Skip to content
2000
Volume 31, Issue 9
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

Breast cancer is a heterogeneous type of disease in which genetic and environmental factors play a crucial role. There are several types of treatment for breast cancer (BC) patients. However, the biggest problem in the treatment of breast cancer is the resistance that occurs during the treatment with chemotherapeutic agents. Usnic acid, a secondary metabolite of lichen, has been identified as a drug candidate molecule in cancer treatment. The determination of miRNA target proteins is essential for the understanding of molecular mechanisms of miRNA-related tumorigenesis.

Objectives

We determined that mir-185-5p has therapeutic potential at the miRNA level by applying usnic acid to BT-474 breast cancer cells in a previous study. Herein, we aimed to investigate the molecular mechanisms of miR-185-5p on BT-474 breast cancer cells using a proteomics approach. We explored the changes in the protein expression level of BT-474 breast cancer cells in response to the up-regulation of miR-185-5p after applying usnic acid as a novel candidate anti-cancer drug molecule.

Methods

We performed quantitative proteome analysis based on an LC-MS/MS assay, which was validated by western blotting. The differentially expressed proteins were analyzed using the latest data available in bioinformatics tools. The up-regulated expression of YWHAE, Cathepsin D, and the down-regulated levels of PAK-1 were demonstrated by western blot assay.

Results

According to the results, 86 proteins showing >2-fold change were identified as differentially expressed between breast cancer and normal breast epithelial cells. The apoptosis pathway was the main clade containing most of the proteins regulated by miR-185-5p. The results indicate that miR-185-5p modulates apoptosis signaling pathways in BT-474 breast cancer cells. Breast cancer inhibition due to increased expression of YWHAE, Cathepsin D, and decreased expression of PAK-1 is likely to be mediated by inducing miR-185-5p mediated apoptosis.

