Skip to content
2000
image of Investigation of the Expression and Regulation of SCG5 in the Context of the Chromogranin-Secretogranin Family in Malignant Tumors

Abstract

The SCG5 gene has been demonstrated to play an essential role in the development and progression of a range of malignant neoplasms. The regulation of SCG5 expression involves multiple biological pathways. According to relevant studies, SCG5 is differentially expressed in different cancers, and its up- or down-regulation may even affect tumour growth, invasion, and migration, which caught our attention. Therefore, we summarise the regulatory roles played by the SCG5 gene in a variety of cancers and the biological regulatory mechanisms associated with its possible promotion or inhibition of tumour biological behavior, to further explore the potential of SCG5 as a new tumour marker and hopefully provide theoretical guidance for subsequent disease research and treatment.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665325956240819064853
2024-09-04
2024-11-23
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Mbikay M. Seidah N.G. Chrétien M. Neuroendocrine secretory protein 7B2: structure, expression and functions. Biochem. J. 2001 357 2 329 342 10.1042/bj3570329 11439082
    [Google Scholar]
  3. Bartolomucci A. Possenti R. Mahata S.K. Fischer-Colbrie R. Loh Y.P. Salton S.R.J. The extended granin family: structure, function, and biomedical implications. Endocr. Rev. 2011 32 6 755 797 10.1210/er.2010‑0027 21862681
    [Google Scholar]
  4. Taupenot L. Harper K.L. O’Connor D.T. The chromogranin-secretogranin family. N. Engl. J. Med. 2003 348 12 1134 1149 10.1056/NEJMra021405 12646671
    [Google Scholar]
  5. Feldman S.A. Eiden L.E. The chromogranins: their roles in secretion from neuroendocrine cells and as markers for neuroendocrine neoplasia. Endocr. Pathol. 2003 14 1 3 24 10.1385/EP:14:1:3 12746559
    [Google Scholar]
  6. Courel M. Soler-Jover A. Rodriguez-Flores J.L. Mahata S.K. Elias S. Montero-Hadjadje M. Anouar Y. Giuly R.J. O’Connor D.T. Taupenot L. Pro-hormone secretogranin II regulates dense core secretory granule biogenesis in catecholaminergic cells. J. Biol. Chem. 2010 285 13 10030 10043 10.1074/jbc.M109.064196 20061385
    [Google Scholar]
  7. Bartolomucci A. Pasinetti G.M. Salton S.R.J. Granins as disease-biomarkers: translational potential for psychiatric and neurological disorders. Neuroscience 2010 170 1 289 297 10.1016/j.neuroscience.2010.06.057 20600637
    [Google Scholar]
  8. Deftos L.J. Chromogranin A. Chromogranin A: its role in endocrine function and as an endocrine and neuroendocrine tumor marker. Endocr. Rev. 1991 12 2 181 188 10.1210/edrv‑12‑2‑181 2070778
    [Google Scholar]
  9. Nobels F.R.E. Kwekkeboom D.J. Coopmans W. Schoenmakers C.H.H. Lindemans J. De Herder W.W. Krenning E.P. Bouillon R. Lamberts S.W.J. Chromogranin A as serum marker for neuroendocrine neoplasia: comparison with neuron-specific enolase and the alpha-subunit of glycoprotein hormones. J. Clin. Endocrinol. Metab. 1997 82 8 2622 2628 10.1210/jcem.82.8.4145 9253344
    [Google Scholar]
  10. Cui J. Ge Y. Sun W. Liu B. Dai C. CgB promotes EMT and stemness via MAPK pathway in colonic neuroendocrine carcinoma. Am. J. Cancer Res. 2023 13 4 1560 1570 37168358
    [Google Scholar]
