003144114967497410.1210/en.2003‑047012960087
    [Google Scholar]
  46. EstradaK.M. PompoloS. MorrisM.J. TilbrookA.J. ClarkeI.J. Neuropeptide Y (NPY) delays the oestrogen-induced luteinizing hormone (LH) surge in the ovariectomized ewe: Further evidence that NPY has a predominant negative effect on LH secretion in the ewe.J. Neuroendocrinol.200315111011102010.1046/j.1365‑2826.2003.01087.x14622430
    [Google Scholar]
  47. RoaJ. HerbisonA.E. Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice.Endocrinology2012153115587559910.1210/en.2012‑147022948210
    [Google Scholar]
  48. Manfredi-LozanoM. RoaJ. Tena-SempereM. Connecting metabolism and gonadal function: Novel central neuropeptide pathways involved in the metabolic control of puberty and fertility.Front. Neuroendocrinol.201848May374910.1016/j.yfrne.2017.07.00828754629
    [Google Scholar]
  49. LiY. ZhiW. HaoxuD. QingW. LingC. PingY. DongmeiH. Effects of electroacupuncture on the expression of hypothalamic neuropeptide Y and ghrelin in pubertal rats with polycystic ovary syndrome.PLoS One2022176e025960910.1371/journal.pone.025960935704659
    [Google Scholar]
  50. LiuY. XuY.C. CuiY.G. JiangS.W. DiaoF.Y. LiuJ.Y. MaX. Androgen excess increases food intake in a rat polycystic ovary syndrome model by downregulating hypothalamus insulin and leptin signaling pathways preceding weight gain.Neuroendocrinology20221121096698110.1159/00052123634847556
    [Google Scholar]
  51. UrataY. SalehiR. WyseB.A. JahangiriS. LibrachC.L. TzengC.R. OsugaY. TsangB. Neuropeptide Y directly reduced apoptosis of granulosa cells, and the expression of NPY and its receptors in PCOS subjects.J. Ovarian Res.202316118210.1186/s13048‑023‑01261‑837653540
    [Google Scholar]
  52. RomualdiD. De MarinisL. CampagnaG. ProtoC. LanzoneA. GuidoM. Alteration of ghrelin–neuropeptide Y network in obese patients with polycystic ovary syndrome: Role of hyperinsulinism.Clin. Endocrinol. (Oxf.)200869456256710.1111/j.1365‑2265.2008.03204.x18248643
    [Google Scholar]
  53. ChenWH. ShiYC. HuangQY. ChenJM. WangZY. LinS. ShiQY. Potential for NPY receptor-related therapies for polycystic ovary syndrome: An updated review.Hormones (Athens)202322344145110.1007/s42000‑023‑00460‑8
    [Google Scholar]
  54. XuY. ZhangH. LiQ. LaoK. WangY. The role of nesfatin-1 expression in letrozole-induced polycystic ovaries in the rat.Gynecol. Endocrinol.201733643844110.1080/09513590.2017.129006828277136
    [Google Scholar]
  55. LuoJ. WenF. QiuD. WangS. Nesfatin-1 in lipid metabolism and lipid-related diseases.Clin. Chim. Acta2021522233010.1016/j.cca.2021.08.005
    [Google Scholar]
  56. AydinS. Multi-functional peptide hormone NUCB2/nesfatin-1.Endocrine201344231232510.1007/s12020‑013‑9923‑023526235
    [Google Scholar]
  57. RezkM.Y. ElkatawyH.A. FouadR.A. EnanE.T. AttiaM.A. Nesfatin-1: A potential therapeutic target in a rat model of polycystic ovary syndrome.Int J Diabetes Res20198191610.5923/j.diabetes.20190801.03.
