Skip to content
2000
Volume 31, Issue 9
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

The SCG5 gene has been demonstrated to play an essential role in the development and progression of a range of malignant neoplasms. The regulation of SCG5 expression involves multiple biological pathways. According to relevant studies, SCG5 is differentially expressed in different cancers, and its up- or down-regulation may even affect tumour growth, invasion, and migration, which caught our attention. Therefore, we summarise the regulatory roles played by the SCG5 gene in a variety of cancers and the biological regulatory mechanisms associated with its possible promotion or inhibition of tumour biological behavior, to further explore the potential of SCG5 as a new tumour marker and hopefully provide theoretical guidance for subsequent disease research and treatment.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665325956240819064853
2024-08-30
2025-03-07
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. MbikayM. SeidahN.G. ChrétienM. Neuroendocrine secretory protein 7B2: structure, expression and functions.Biochem. J.2001357232934210.1042/bj357032911439082
    [Google Scholar]
  3. BartolomucciA. PossentiR. MahataS.K. Fischer-ColbrieR. LohY.P. SaltonS.R.J. The extended granin family: structure, function, and biomedical implications.Endocr. Rev.201132675579710.1210/er.2010‑002721862681
    [Google Scholar]
  4. TaupenotL. HarperK.L. O’ConnorD.T. The chromogranin-secretogranin family.N. Engl. J. Med.2003348121134114910.1056/NEJMra02140512646671
    [Google Scholar]
  5. FeldmanS.A. EidenL.E. The chromogranins: their roles in secretion from neuroendocrine cells and as markers for neuroendocrine neoplasia.Endocr. Pathol.200314132410.1385/EP:14:1:312746559
    [Google Scholar]
  6. CourelM. Soler-JoverA. Rodriguez-FloresJ.L. MahataS.K. EliasS. Montero-HadjadjeM. AnouarY. GiulyR.J. O’ConnorD.T. TaupenotL. Pro-hormone secretogranin II regulates dense core secretory granule biogenesis in catecholaminergic cells.J. Biol. Chem.201028513100301004310.1074/jbc.M109.06419620061385
    [Google Scholar]
  7. BartolomucciA. PasinettiG.M. SaltonS.R.J. Granins as disease-biomarkers: translational potential for psychiatric and neurological disorders.Neuroscience2010170128929710.1016/j.neuroscience.2010.06.05720600637
    [Google Scholar]
  8. DeftosL.J. ChromograninA. Chromogranin A: its role in endocrine function and as an endocrine and neuroendocrine tumor marker.Endocr. Rev.199112218118810.1210/edrv‑12‑2‑1812070778
    [Google Scholar]
  9. NobelsF.R.E. KwekkeboomD.J. CoopmansW. SchoenmakersC.H.H. LindemansJ. De HerderW.W. KrenningE.P. BouillonR. LambertsS.W.J. Chromogranin A as serum marker for neuroendocrine neoplasia: comparison with neuron-specific enolase and the alpha-subunit of glycoprotein hormones.J. Clin. Endocrinol. Metab.19978282622262810.1210/jcem.82.8.41459253344
    [Google Scholar]
  10. CuiJ. GeY. SunW. LiuB. DaiC. CgB promotes EMT and stemness via MAPK pathway in colonic neuroendocrine carcinoma.Am. J. Cancer Res.20231341560157037168358
    [Google Scholar]
  11. StridsbergM. ErikssonB. FellströmB. KristianssonG. Tiensuu JansonE. Measurements of chromogranin B can serve as a complement to chromogranin A.Regul. Pept.20071391-3808310.1016/j.regpep.2006.10.00817116339
    [Google Scholar]
  12. FedericoA. SteinfassT. LarribèreL. NovakD. MorísF. NúñezL.E. UmanskyV. UtikalJ. Mithramycin A and mithralog EC-8042 Inhibit SETDB1 expression and its oncogenic activity in malignant melanoma.Mol. Ther. Oncolytics202018839910.1016/j.omto.2020.06.00132637583
    [Google Scholar]
  13. SteinfassT. PoelchenJ. SunQ. MastrogiulioG. NovakD. VierthalerM. PardoS. FedericoA. HüserL. HielscherT. CarreteroR. OffringaR. AltevogtP. UmanskyV. UtikalJ. Secretogranin II influences the assembly and function of MHC class I in melanoma.Exp. Hematol. Oncol.20231212910.1186/s40164‑023‑00387‑136906639
    [Google Scholar]
