Skip to content
2000
Volume 32, Issue 1
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Objective

This study aimed to explore whether excessive HIF2α can amplify the impact of human Umbilical Cord Mesenchymal Stem Cell-derived Extracellular Vesicles (hUC-MSC-EVs) on endothelial cells.

Methods

In this study, we created HIF2α-overexpressing hUC-MSC-EVs and compared their pro-angiogenic effects with control EVs on Human Umbilical Vein Endothelial Cells (HUVECs). MTT assay and Edu staining were used to detect the viability and proliferation ability of HUVECs, and Transwell and Tube Formation Assays were used to detect cell migration and tube formation ability. qPCR assay was used to detect the expression of cellular angiogenic markers. Subsequently, miRNAs that might be regulated by HIF2α were predicted by bioinformatics analysis, and qPCR was used to detect the relative expression of miRNAs in HUVECs treated with hUC-MSC-EV, which over-expresses HIF2α. Subsequently, miR-146a inhibitors were used to investigate the role of miR-146a in mediating the pro-angiogenic effect of HIF2α on HUVECs by detecting cell viability, proliferation, migration, tube-forming ability, and expression of angiogenic markers. Finally, AKT/ERK phosphorylation and Spred1 expression were detected using Western blotting.

Results

Our findings have indicated that overexpression of HIF2α significantly enhances the ability of hUC-MSC-EVs to stimulate proliferation, migration, and tube formation in HUVECs, as demonstrated by MTT/Edu staining, Transwell assay, and tube formation assay results, respectively. Mechanistically, excessive HIF2α has been found to induce the expression of miR-146a in HUVECs and the overexpression of a miR-146a inhibitor to negate the influence of excessive HIF2α on hUC-MSC-EV-induced activity in HUVECs.

Conclusion

The overexpression of HIF2α is an effective strategy for enhancing the pro-angiogenic function of hUC-MSC-EVs.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665347753241028072130
2024-11-25
2025-06-22
Loading full text...

Full text loading...