    [Google Scholar]
  58. DenizR. GuratesB. AydinS. CelikH. Sahinİ. BaykusY. CatakZ. AksoyA. CitilC. GungorS. Nesfatin-1 and other hormone alterations in polycystic ovary syndrome.Endocrine201242369469910.1007/s12020‑012‑9638‑722367584
    [Google Scholar]
  59. Oh-IS. ShimizuH. SatohT. OkadaS. AdachiS. InoueK. EguchiH. YamamotoM. ImakiT. HashimotoK. TsuchiyaT. MondenT. HoriguchiK. YamadaM. MoriM. Identification of nesfatin-1 as a satiety molecule in the hypothalamus.Nature200644371127091210.1038/nature05162
    [Google Scholar]
  60. AdemogluE.N. GorarS. CarlıogluA. YazıcıH. DellalF.D. BerberogluZ. AkdenizD. UysalS. KarakurtF. Plasma nesfatin-1 levels are increased in patients with polycystic ovary syndrome.J. Endocrinol. Invest.201437871571910.1007/s40618‑014‑0089‑224920281
    [Google Scholar]
  61. FatimaF. SaxenaP. JainA. Correlation of serum Nesfatin 1 level with metabolic and clinical parameters in Indian women with and without polycystic ovarian syndrome.Int. J. Reprod. Contracept. Obstet. Gynecol.202312242743110.18203/2320‑1770.ijrcog20230128
    [Google Scholar]
  62. AlpE. GörmüşU. GüdücüN. BozkurtS. Nesfatin-1 levels and metabolic markers in polycystic ovary syndrome.Gynecol. Endocrinol.201531754354710.3109/09513590.2015.102421926062107
    [Google Scholar]
  63. BinnetoǧluE. ErbagG. GencerM. TurkonH. AsikM. GunesF. SenH. VuralA. UkincK. Plasma levels of nesfatin-1 in patients with polycystic ovary syndrome.Endocrine Abstracts201430120120410.1530/endoabs.35.P620
    [Google Scholar]
  64. NylanderM. FrøssingS. ClausenH.V. KistorpC. FaberJ. SkoubyS.O. Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: a randomized clinical trial.Reprod. Biomed. Online201735112112710.1016/j.rbmo.2017.03.02328479118
    [Google Scholar]
  65. UllahK. ur RahmanT. WuD.D. LinX.H. LiuY. GuoX.Y. LeungP.C.K. ZhangR.J. HuangH.F. ShengJ.Z. Phoenixin-14 concentrations are increased in association with luteinizing hormone and nesfatin-1 concentrations in women with polycystic ovary syndrome.Clin. Chim. Acta201747124324710.1016/j.cca.2017.06.01328624500
    [Google Scholar]
  66. KalamonN. BłaszczykK. SzlagaA. BillertM. SkrzypskiM. PawlickiP. Górowska - WójtowiczE. Kotula - BalakM. BłasiakA. RakA. Levels of the neuropeptide phoenixin-14 and its receptor GRP173 in the hypothalamus, ovary and periovarian adipose tissue in rat model of polycystic ovary syndrome.Biochem. Biophys. Res. Commun.2020528462863510.1016/j.bbrc.2020.05.10132505354
    [Google Scholar]
  67. ObradovicM. Sudar-MilovanovicE. SoskicS. EssackM. AryaS. StewartA.J. GojoboriT. IsenovicE.R. Leptin and obesity: Role and clinical implication.Front. Endocrinol. (Lausanne)202112May58588710.3389/fendo.2021.58588734084149
    [Google Scholar]
  68. Akeel Al-hussaniyH. HikmateA.A. AkeelN.M. Leptin hormone and its effectiveness in reproduction, metabolism, immunity, diabetes, hopes and ambitions.J. Med. Life202114560060510.25122/jml‑2021‑015335027962
    [Google Scholar]
  69. GruzdevaO. BorodkinaD. UchasovaE. DylevaY. BarbarashO. Leptin resistance: Underlying mechanisms and diagnosis.Diabetes Metab. Syndr. Obes.20191219119810.2147/DMSO.S18240630774404
    [Google Scholar]
  70. PengY. YangH. SongJ. FengD. NaZ. JiangH. MengY. ShiB. LiD. Elevated serum leptin levels as a predictive marker for polycystic ovary syndrome.Front. Endocrinol. (Lausanne)20221384516584516510.3389/fendo.2022.84516535355566
    [Google Scholar]
  71. JalilianN. HaghnazariL. RasoliniaS. Leptin and body mass index in polycystic ovary syndrome.Indian J. Endocrinol. Metab.201620332432810.4103/2230‑8210.18000527186548
    [Google Scholar]
  72. GaoT. WuL. ChangF. CaoG. Low circulating ghrelin levels in women with polycystic ovary syndrome: A systematic review and meta-analysis.Endocr. J.20166319310010.1507/endocrj.EJ15‑031826607017
    [Google Scholar]
  73. HoujeghaniS. PourghassemG.B. FarzadiL. Serum leptin and ghrelin levels in women with polycystic ovary syndrome: Correlation with anthropometric, metabolic, and endocrine parameters.Int. J. Fertil. Steril.20126211712625493169
    [Google Scholar]
  74. RashadN.M. SarayaY.S. AfifiS.A. AliA.E. Al-sayedR.M. Impact of weight loss on plasma ghrelin level, clinical, and metabolic features of obese women with or without polycystic ovary syndrome.Middle East Fertil. Soc. J.20202411210.1186/s43043‑019‑0006‑x
    [Google Scholar]
  75. DaghestaniM.H. DaghestaniM.H. El-MaznyA. Circulating ghrelin levels and the polycystic ovary syndrome: correlation with the clinical, hormonal and metabolic features.Eur. J. Obstet. Gynecol. Reprod. Biol.20111551656810.1016/j.ejogrb.2010.11.01921216086
    [Google Scholar]
  76. YilmazE. CelikO. CelikN. SimsekY. CelikE. YildirimE. Serum orexin-A (OXA) level decreases in polycystic ovarian syndrome.Gynecol. Endocrinol.201329438839010.3109/09513590.2012.75487423350701
    [Google Scholar]
  77. AbsatarovaY. EvseevaY. AndreevaE. SamsonovaM. Orexin A is a new marker of insulin resistance in polycystic ovary syndrome.Endocrine Abstracts202499EP9810.1530/endoabs.99.EP98
    [Google Scholar]
  78. KouhetsaniS. KhazaliH. Rajabi-MahamH. Orexin antagonism and substance-P: Effects and interactions on polycystic ovary syndrome in the wistar rats.J. Ovarian Res.20231618910.1186/s13048‑023‑01168‑437147728
    [Google Scholar]
  79. KimuraI. NakayamaY. KonishiM. TerasawaK. OhtaM. ItohN. FujimotoM. Functions of MAPR (membrane-associated progesterone receptor) family members as heme/steroid-binding proteins.Curr Protein Pept Sci201213768769610.2174/138920312804142110.