  11. Stridsberg M. Eriksson B. Fellström B. Kristiansson G. Tiensuu Janson E. Measurements of chromogranin B can serve as a complement to chromogranin A. Regul. Pept. 2007 139 1-3 80 83 10.1016/j.regpep.2006.10.008 17116339
    [Google Scholar]
  12. Federico A. Steinfass T. Larribère L. Novak D. Morís F. Núñez L.E. Umansky V. Utikal J. Mithramycin A and Mithralog EC-8042 Inhibit SETDB1 Expression and Its Oncogenic Activity in Malignant Melanoma. Mol. Ther. Oncolytics 2020 18 83 99 10.1016/j.omto.2020.06.001 32637583
    [Google Scholar]
  13. Steinfass T. Poelchen J. Sun Q. Mastrogiulio G. Novak D. Vierthaler M. Pardo S. Federico A. Hüser L. Hielscher T. Carretero R. Offringa R. Altevogt P. Umansky V. Utikal J. Secretogranin II influences the assembly and function of MHC class I in melanoma. Exp. Hematol. Oncol. 2023 12 1 29 10.1186/s40164‑023‑00387‑1 36906639
    [Google Scholar]
  14. Li W. Webster K.A. LeBlanc M.E. Tian H. Secretogranin III: a diabetic retinopathy-selective angiogenic factor. Cell. Mol. Life Sci. 2018 75 4 635 647 10.1007/s00018‑017‑2635‑5 28856381
    [Google Scholar]
  15. Helwig M. Hoshino A. Berridge C. Lee S.N. Lorenzen N. Otzen D.E. Eriksen J.L. Lindberg I. The neuroendocrine protein 7B2 suppresses the aggregation of neurodegenerative disease-related proteins. J. Biol. Chem. 2013 288 2 1114 1124 10.1074/jbc.M112.417071 23172224
    [Google Scholar]
  16. Chaplot K. Jarvela T.S. Lindberg I. Secreted Chaperones in Neurodegeneration. Front. Aging Neurosci. 2020 12 268 10.3389/fnagi.2020.00268 33192447
    [Google Scholar]
  17. Bassi D.E. Fu J. Lopez de Cicco R. Klein-Szanto A.J.P. Proprotein convertases: “Master switches” in the regulation of tumor growth and progression. Mol. Carcinog. 2005 44 3 151 161 10.1002/mc.20134 16167351
    [Google Scholar]
  18. Waha A. Felsberg J. Hartmann W. Hammes J. von dem Knesebeck A. Endl E. Pietsch T. Waha A. Frequent epigenetic inactivation of the chaperone SGNE1 / 7B2 in human gliomas. Int. J. Cancer 2012 131 3 612 622 10.1002/ijc.26416 21901745
    [Google Scholar]
  19. Braks J.A.M. Martens G.J.M. 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell 1994 78 2 263 273 10.1016/0092‑8674(94)90296‑8 7913882
    [Google Scholar]
  20. Mamoor S. SCG5 is a differentially expressed gene in human metastatic breast cancer, in the brain and in the lymph nodes. 10.31219/osf.io/h5w4n
    [Google Scholar]
  21. Hamrah M.H. Abstract A033: Secretogranin V as a Potential Biomarker for Esophageal Squamous Cell Carcinoma. Cancer Immunol. Res. 2023 11 12_Supplement Suppl. A033 A033 10.1158/2326‑6074.TUMIMM23‑A033
    [Google Scholar]
  22. Vieau D. Rojas-Miranda’ A. Verley’ J.M. Lenne F. Bertagna A.X. The secretory granule peptides 7B2 and CCB are sensitive biochemical markers of neuro‐endocrine bronchial tumours in man. Clin. Endocrinol. (Oxf.) 1991 35 4 319 325 10.1111/j.1365‑2265.1991.tb03543.x 1752059
    [Google Scholar]
  23. Benjannet S. Savaria D. Chrétien M. Seidah N.G. 7B2 is a specific intracellular binding protein of the prohormone convertase PC2. J. Neurochem. 1995 64 5 2303 2311 10.1046/j.1471‑4159.1995.64052303.x 7722516
    [Google Scholar]
  24. Muller L. Zhu X. Lindberg I. Mechanism of the facilitation of PC2 maturation by 7B2: involvement in ProPC2 transport and activation but not folding. J. Cell Biol. 1997 139 3 625 638 10.1083/jcb.139.3.625 9348280
    [Google Scholar]