  14. LiW. WebsterK.A. LeBlancM.E. TianH. Secretogranin III: a diabetic retinopathy-selective angiogenic factor.Cell. Mol. Life Sci.201875463564710.1007/s00018‑017‑2635‑528856381
    [Google Scholar]
  15. HelwigM. HoshinoA. BerridgeC. LeeS.N. LorenzenN. OtzenD.E. EriksenJ.L. LindbergI. The neuroendocrine protein 7B2 suppresses the aggregation of neurodegenerative disease-related proteins.J. Biol. Chem.201328821114112410.1074/jbc.M112.41707123172224
    [Google Scholar]
  16. ChaplotK. JarvelaT.S. LindbergI. Secreted Chaperones in Neurodegeneration.Front. Aging Neurosci.20201226810.3389/fnagi.2020.0026833192447
    [Google Scholar]
  17. BassiD.E. FuJ. Lopez de CiccoR. Klein-SzantoA.J.P. Proprotein convertases: “Master switches” in the regulation of tumor growth and progression.Mol. Carcinog.200544315116110.1002/mc.2013416167351
    [Google Scholar]
  18. WahaA. FelsbergJ. HartmannW. HammesJ. von dem KnesebeckA. EndlE. PietschT. WahaA. Frequent epigenetic inactivation of the chaperone SGNE1 / 7B2 in human gliomas.Int. J. Cancer2012131361262210.1002/ijc.2641621901745
    [Google Scholar]
  19. BraksJ.A.M. MartensG.J.M. 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway.Cell199478226327310.1016/0092‑8674(94)90296‑87913882
    [Google Scholar]
  20. MamoorS. SCG5 is a differentially expressed gene in human metastatic breast cancer, in the brain and in the lymph nodes.10.31219/osf.io/h5w4n
    [Google Scholar]
  21. HamrahM.H. Abstract A033: Secretogranin V as a potential biomarker for esophageal squamous cell carcinoma.Cancer Immunol. Res.20231112_SupplementSuppl.A033A03310.1158/2326‑6074.TUMIMM23‑A033
    [Google Scholar]
  22. VieauD. Rojas-Miranda’A. Verley’J.M. LenneF. BertagnaA.X. The secretory granule peptides 7B2 and CCB are sensitive biochemical markers of neuro-endocrine bronchial tumours in man.Clin. Endocrinol. (Oxf.)199135431932510.1111/j.1365‑2265.1991.tb03543.x1752059
    [Google Scholar]
  23. BenjannetS. SavariaD. ChrétienM. SeidahN.G. 7B2 is a specific intracellular binding protein of the prohormone convertase PC2.J. Neurochem.19956452303231110.1046/j.1471‑4159.1995.64052303.x7722516
    [Google Scholar]
  24. MullerL. ZhuX. LindbergI. Mechanism of the facilitation of PC2 maturation by 7B2: involvement in ProPC2 transport and activation but not folding.J. Cell Biol.1997139362563810.1083/jcb.139.3.6259348280
    [Google Scholar]
  25. ZhuX. LamangoN.S. LindbergI. Involvement of a polyproline helix-like structure in the interaction of 7B2 with prohormone convertase 2.J. Biol. Chem.199627138235822358710.1074/jbc.271.38.235828798569
    [Google Scholar]
  26. WestphalC.H. MullerL. ZhouA. ZhuX. Bonner-WeirS. SchambelanM. SteinerD.F. LindbergI. LederP. The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing’s disease.Cell199996568970010.1016/S0092‑8674(00)80579‑610089884
    [Google Scholar]
  27. NatoriS. IguchiH. NawataH. KatoK.I. IbayashiH. NakagakiH. ChrétienM. Evidence for the release of a novel pituitary polypeptide (7B2) from the growth hormone-producing pituitary adenoma of patients with acromegaly.J. Clin. Endocrinol. Metab.198866243043710.1210/jcem‑66‑2‑4303123513
    [Google Scholar]
  28. IguchiH. DemuraR. YasudaD. WakasugiH. Effect of LHRH on plasma 7B2 in patients with gonadotropin-producing pituitary adenomas.Horm. Metab. Res.1992241313310.1055/s‑2007‑10032461612556
    [Google Scholar]
  29. OhashiM. NatoriS. FujioN. IguchiH. NawataH. Secretory Protein 7B2.Horm. Metab. Res.199022211411610.1055/s‑2007‑10048622323727
    [Google Scholar]
  30. NatoriS. IguchiH. OhashiM. NawataH. Plasma 7B2 (a novel pituitary protein) immunoreactivity concentrations in patients with various endocrine disorders.Endocrinol. Jpn.198835465165410.1507/endocrj1954.35.6512850908
    [Google Scholar]
  31. SuzukiH. GhatriM.A. WilliamsS.J. UttenthalL.O. FacerP. BishopA.E. PolakJ.M. BloomS.R. Production of pituitary protein 7B2 immunoreactivity by endocrine tumors and its possible diagnostic value.J. Clin. Endocrinol. Metab.198663375876510.1210/jcem‑63‑3‑7583525602