Conclusion

In this study, the identification of miR-185-5p protein targets demonstrated the potential for the development of targeted therapy and the development of miRNA-based therapeutics and presented it as a biomarker for breast cancer diagnosis, prognosis, and treatment response. In this regard, proteome analyses provided an understanding of the molecular mechanism underlying the effect of miR-185-5p on breast cancer.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665322427240906060626
2024-09-25
2024-12-23
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. JiZ.C. HanS.H. XingY.F. Overexpression of miR-3196 suppresses cell proliferation and induces cell apoptosis through targeting ERBB3 in breast cancer.Eur. Rev. Med. Pharmacol. Sci.201822238383839010.26355/eurrev‑201812‑1653630556879
    [Google Scholar]
  3. HuX. WangJ. HeW. ZhaoP. YeC. MicroRNA-433 targets AKT3 and inhibits cell proliferation and viability in breast cancer.Oncol. Lett.20181533998400410.3892/ol.2018.780329556282
    [Google Scholar]
  4. KhalilovR.K. BakishzadeA. NasibovaA. Future prospects of biomaterials in nanomedicine.Adv. Biol. Earth Sci.2024951010.62476/abes.9s5
    [Google Scholar]
  5. RosicG. SelakovicD. OmarovaS. Cancer signaling, cell/gene therapy, diagnosis and role of nanobiomaterials.Adv. Biol. Earth Sci.20249113410.62476/abes9s11
    [Google Scholar]
  6. SalahshourP. AbdolmalekiS. MonemizadehS. GholizadehS. KhaksarS. Nanobiomaterials/bioinks based scaffolds in 3D bioprinting for tissue engineering and artificial human organs.Adv. Biol. Earth Sci.202499710410.62476/abes9s97
    [Google Scholar]
  7. ErdilN. Cardiovascular disease, signaling, gene/cell therapy and advanced nanobiomaterials.Adv. Biol. Earth Sci.20249588010.62476/abes9s58
    [Google Scholar]
  8. HuseynovE. KhalilovR. MohamedA.J. Novel nanomaterials for hepatobiliary diseases treatment and future perspectives.Adv. Biol. Earth Sci.20249819110.62476/abes9s81
    [Google Scholar]
  9. WangK. KievitF.M. ZhangM. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.Pharmacol. Res.2016114566610.1016/j.phrs.2016.10.01627771464
    [Google Scholar]
  10. DongY. YuT. DingL. LauriniE. HuangY. ZhangM. WengY. LinS. ChenP. MarsonD. JiangY. GiorgioS. PriclS. LiuX. RocchiP. PengL. A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy.J. Am. Chem. Soc.201814047162641627410.1021/jacs.8b1002130346764
    [Google Scholar]
  11. MollaeiH. SafaralizadehR. RostamiZ. MicroRNA replacement therapy in cancer.J. Cell. Physiol.20192348123691238410.1002/jcp.2805830605237
    [Google Scholar]
  12. LiuJ. ChenZ. XiangJ. GuX. MicroRNA-155 acts as a tumor suppressor in colorectal cancer by targeting CTHRC1 in�vitro.Oncol. Lett.20181545561556810.3892/ol.2018.806929556299
    [Google Scholar]
  13. O’BrienJ. HayderH. ZayedY. PengC. Overview of microRNA biogenesis, mechanisms of actions, and circulation.Front. Endocrinol. (Lausanne)2018940210.3389/fendo.2018.0040230123182
    [Google Scholar]
  14. BaiX. MengL. SunH. LiZ. ZhangX. HuaS. MicroRNA-196b inhibits cell growth and metastasis of lung cancer cells by targeting runx2.Cell. Physiol. Biochem.201743275776710.1159/00048155928950255
    [Google Scholar]
  15. ZhangS. ShanC. KongG. DuY. YeL. ZhangX. MicroRNA-520e suppresses growth of hepatoma cells by targeting the NF-κB-inducing kinase (NIK).Oncogene201231313607362010.1038/onc.2011.52322105365
    [Google Scholar]
  16. AkouchekianM. MehrgouA. Therapeutic impacts of microRNAs in breast cancer by their roles in regulating processes involved in this disease.J. Res. Med. Sci.201722113010.4103/jrms.JRMS_967_1629387117
    [Google Scholar]
  17. WangW. LuoY. MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential.J. Zhejiang Univ. Sci. B2015161183110.1631/jzus.B140018425559952
    [Google Scholar]
  18. TavazoieS.F. AlarcónC. OskarssonT. PaduaD. WangQ. BosP.D. GeraldW.L. MassaguéJ. Endogenous human microRNAs that suppress breast cancer metastasis.Nature2008451717514715210.1038/nature0648718185580
    [Google Scholar]
  19. NagpalN. AhmadH.M. MolpariaB. KulshreshthaR. MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer.Carcinogenesis20133481889189910.1093/carcin/bgt10723542418
    [Google Scholar]
  20. BegM.S. BrennerA.J. SachdevJ. BoradM. KangY.K. StoudemireJ. SmithS. BaderA.G. KimS. HongD.S. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors.Invest. New Drugs201735218018810.1007/s10637‑016‑0407‑y27917453
    [Google Scholar]
  21. RupaimooleR. SlackF.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases.Nat. Rev. Drug Discov.201716320322210.1038/nrd.2016.24628209991
    [Google Scholar]
  22. OlivetoS. MancinoM. ManfriniN. BiffoS. Role of microRNAs in translation regulation and cancer.World J. Biol. Chem.201781455610.4331/wjbc.v8.i1.4528289518
    [Google Scholar]