    [Google Scholar]
  80. RodriguesT.B. BallesterosP. RamirezB.G. ViolanteI.R. CruzF. FonsecaL.L. MargaridaM. CastroC.A. Garcia-MartinM.L. CerdanS. Kinetic properties of the redox switch/redox coupling mechanism as determined in primary cultures of cortical neurons and astrocytes from rat brain.J. Neurosci. Res.2007325332443253
    [Google Scholar]
  81. MifsudW. BatemanA. Membrane-bound progesterone receptors contain a cytochrome b5-like ligand-binding domain.Genome Biol.200231210.1186/gb‑2002‑3‑12‑research006812537557
    [Google Scholar]
  82. KimuraI. YoshiokaM. KonishiM. MiyakeA. ItohN. Neudesin, a novel secreted protein with a unique primary structure and neurotrophic activity.J. Neurosci. Res.200579328729410.1002/jnr.2035615605373
    [Google Scholar]
  83. OhtaH. KimuraI. KonishiM. ItohN. Neudesin as a unique secreted protein with multi-functional roles in neural functions, energy metabolism, and tumorigenesis.Front. Mol. Biosci.20152MAY2410.3389/fmolb.2015.0002426042224
    [Google Scholar]
  84. KruszewskaJ. Laudy-WiadernyH. KunickiM. Review of novel potential insulin resistance biomarkers in PCOS patients—the debate is still open.Int. J. Environ. Res. Public Health2022194209910.3390/ijerph1904209935206286
    [Google Scholar]
  85. YilmazY.H. DemirpenceM. ColakA. ZeytinliM. YasarE. TaylanA. Serum neudesin levels in patients with polycystic ovary syndrome.Ginekol. Pol.202193752553010.5603/GP.a2021.013934263912
    [Google Scholar]
  86. BozkayaG. FenerciogluO. Demirİ. GulerA. AslanipourB. CalanM. Neudesin: a neuropeptide hormone decreased in subjects with polycystic ovary syndrome.Gynecol. Endocrinol.2020361084985310.1080/09513590.2020.175110632314607
    [Google Scholar]
  87. KirS.F. BaydurS.S. MeteU.U. CumhurC.M. SenturkS. BayogluT.Y. BalikG. CureE. YuceS. KirbasA. Nesfatin-1 and Vitamin D levels may be associated with systolic and diastolic blood pressure values and hearth rate in polycystic ovary syndrome.Bosn J Basic Med Sci.2015153576310.17305/bjbms.2015.43226295295
    [Google Scholar]
  88. ÇelikkolA. BinayC. AyçiçekÖ. GüzelS. Serum neudesin levels in obese adolescents.J. Clin. Res. Pediatr. Endocrinol.2022141697510.4274/jcrpe.galenos.2021.2021.020834776708
    [Google Scholar]
  89. TolsonK.P. GarciaC. YenS. SimondsS. StefanidisA. LawrenceA. SmithJ.T. KauffmanA.S. Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity.J. Clin. Invest.201412473075307910.1172/JCI7107524937427
    [Google Scholar]
  90. WitchelS.F. OberfieldS.E. PeñaA.S. Polycystic ovary syndrome: Pathophysiology, presentation, and treatment with emphasis on adolescent girls.J. Endocr. Soc.2019381545157310.1210/js.2019‑0007831384717
    [Google Scholar]
  91. MillsE.G. YangL. AbbaraA. DhilloW.S. ComninosA.N. Current perspectives on kisspeptins role in behaviour.Front. Endocrinol. (Lausanne)20221392814310.3389/fendo.2022.92814335757400
    [Google Scholar]
  92. MerkleyC.M. RenwickA.N. ShupingS.L. HarlowK. SommerJ.R. NestorC.C. Undernutrition reduces kisspeptin and neurokinin B expression in castrated male sheep.Reprod. Fertil.202011213310.1530/RAF‑20‑002535128420
    [Google Scholar]
  93. Mittelman-SmithM.A. WilliamsH. Krajewski-HallS.J. McMullenN.T. RanceN.E. Role for kisspeptin/neurokinin B/dynorphin (KNDy) neurons in cutaneous vasodilatation and the estrogen modulation of body temperature.Proc. Natl. Acad. Sci. USA201210948198461985110.1073/pnas.121151710923150555