    [Google Scholar]
  32. IguchiH. HaraN. HayashiI. OhtaM. BloomS.R. ChrétienM. Elevation of a novel pituitary protein (7B2) in the plasma in small cell carcinoma of the lung.Eur. J. Cancer Clin. Oncol.19892581225123210.1016/0277‑5379(89)90419‑72548871
    [Google Scholar]
  33. VincentA. HermanJ. SchulickR. HrubanR.H. GogginsM. Pancreatic cancer.Lancet2011378979160762010.1016/S0140‑6736(10)62307‑021620466
    [Google Scholar]
  34. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  35. JoY. YeoM.K. DaoT. KwonJ. YiH.S. RyuD. Machine learning-featured Secretogranin V is a circulating diagnostic biomarker for pancreatic adenocarcinomas associated with adipopenia.Front. Oncol.20221294277410.3389/fonc.2022.94277436059698
    [Google Scholar]
  36. XuJ.S. LiaoK. WangX. HeJ. WangX.Z. Combining bioinformatics techniques to explore the molecular mechanisms involved in pancreatic cancer metastasis and prognosis.J. Cell. Mol. Med.20202424141281413810.1111/jcmm.1602333164330
    [Google Scholar]
  37. GazdarA.F. BunnP.A. MinnaJ.D. Small-cell lung cancer: what we know, what we need to know and the path forward.Nat. Rev. Cancer2017171272573710.1038/nrc.2017.8729077690
    [Google Scholar]
  38. RoebroekA.J. MartensG.J. DuitsA.J. SchalkenJ.A. van BokhovenA. WagenaarS.S. Van de VenW.J. Differential expression of the gene encoding the novel pituitary polypeptide 7B2 in human lung cancer cells.Cancer Res.19894915415441582545336
    [Google Scholar]
  39. WysongA. Squamous-cell carcinoma of the skin.N. Engl. J. Med.2023388242262227310.1056/NEJMra220634837314707
    [Google Scholar]
  40. ChenL. LiaoX. JiangX. YanJ. LiangJ. HongweiL. Identification of metastasis-associated genes in cutaneous squamous cell carcinoma based on bioinformatics analysis and experimental validation.Adv. Ther.202239104594461210.1007/s12325‑022‑02276‑135947350
    [Google Scholar]
  41. JhaR.K. KouzineF. LevensD. MYC function and regulation in physiological perspective.Front. Cell Dev. Biol.202311126827510.3389/fcell.2023.126827537941901
    [Google Scholar]
  42. DongY. TuR. LiuH. QingG. Regulation of cancer cell metabolism: oncogenic MYC in the driver’s seat.Signal Transduct. Target. Ther.20205112410.1038/s41392‑020‑00235‑232651356
    [Google Scholar]
  43. DeKoterR.P. KamathM.B. HoustonI.B. Analysis of concentration-dependent functions of PU.1 in hematopoiesis using mouse models.Blood Cells Mol. Dis.200739331632010.1016/j.bcmd.2007.06.00417629523
    [Google Scholar]
  44. GaoN. YeB. SPI1-induced upregulation of lncRNA SNHG6 promotes non-small cell lung cancer via miR-485-3p/VPS45 axis.Biomed. Pharmacother.202012911023910.1016/j.biopha.2020.11023932590190
    [Google Scholar]
  45. LvX. YuX. Signatures and prognostic values of related immune targets in tongue cancer.Front. Surg.2023995238910.3389/fsurg.2022.95238936684241
    [Google Scholar]
  46. JonesP.A. BaylinS.B. The epigenomics of cancer.Cell2007128468369210.1016/j.cell.2007.01.02917320506
    [Google Scholar]
  47. KatzL.S. GosmainY. MarthinetE. PhilippeJ. Pax6 regulates the proglucagon processing enzyme PC2 and its chaperone 7B2.Mol. Cell. Biol.20092982322233410.1128/MCB.01543‑0819223471
    [Google Scholar]
  48. ZhouY.H. TanF. HessK.R. YungW.K. The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival.Clin. Cancer Res.2003993369337512960124
    [Google Scholar]
  49. JeannotteR. PaquinJ. Petit-TurcotteC. DayR. Convertase PC2 and the neuroendocrine polypeptide 7B2 are co-induced and processed during neuronal differentiation of P19 embryonal carcinoma cells.DNA Cell Biol.199716101175118710.1089/dna.1997.16.11759364928
    [Google Scholar]
  50. WaldbieserG.C. AimiJ. DixonJ. Cloning and characterization of the rat complementary deoxyribonucleic acid and gene encoding the neuroendocrine peptide 7B2.Endocrinology199112863228323610.1210/endo‑128‑6‑32281709861
    [Google Scholar]
  51. BarberoP. KitabgiP. Protein 7B2 is essential for the targeting and activation of PC2 into the regulated secretory pathway of rMTC 6-23 cells.Biochem. Biophys. Res. Commun.1999257247347910.1006/bbrc.1999.049510198237