  25. Zhu X. Lamango N.S. Lindberg I. Involvement of a polyproline helix-like structure in the interaction of 7B2 with prohormone convertase 2. J. Biol. Chem. 1996 271 38 23582 23587 10.1074/jbc.271.38.23582 8798569
    [Google Scholar]
  26. Westphal C.H. Muller L. Zhou A. Zhu X. Bonner-Weir S. Schambelan M. Steiner D.F. Lindberg I. Leder P. The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing’s disease. Cell 1999 96 5 689 700 10.1016/S0092‑8674(00)80579‑6 10089884
    [Google Scholar]
  27. Natori S. Iguchi H. Nawata H. Kato K.I. Ibayashi H. Nakagaki H. Chrétien M. Evidence for the release of a novel pituitary polypeptide (7B2) from the growth hormone-producing pituitary adenoma of patients with acromegaly. J. Clin. Endocrinol. Metab. 1988 66 2 430 437 10.1210/jcem‑66‑2‑430 3123513
    [Google Scholar]
  28. Iguchi H. Demura R. Yasuda D. Wakasugi H. Effect of LHRH on plasma 7B2 in patients with gonadotropin-producing pituitary adenomas. Horm. Metab. Res. 1992 24 1 31 33 10.1055/s‑2007‑1003246 1612556
    [Google Scholar]
  29. Ohashi M. Natori S. Fujio N. Iguchi H. Nawata H. Secretory Protein 7B2. Horm. Metab. Res. 1990 22 2 114 116 10.1055/s‑2007‑1004862 2323727
    [Google Scholar]
  30. Natori S. Iguchi H. Ohashi M. Nawata H. Plasma 7B2 (a novel pituitary protein) immunoreactivity concentrations in patients with various endocrine disorders. Endocrinol. Jpn. 1988 35 4 651 654 10.1507/endocrj1954.35.651 2850908
    [Google Scholar]
  31. Suzuki H. Ghatri M.A. Williams S.J. Uttenthal L.O. Facer P. Bishop A.E. Polak J.M. Bloom S.R. Production of pituitary protein 7B2 immunoreactivity by endocrine tumors and its possible diagnostic value. J. Clin. Endocrinol. Metab. 1986 63 3 758 765 10.1210/jcem‑63‑3‑758 3525602
    [Google Scholar]
  32. Iguchi H. Hara N. Hayashi I. Ohta M. Bloom S.R. Chrétien M. Elevation of a novel pituitary protein (7B2) in the plasma in small cell carcinoma of the lung. Eur. J. Cancer Clin. Oncol. 1989 25 8 1225 1232 10.1016/0277‑5379(89)90419‑7 2548871
    [Google Scholar]
  33. Vincent A. Herman J. Schulick R. Hruban R.H. Goggins M. Pancreatic cancer. Lancet 2011 378 9791 607 620 10.1016/S0140‑6736(10)62307‑0 21620466
    [Google Scholar]
  34. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  35. Jo Y. Yeo M.K. Dao T. Kwon J. Yi H.S. Ryu D. Machine learning-featured Secretogranin V is a circulating diagnostic biomarker for pancreatic adenocarcinomas associated with adipopenia. Front. Oncol. 2022 12 942774 10.3389/fonc.2022.942774 36059698
    [Google Scholar]
  36. Xu J.S. Liao K. Wang X. He J. Wang X.Z. Combining bioinformatics techniques to explore the molecular mechanisms involved in pancreatic cancer metastasis and prognosis. J. Cell. Mol. Med. 2020 24 24 14128 14138 10.1111/jcmm.16023 33164330
    [Google Scholar]
  37. Gazdar A.F. Bunn P.A. Minna J.D. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat. Rev. Cancer 2017 17 12 725 737 10.1038/nrc.2017.87 29077690
    [Google Scholar]
  38. Roebroek A.J. Martens G.J. Duits A.J. Schalken J.A. van Bokhoven A. Wagenaar S.S. Van de Ven W.J. Differential expression of the gene encoding the novel pituitary polypeptide 7B2 in human lung cancer cells. Cancer Res. 1989 49 15 4154 4158 2545336
    [Google Scholar]
  39. Wysong A. Squamous-cell carcinoma of the skin. N. Engl. J. Med. 2023 388 24 2262 2273 10.1056/NEJMra2206348 37314707