    [Google Scholar]
  94. SzeligaA. PodfigurnaA. BalaG. MeczekalskiB. Decreased neurokinin B as a risk factor of functional hypothalamic amenorrhea.Gynecol Endocrinol2023391221631310.1080/09513590.2023.2216313
    [Google Scholar]
  95. PilozziA. CarroC. HuangX. Roles of β-endorphin in stress, behavior, neuroinflammation, and brain energy metabolism.Int. J. Mol. Sci.202022133810.3390/ijms2201033833396962
    [Google Scholar]
  96. WortsmanJ. WehrenbergW.B. GavinJ.R.III AllenJ.P. Elevated levels of plasma beta-endorphin and gamma 3-melanocyte stimulating hormone in the polycystic ovary syndrome.Obstet. Gynecol.19846356306346326013
    [Google Scholar]
  97. JaschkeN. LungerF. WildtL. SeeberB. Beta endorphin in serum and follicular fluid of PCOS- and non-PCOS women.Arch. Gynecol. Obstet.2018298121722210.1007/s00404‑018‑4793‑629808249
    [Google Scholar]
  98. GuoZ. LiY. Prisoner's dilemma game model Based on historical strategy information.Sci. Rep.2023131110.1038/s41598‑022‑26890‑936593249
    [Google Scholar]
  99. LaatikainenT. SalminenK. VirtanenT. ApterD. Plasma β-endorphin, β-lipotropin and corticotropin in polycystic ovarian disease.Eur. J. Obstet. Gynecol. Reprod. Biol.198724432733310.1016/0028‑2243(87)90158‑43034691
    [Google Scholar]
  100. BeckB. Neuropeptide Y in normal eating and in genetic and dietary-induced obesity.Philos. Trans. R. Soc. Lond. B Biol. Sci.200636114711159118510.1098/rstb.2006.185516874931
    [Google Scholar]
  101. ZhangY. LiuC.Y. ChenW.C. ShiY.C. WangC.M. LinS. HeH.F. Regulation of neuropeptide Y in body microenvironments and its potential application in therapies: A review.Cell Biosci.202111115110.1186/s13578‑021‑00657‑734344469
    [Google Scholar]
  102. HuangY. LinX. LinS. Neuropeptide Y and metabolism syndrome: An update on perspectives of clinical therapeutic intervention strategies.Front. Cell Dev. Biol.2021969562310.3389/fcell.2021.69562334307371
    [Google Scholar]
  103. AyadaC. ToruÜ. KorkutY. Nesfatin-1 and its effects on different systems.Hippokratia201519141026435639
    [Google Scholar]
  104. AngeloneT. FiliceE. PasquaT. AmodioN. GalluccioM. MontesantiG. QuintieriA.M. CerraM.C. Nesfatin-1 as a novel cardiac peptide: Identification, functional characterization, and protection against ischemia/reperfusion injury.Cell. Mol. Life Sci.201370349550910.1007/s00018‑012‑1138‑722955491
    [Google Scholar]
  105. KratochvilovaH. LacinovaZ. KlouckovaJ. KavalkovaP. CinkajzlovaA. TrachtaP. KrizovaJ. BenesM. DolezalovaK. FriedM. VlasakovaZ. PelikanovaT. SpicakJ. MrazM. HaluzikM. Neudesin in obesity and type 2 diabetes mellitus: The effect of acute fasting and weight reducing interventions.Diabetes Metab. Syndr. Obes.20191242343010.2147/DMSO.S19325930992678
    [Google Scholar]
  106. Elkind-HirschK. MarrioneauxO. BhushanM. VernorD. BhushanR. Comparison of single and combined treatment with exenatide and metformin on menstrual cyclicity in overweight women with polycystic ovary syndrome.J. Clin. Endocrinol. Metab.20089372670267810.1210/jc.2008‑011518460557
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665309949240822105900
Loading
/content/journals/ppl/10.2174/0109298665309949240822105900
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test