References

  1. ChungA.S. FerraraN. Developmental and pathological angiogenesis.Annu. Rev. Cell Dev. Biol.20112756358410.1146/annurev‑cellbio‑092910‑154002
    [Google Scholar]
  2. DiPietroL.A. Angiogenesis and wound repair: When enough is enough.J. Leukoc. Biol.2016100597998410.1189/jlb.4MR0316‑102R27406995
    [Google Scholar]
  3. TonnesenM.G. FengX. ClarkR.A.F. Angiogenesis in wound healing.J. Investig. Dermatol. Symp. Proc.200051404610.1046/j.1087‑0024.2000.00014.x11147674
    [Google Scholar]
  4. WuW. LiX. ZuoG. PuJ. WuX. ChenS. The role of angiogenesis in coronary artery disease: A double-edged sword: Intraplaque angiogenesis in physiopathology and therapeutic angiogenesis for treatment.Curr. Pharm. Des.201824445146410.2174/138161282466617122722081529283055
    [Google Scholar]
  5. InampudiC. AkintoyeE. AndoT. BriasoulisA. Angiogenesis in peripheral arterial disease.Curr. Opin. Pharmacol.201839606710.1016/j.coph.2018.02.01129529399
    [Google Scholar]
  6. VeithA.P. HendersonK. SpencerA. SligarA.D. BakerA.B. Therapeutic strategies for enhancing angiogenesis in wound healing.Adv. Drug Deliv. Rev.20191469712510.1016/j.addr.2018.09.01030267742
    [Google Scholar]
  7. RaiV. MoellmerR. AgrawalD.K. Stem cells and angiogenesis: Implications and limitations in enhancing chronic diabetic foot ulcer healing.Cells20221115228710.3390/cells1115228735892584
    [Google Scholar]
  8. HouL. KimJ.J. WooY.J. HuangN.F. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease.Am. J. Physiol. Heart Circ. Physiol.20163104H455H46510.1152/ajpheart.00726.201526683902
    [Google Scholar]
  9. OswaldJ. BoxbergerS. JørgensenB. FeldmannS. EhningerG. BornhäuserM. WernerC. Mesenchymal stem cells can be differentiated into endothelial cells in vitro.Stem Cells200422337738410.1634/stemcells.22‑3‑37715153614
    [Google Scholar]
  10. TaoH. HanZ. HanZ.C. LiZ. Proangiogenic features of mesenchymal stem cells and their therapeutic applications.Stem Cells Int.201620161131470910.1155/2016/131470926880933
    [Google Scholar]
  11. Merino-GonzálezC. ZuñigaF.A. EscuderoC. OrmazabalV. ReyesC. Nova-LampertiE. SalomónC. AguayoC. Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: Potencial clinical application.Front. Physiol.201672410.3389/fphys.2016.0002426903875
    [Google Scholar]
  12. TanF. LiX. WangZ. LiJ. ShahzadK. ZhengJ. Clinical applications of stem cell-derived exosomes.Signal Transduct. Target. Ther.2024911710.1038/s41392‑023‑01704‑038212307
    [Google Scholar]
  13. Moeinabadi-BidgoliK. RezaeeM. Hossein-KhannazerN. BabajaniA. AghdaeiH.A. ArkiM.K. AfaghiS. NiknejadH. VosoughM. Exosomes for angiogenesis induction in ischemic disorders.J. Cell. Mol. Med.202327676378710.1111/jcmm.1768936786037
    [Google Scholar]
  14. BaroneL. PalanoM.T. GallazziM. CucchiaraM. RossiF. BorgeseM. RaspantiM. ZeccaP.A. MortaraL. PapaitR. BernardiniG. ValdattaL. BrunoA. GornatiR. Adipose mesenchymal stem cell-derived soluble factors, produced under hypoxic condition, efficiently support in vivo angiogenesis.Cell Death Discov.20239117410.1038/s41420‑023‑01464‑437221171
    [Google Scholar]
  15. CarrionB. KongY.P. KaiglerD. PutnamA.J. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor.Exp. Cell Res.2013319192964297610.1016/j.yexcr.2013.09.00724056178
    [Google Scholar]
  16. WuM. ChenL. QiY. CiH. MouS. YangJ. YuanQ. YaoW. WangZ. SunJ. Human umbilical cord mesenchymal stem cell promotes angiogenesis via integrin β1/ERK1/2/HIF-1α/VEGF-A signaling pathway for off-the-shelf breast tissue engineering.Stem Cell Res. Ther.20221319910.1186/s13287‑022‑02770‑x35255978
    [Google Scholar]
  17. ZhuJ. LiuQ. JiangY. WuL. XuG. LiuX. Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated.Neuroscience201529028829910.1016/j.neuroscience.2015.01.03825637797
    [Google Scholar]
  18. DivbandS. TasharrofiN. AbrounS. ZomorrodS.M. Human umbilical cord mesenchymal stem cells-derived small extracellular vesicles can be considered as cell-free therapeutics for angiogenesis promotion.Cell J.2022241168969610.22074/cellj.2022.827536377219
    [Google Scholar]
  19. LiuJ. YanZ. YangF. HuangY. YuY. ZhouL. SunZ. CuiD. YanY. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate cutaneous wound healing by enhancing angiogenesis through delivering angiopoietin-2.Stem Cell Rev. Rep.202117230531710.1007/s12015‑020‑09992‑732613452
    [Google Scholar]
  20. BefaniC. LiakosP. The role of hypoxia-inducible factor-2 alpha in angiogenesis.J. Cell. Physiol.2018233129087909810.1002/jcp.2680529968905
    [Google Scholar]
  21. HashimotoT. ShibasakiF. Hypoxia-inducible factor as an angiogenic master switch.Front Pediatr.201533310.3389/fped.2015.0003325964891
    [Google Scholar]
  22. MajmundarA.J. WongW.J. SimonM.C. Hypoxia-inducible factors and the response to hypoxic stress.Mol. Cell201040229430910.1016/j.molcel.2010.09.02220965423
    [Google Scholar]