  23. TanW. LiuB. QuS. LiangG. LuoW. GongC. MicroRNAs and cancer: Key paradigms in molecular therapy (Review).Oncol. Lett.20171532735274210.3892/ol.2017.763829434998
    [Google Scholar]
  24. KiliçN. IslakoğluY.Ö. Büyükİ. Gür-DedeoğluB. Cansaran-DumanD. Determination of usnic acid responsive miRNAs in breast cancer cell lines.Anticancer. Agents Med. Chem.201919121463147210.2174/187152061866618111212014230417797
    [Google Scholar]
  25. DeğerliE. TorunV. Cansaran-DumanD. miR-185-5p response to usnic acid suppresses proliferation and regulating apoptosis in breast cancer cell by targeting Bcl2.Biol. Res.20205311910.1186/s40659‑020‑00285‑432366289
    [Google Scholar]
  26. GygiS.P. RochonY. FranzaB.R. AebersoldR. Correlation between protein and mRNA abundance in yeast.Mol. Cell. Biol.19991931720173010.1128/MCB.19.3.172010022859
    [Google Scholar]
  27. RoseJ.K.C. BashirS. GiovannoniJ.J. JahnM.M. SaravananR.S. Tackling the plant proteome: practical approaches, hurdles and experimental tools.Plant J.200439571573310.1111/j.1365‑313X.2004.02182.x15315634
    [Google Scholar]
  28. CoskunA. BaykalA.T. OztugM. KazanD. KayaE. EmirogluR. YılmazS. DundarH.Z. AkgozM. BerberI. AktasH. BilselG. KaraosmanogluK. ÇetinerB. ArslanC. YurtseverI. YazıcıC. proteomic analysis of liver preservation solutions prior to liver transplantation.Curr. Proteomics201916211913510.2174/1570164615666180905104543
    [Google Scholar]
  29. ChwieralskiC.E. WelteT. BühlingF. Cathepsin-regulated apoptosis.Apoptosis200611214314910.1007/s10495‑006‑3486‑y16502253
    [Google Scholar]
  30. DeissL.P. GalinkaH. BerissiH. CohenO. KimchiA. Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha.EMBO J.199615153861387010.1002/j.1460‑2075.1996.tb00760.x8670891
    [Google Scholar]
  31. RobergK. KågedalK. ÖllingerK. Microinjection of cathepsin d induces caspase-dependent apoptosis in fibroblasts.Am. J. Pathol.20021611899610.1016/S0002‑9440(10)64160‑012107093
    [Google Scholar]
  32. JohanssonA-C. SteenH. ÖllingerK. RobergK. Cathepsin D mediates cytochrome c release and caspase activation in human fibroblast apoptosis induced by staurosporine.Cell Death Differ.200310111253125910.1038/sj.cdd.440129014576777
    [Google Scholar]
  33. SrihariS. RaganM.A. Systematic tracking of dysregulated modules identifies novel genes in cancer.Bioinformatics201329121553156110.1093/bioinformatics/btt19123613489
    [Google Scholar]
  34. CheX.H. ChenH. XuZ.M. ShangC. SunK.L. FuW.N. 14-3-3epsiloncontributes to tumour suppression in laryngeal carcinoma by affecting apoptosis and invasion.BMC Cancer201010130610.1186/1471‑2407‑10‑30620565895
    [Google Scholar]
  35. LealM.F. RibeiroH.F. ReyJ.A. PintoG.R. SmithM.C. Moreira-NunesC.A. AssumpçãoP.P. LamarãoL.M. CalcagnoD.Q. MontenegroR.C. BurbanoR.R. YWHAE silencing induces cell proliferation, invasion and migration through the up-regulation of CDC25B and MYC in gastric cancer cells: new insights about YWHAE role in the tumor development and metastasis process.Oncotarget2016751853938541010.18632/oncotarget.1338127863420
    [Google Scholar]
  36. KonishiH. NakagawaT. HaranoT. MizunoK. SaitoH. MasudaA. MatsudaH. OsadaH. TakahashiT. Identification of frequent G(2) checkpoint impairment and a homozygous deletion of 14-3-3ε at 17p13.3 in small cell lung cancers.Cancer Res.200262127127611782387
    [Google Scholar]
  37. CveklA.Jr ZavadilJ. BirshteinB.K. GrotzerM.A. CveklA. Analysis of transcripts from 17p13.3 in medulloblastoma suggests ROX/MNT as a potential tumour suppressor gene.Eur. J. Cancer200440162525253210.1016/j.ejca.2004.08.00515519529
    [Google Scholar]
  38. VasudevanS. TongY. SteitzJ.A. Switching from repression to activation: microRNAs can up-regulate translation.Science200731858581931193410.1126/science.114946018048652
    [Google Scholar]
  39. RaghavanS. VenkatramanG. RayalaS.K. Cloning and functional characterization of human Pak1 promoter by steroid hormones.Gene201864612012810.1016/j.gene.2017.12.03929274909
    [Google Scholar]
  40. ShresthaY. SchaferE.J. BoehmJ.S. ThomasS.R. HeF. DuJ. WangS. BarretinaJ. WeirB.A. ZhaoJ.J. PolyakK. GolubT.R. BeroukhimR. HahnW.C. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling.Oncogene201231293397340810.1038/onc.2011.51522105362
    [Google Scholar]
  41. ZhanM.N. YuX.T. TangJ. ZhouC.X. WangC.L. YinQ.Q. GongX.F. HeM. HeJ.R. ChenG.Q. ZhaoQ. MicroRNA-494 inhibits breast cancer progression by directly targeting PAK1.Cell Death Dis.201781e252910.1038/cddis.2016.44028055013
    [Google Scholar]
  42. WangK. GaoW. DouQ. ChenH. LiQ. NiceE.C. HuangC. Ivermectin induces PAK1-mediated cytostatic autophagy in breast cancer.Autophagy201612122498249910.1080/15548627.2016.123149427657889
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665322427240906060626
Loading
/content/journals/ppl/10.2174/0109298665322427240906060626
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test