    [Google Scholar]
  40. Chen L. Liao X. Jiang X. Yan J. Liang J. Hongwei L. Identification of metastasis-associated genes in cutaneous squamous cell carcinoma based on bioinformatics analysis and experimental validation. Adv. Ther. 2022 39 10 4594 4612 10.1007/s12325‑022‑02276‑1 35947350
    [Google Scholar]
  41. Jha R.K. Kouzine F. Levens D. MYC function and regulation in physiological perspective. Front. Cell Dev. Biol. 2023 11 1268275 10.3389/fcell.2023.1268275 37941901
    [Google Scholar]
  42. Dong Y. Tu R. Liu H. Qing G. Regulation of cancer cell metabolism: oncogenic MYC in the driver’s seat. Signal Transduct. Target. Ther. 2020 5 1 124 10.1038/s41392‑020‑00235‑2 32651356
    [Google Scholar]
  43. DeKoter R.P. Kamath M.B. Houston I.B. Analysis of concentration-dependent functions of PU.1 in hematopoiesis using mouse models. Blood Cells Mol. Dis. 2007 39 3 316 320 10.1016/j.bcmd.2007.06.004 17629523
    [Google Scholar]
  44. Gao N. Ye B. SPI1-induced upregulation of lncRNA SNHG6 promotes non-small cell lung cancer via miR-485-3p/VPS45 axis. Biomed. Pharmacother. 2020 129 110239 10.1016/j.biopha.2020.110239 32590190
    [Google Scholar]
  45. Lv X. Yu X. Signatures and prognostic values of related immune targets in tongue cancer. Front. Surg. 2023 9 952389 10.3389/fsurg.2022.952389 36684241
    [Google Scholar]
  46. Jones P.A. Baylin S.B. The epigenomics of cancer. Cell 2007 128 4 683 692 10.1016/j.cell.2007.01.029 17320506
    [Google Scholar]
  47. Katz L.S. Gosmain Y. Marthinet E. Philippe J. Pax6 regulates the proglucagon processing enzyme PC2 and its chaperone 7B2. Mol. Cell. Biol. 2009 29 8 2322 2334 10.1128/MCB.01543‑08 19223471
    [Google Scholar]
  48. Zhou Y.H. Tan F. Hess K.R. Yung W.K. The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. Clin. Cancer Res. 2003 9 9 3369 3375 12960124
    [Google Scholar]
  49. Jeannotte R. Paquin J. Petit-Turcotte C. Day R. Convertase PC2 and the neuroendocrine polypeptide 7B2 are co-induced and processed during neuronal differentiation of P19 embryonal carcinoma cells. DNA Cell Biol. 1997 16 10 1175 1187 10.1089/dna.1997.16.1175 9364928
    [Google Scholar]
  50. Waldbieser G.C. Aimi J. Dixon J. Cloning and characterization of the rat complementary deoxyribonucleic acid and gene encoding the neuroendocrine peptide 7B2. Endocrinology 1991 128 6 3228 3236 10.1210/endo‑128‑6‑3228 1709861
    [Google Scholar]
  51. Barbero P. Kitabgi P. Protein 7B2 is essential for the targeting and activation of PC2 into the regulated secretory pathway of rMTC 6-23 cells. Biochem. Biophys. Res. Commun. 1999 257 2 473 479 10.1006/bbrc.1999.0495 10198237
    [Google Scholar]
  52. Philippe J. Morel C. Cordier-Bussat M. Islet-specific proteins interact with the insulin-response element of the glucagon gene. J. Biol. Chem. 1995 270 7 3039 3045 10.1074/jbc.270.7.3039 7531697
    [Google Scholar]
  53. Sander M. Neubüser A. Kalamaras J. Ee H.C. Martin G.R. German M.S. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev. 1997 11 13 1662 1673 10.1101/gad.11.13.1662 9224716
    [Google Scholar]
  54. Gromada J. Franklin I. Wollheim C.B. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr. Rev. 2007 28 1 84 116 10.1210/er.2006‑0007 17261637
    [Google Scholar]