  23. ZhangM. HuS. LiuL. DangP. LiuY. SunZ. QiaoB. WangC. Engineered exosomes from different sources for cancer-targeted therapy.Signal Transduct. Target. Ther.20238112410.1038/s41392‑023‑01382‑y36922504
    [Google Scholar]
  24. SadeghiS. TehraniF.R. TahmasebiS. ShafieeA. HashemiS.M. Exosome engineering in cell therapy and drug delivery.Inflammopharmacology202331114516910.1007/s10787‑022‑01115‑736609717
    [Google Scholar]
  25. TongZ. CuiQ. WangJ. ZhouY. TransmiR v2.0: An updated transcription factor-microRNA regulation database.Nucleic Acids Res.201947D1D253D25810.1093/nar/gky102330371815
    [Google Scholar]
  26. ShiH.Z. ZengJ.C. ShiS.H. GiannakopoulosH. ZhangQ.Z. LeA.D. Extracellular vesicles of GMSCs alleviate aging-related cell senescence.J. Dent. Res.2021100328329210.1177/002203452096246333073684
    [Google Scholar]
  27. WangY. ShenK. SunY. CaoP. ZhangJ. ZhangW. LiuY. ZhangH. ChenY. LiS. XuC. HanC. QiaoY. ZhangQ. WangB. LuoL. YangY. GuanH. Extracellular vesicles from 3D cultured dermal papilla cells improve wound healing via Krüppel-like factor 4/vascular endothelial growth factor A -driven angiogenesis.Burns Trauma202311tkad03410.1093/burnst/tkad03437908562
    [Google Scholar]
  28. MaS. WangJ. CuiZ. YangX. CuiX. LiX. ZhaoL. HIF-2α-dependent TGFBI promotes ovarian cancer chemoresistance by activating PI3K/Akt pathway to inhibit apoptosis and facilitate DNA repair process.Sci. Rep.2024141387010.1038/s41598‑024‑53854‑y38365849
    [Google Scholar]
  29. ZhuC. YuJ. PanQ. YangJ. HaoG. WangY. LiL. CaoH. Hypoxia-inducible factor-2 alpha promotes the proliferation of human placenta-derived mesenchymal stem cells through the MAPK/ERK signaling pathway.Sci. Rep.2016613548910.1038/srep3548927765951
    [Google Scholar]
  30. SongY.Y. LiangD. LiuD.K. LinL. ZhangL. YangW.Q. The role of the ERK signaling pathway in promoting angiogenesis for treating ischemic diseases.Front. Cell Dev. Biol.202311116416610.3389/fcell.2023.116416637427386
    [Google Scholar]
  31. ShiojimaI. WalshK. Role of Akt signaling in vascular homeostasis and angiogenesis.Circ. Res.200290121243125010.1161/01.RES.0000022200.71892.9F12089061
    [Google Scholar]
  32. YangX-M. XuM. SongJ.J. ZhaoZ.W. ChenM.J. ChenW.Q. TuJ.F. JiJ-S. Inhibition of microRNA-126 promotes the expression of Spred1 to inhibit angiogenesis in hepatocellular carcinoma after transcatheter arterial chemoembolization: In vivo study.OncoTargets Ther.201694357436710.2147/OTT.S10651327499630
    [Google Scholar]
  33. CabelloP. Torres-RuizS. Adam-ArtiguesA. Forés-MartosJ. MartínezM.T. HernandoC. ZazoS. Madoz-GúrpideJ. RoviraA. BurguésO. RojoF. AlbanellJ. LluchA. BermejoB. CejalvoJ.M. ErolesP. miR-146a-5p promotes angiogenesis and confers trastuzumab resistance in HER2+ breast cancer.Cancers (Basel)2023157213810.3390/cancers1507213837046799
    [Google Scholar]
  34. ZhuH. BaiW. LiuJ. ZhengZ. GuanH. ZhouQ. SuL. XieS. WangY. LiJ. LiN. ZhangY. WangH. HuD. Up-regulation of FGFBP1 signaling contributes to miR-146a-induced angiogenesis in human umbilical vein endothelial cells.Sci. Rep.2016612527210.1038/srep2527227121396
    [Google Scholar]
  35. RauC.S. YangJ.C.S. ChenY.C. WuC.J. LuT.H. TzengS.L. WuY.C. HsiehC.H. Lipopolysaccharide-induced microRNA-146a targets CARD10 and regulates angiogenesis in human umbilical vein endothelial cells.Toxicol. Sci.2014140231532610.1093/toxsci/kfu09724863965
    [Google Scholar]
  36. TaganovK.D. BoldinM.P. ChangK.J. BaltimoreD. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses.Proc. Natl. Acad. Sci. USA200610333124811248610.1073/pnas.060529810316885212
    [Google Scholar]
  37. LiJ. WanY. GuoQ. ZouL. ZhangJ. FangY. ZhangJ. ZhangJ. FuX. LiuH. LuL. WuY. Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with Rheumatoid arthritis.Arthritis Res. Ther.2010123R8110.1186/ar300620459811
    [Google Scholar]
  38. PetrkovaJ. BoruckaJ. KalabM. KlevcovaP. MichalekJ. TaborskyM. PetrekM. Increased expression of miR-146a in valvular tissue from patients with aortic valve stenosis.Front. Cardiovasc. Med.201968610.3389/fcvm.2019.0008631294031
    [Google Scholar]
  39. ZhangR. ZhuY. LiY. LiuW. YinL. YinS. JiC. HuY. WangQ. ZhouX. ChenJ. XuW. QianH. Human umbilical cord mesenchymal stem cell exosomes alleviate sepsis-associated acute kidney injury via regulating microRNA-146b expression.Biotechnol. Lett.202042466967910.1007/s10529‑020‑02831‑232048128
    [Google Scholar]
  40. NanC. ZhangY. ZhangA. ShiY. YanD. SunZ. JinQ. HuoH. ZhuoY. ZhaoZ. Exosomes derived from human umbilical cord mesenchymal stem cells decrease neuroinflammation and facilitate the restoration of nerve function in rats suffering from intracerebral hemorrhage.Mol. Cell. Biochem.202410.1007/s11010‑024‑04954‑w38459276
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665347753241028072130
Loading
/content/journals/ppl/10.2174/0109298665347753241028072130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test