    [Google Scholar]
  52. PhilippeJ. MorelC. Cordier-BussatM. Islet-specific proteins interact with the insulin-response element of the glucagon gene.J. Biol. Chem.199527073039304510.1074/jbc.270.7.30397531697
    [Google Scholar]
  53. SanderM. NeubüserA. KalamarasJ. EeH.C. MartinG.R. GermanM.S. Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development.Genes Dev.199711131662167310.1101/gad.11.13.16629224716
    [Google Scholar]
  54. GromadaJ. FranklinI. WollheimC.B. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains.Endocr. Rev.20072818411610.1210/er.2006‑000717261637
    [Google Scholar]
  55. DhanvantariS. SeidahN.G. BrubakerP.L. Role of prohormone convertases in the tissue-specific processing of proglucagon.Mol. Endocrinol.199610434235510.1210/mend.10.4.87219808721980
    [Google Scholar]
  56. GherziR. FehmannH.C. EisseleR. GökeB. Expression, intracellular localization, and gene transcription regulation of the secretory protein 7B2 in endocrine pancreatic cell lines and human insulinomas.Exp. Cell Res.19942131202710.1006/excr.1994.11687517367
    [Google Scholar]
  57. KonoshitaT. GascJ.M. VillardE. TakedaR. SeidahN.G. CorvolP. PinetF. Expression of PC2 and PC1/PC3 in human pheochromocytomas.Mol. Cell. Endocrinol.199499230731410.1016/0303‑7207(94)90022‑18206338
    [Google Scholar]
  58. MbikayM. SiroisF. YaoJ. SeidahN.G. ChrétienM. Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours.Br. J. Cancer199775101509151410.1038/bjc.1997.2589166946
    [Google Scholar]
  59. KhatibA.M. SiegfriedG. PratA. LuisJ. ChrétienM. MetrakosP. SeidahN.G. Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions.J. Biol. Chem.200127633306863069310.1074/jbc.M10172520011402025
    [Google Scholar]
  60. BraksJ.A.M. BroersC.A.M. DangerJ.M.H.A. MartensG.J.M. Structural organization of the gene encoding the neuroendocrine chaperone 7B2.Eur. J. Biochem.19962361606710.1111/j.1432‑1033.1996.00060.x8617287
    [Google Scholar]
  61. OhagiS. LaMendolaJ. LeBeauM.M. EspinosaR.III TakedaJ. SmeekensS.P. ChanS.J. SteinerD.F. Identification and analysis of the gene encoding human PC2, a prohormone convertase expressed in neuroendocrine tissues.Proc. Natl. Acad. Sci. USA199289114977498110.1073/pnas.89.11.49771594602
    [Google Scholar]
  62. Petit-TurcotteC. PaquinJ. Coordinate regulation of neuroendocrine convertase PC2 and peptide 7B2 in P19 neurons.Peptides200021336537210.1016/S0196‑9781(00)00150‑910793218
    [Google Scholar]
  63. LiuC. Zhang, Juanhui.; Wu, W. F., Zhang, X. D., Yue, Lina; Liu, T; Tang, Songshan. Effect of proprotein transferase 2 gene expression on tumour cell proliferation.Guangdong Yaoxueyuan Xuebao201701117122
    [Google Scholar]
  64. LangD. MascarenhasJ.B. PowellS.K. HalegouaJ. NelsonM. RuggeriB.A. PAX6 is expressed in pancreatic adenocarcinoma and is downregulated during induction of terminal differentiation.Mol. Carcinog.200847214815610.1002/mc.2037517849422
    [Google Scholar]
  65. JettonT.L. MoatesJ.M. LindnerJ. WrightC.V.E. MagnusonM.A. Targeted oncogenesis of hormone-negative pancreatic islet progenitor cells.Proc. Natl. Acad. Sci. USA199895158654865910.1073/pnas.95.15.86549671733
    [Google Scholar]
  66. Montero-HadjadjeM. VaingankarS. EliasS. TostivintH. MahataS.K. AnouarY. Chromogranins A and B and secretogranin II: evolutionary and functional aspects.Acta Physiol. (Oxf.)2008192230932410.1111/j.1748‑1716.2007.01806.x18005393
    [Google Scholar]
  67. OttigerH.P. BattenbergE.F. TsouA.P. BloomF.E. SutcliffeJ.G. 1B1075: a brain- and pituitary-specific mRNA that encodes a novel chromogranin/secretogranin-like component of intracellular vesicles.J. Neurosci.19901093135314710.1523/JNEUROSCI.10‑09‑03135.19902204688
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665325956240819064853
Loading
/content/journals/ppl/10.2174/0109298665325956240819064853
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test