  55. Dhanvantari S. Seidah N.G. Brubaker P.L. Role of prohormone convertases in the tissue-specific processing of proglucagon. Mol. Endocrinol. 1996 10 4 342 355 10.1210/mend.10.4.8721980 8721980
    [Google Scholar]
  56. Gherzi R. Fehmann H.C. Eissele R. Göke B. Expression, intracellular localization, and gene transcription regulation of the secretory protein 7B2 in endocrine pancreatic cell lines and human insulinomas. Exp. Cell Res. 1994 213 1 20 27 10.1006/excr.1994.1168 7517367
    [Google Scholar]
  57. Konoshita T. Gasc J.M. Villard E. Takeda R. Seidah N.G. Corvol P. Pinet F. Expression of PC2 and PC1/PC3 in human pheochromocytomas. Mol. Cell. Endocrinol. 1994 99 2 307 314 10.1016/0303‑7207(94)90022‑1 8206338
    [Google Scholar]
  58. Mbikay M. Sirois F. Yao J. Seidah N.G. Chrétien M. Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Br. J. Cancer 1997 75 10 1509 1514 10.1038/bjc.1997.258 9166946
    [Google Scholar]
  59. Khatib A.M. Siegfried G. Prat A. Luis J. Chrétien M. Metrakos P. Seidah N.G. Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions. J. Biol. Chem. 2001 276 33 30686 30693 10.1074/jbc.M101725200 11402025
    [Google Scholar]
  60. Braks J.A.M. Broers C.A.M. Danger J.M.H.A. Martens G.J.M. Structural organization of the gene encoding the neuroendocrine chaperone 7B2. Eur. J. Biochem. 1996 236 1 60 67 10.1111/j.1432‑1033.1996.00060.x 8617287
    [Google Scholar]
  61. Ohagi S. LaMendola J. LeBeau M.M. Espinosa R. III Takeda J. Smeekens S.P. Chan S.J. Steiner D.F. Identification and analysis of the gene encoding human PC2, a prohormone convertase expressed in neuroendocrine tissues. Proc. Natl. Acad. Sci. USA 1992 89 11 4977 4981 10.1073/pnas.89.11.4977 1594602
    [Google Scholar]
  62. Petit-Turcotte C. Paquin J. Coordinate regulation of neuroendocrine convertase PC2 and peptide 7B2 in P19 neurons. Peptides 2000 21 3 365 372 10.1016/S0196‑9781(00)00150‑9 10793218
    [Google Scholar]
  63. Liu C. Zhang, Juanhui.; Wu, W. F., Zhang, X. D., Yue, Lina; Liu, T; Tang, Songshan., Effect of Proprotein Transferase 2 Gene Expression on Tumour Cell Proliferation. Guangdong Yaoxueyuan Xuebao 2017 01 117 122
    [Google Scholar]
  64. Lang D. Mascarenhas J.B. Powell S.K. Halegoua J. Nelson M. Ruggeri B.A. PAX6 is expressed in pancreatic adenocarcinoma and is downregulated during induction of terminal differentiation. Mol. Carcinog. 2008 47 2 148 156 10.1002/mc.20375 17849422
    [Google Scholar]
  65. Jetton T.L. Moates J.M. Lindner J. Wright C.V.E. Magnuson M.A. Targeted oncogenesis of hormone-negative pancreatic islet progenitor cells. Proc. Natl. Acad. Sci. USA 1998 95 15 8654 8659 10.1073/pnas.95.15.8654 9671733
    [Google Scholar]
  66. Montero-Hadjadje M. Vaingankar S. Elias S. Tostivint H. Mahata S.K. Anouar Y. Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol. (Oxf.) 2008 192 2 309 324 10.1111/j.1748‑1716.2007.01806.x 18005393
    [Google Scholar]
  67. Ottiger H.P. Battenberg E.F. Tsou A.P. Bloom F.E. Sutcliffe J.G. 1B1075: a brain- and pituitary-specific mRNA that encodes a novel chromogranin/secretogranin-like component of intracellular vesicles. J. Neurosci. 1990 10 9 3135 3147 10.1523/JNEUROSCI.10‑09‑03135.1990 2204688
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665325956240819064853
Loading
/content/journals/ppl/10.2174/0109298665325956240819064853
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test