Skip to content
2000
image of Overexpression of HIF2α Enhances the Angiogenesis-Promoting Effect of hUC-MSC-Derived Extracellular Vesicles by Stimulating miR-146a

Abstract

Objective

This study aimed to explore whether excessive HIF2α can amplify the impact of human Umbilical Cord Mesenchymal Stem Cell-derived Extracellular Vesicles (hUC-MSC-EVs) on endothelial cells.

Methods

In this study, we created HIF2α-overexpressing hUC-MSC-EVs and compared their pro-angiogenic effects with control EVs on Human Umbilical Vein Endothelial Cells (HUVECs). MTT assay and Edu staining were used to detect the viability and proliferation ability of HUVECs, and Transwell and tube formation assays were used to detect cell migration and tube formation ability. qPCR assay was used to detect the expression of cellular angiogenic markers. Subsequently, miRNAs that might be regulated by HIF2α were predicted by bioinformatics analysis, and qPCR was used to detect the relative expression of miRNAs in HUVECs treated with hUC-MSC-EV, which over-expresses HIF2α. Subsequently, miR-146a inhibitors were used to investigate the role of miR-146a in mediating the pro-angiogenic effect of HIF2α on HUVECs by detecting cell viability, proliferation, migration, tube-forming ability, and expression of angiogenic markers. Finally, AKT/ERK phosphorylation and Spred1 expression were detected using Western blotting.

Results

Our findings have indicated that overexpression of HIF2α significantly enhances the ability of hUC-MSC-EVs to stimulate proliferation, migration, and tube formation in HUVECs, as demonstrated by MTT/Edu staining, Transwell assay, and tube formation assay results, respectively. Mechanistically, excessive HIF2α has been found to induce the expression of miR-146a in HUVECs and the overexpression of a miR-146a inhibitor to negate the influence of excessive HIF2α on hUC-MSC-EV-induced activity in HUVECs.

Conclusion

The overexpression of HIF2α is an effective strategy for enhancing the pro-angiogenic function of hUC-MSC-EVs.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665347753241028072130
2024-11-25
2025-01-31
Loading full text...

Full text loading...

References

  1. Chung A.S. Ferrara N. Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol. 27 563 584 2011 10.1146/annurev‑cellbio‑092910‑154002
    [Google Scholar]
  2. DiPietro L.A. Angiogenesis and wound repair: When enough is enough. J. Leukoc. Biol. 2016 100 5 979 984 10.1189/jlb.4MR0316‑102R 27406995
    [Google Scholar]
  3. Tonnesen M.G. Feng X. Clark R.A.F. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc. 2000 5 1 40 46 10.1046/j.1087‑0024.2000.00014.x 11147674
    [Google Scholar]
  4. Wu W. Li X. Zuo G. Pu J. Wu X. Chen S. The role of angiogenesis in coronary artery disease: A double-edged sword: Intraplaque angiogenesis in physiopathology and therapeutic angiogenesis for treatment. Curr. Pharm. Des. 2018 24 4 451 464 10.2174/1381612824666171227220815 29283055
    [Google Scholar]
  5. Inampudi C. Akintoye E. Ando T. Briasoulis A. Angiogenesis in peripheral arterial disease. Curr. Opin. Pharmacol. 2018 39 60 67 10.1016/j.coph.2018.02.011 29529399
    [Google Scholar]
  6. Veith A.P. Henderson K. Spencer A. Sligar A.D. Baker A.B. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv. Drug Deliv. Rev. 2019 146 97 125 10.1016/j.addr.2018.09.010 30267742
    [Google Scholar]
  7. Rai V. Moellmer R. Agrawal D.K. Stem cells and angiogenesis: Implications and limitations in enhancing chronic diabetic foot ulcer healing. Cells 2022 11 15 2287 10.3390/cells11152287 35892584
    [Google Scholar]
  8. Hou L. Kim J.J. Woo Y.J. Huang N.F. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2016 310 4 H455 H465 10.1152/ajpheart.00726.2015 26683902
    [Google Scholar]
  9. Oswald J. Boxberger S. Jørgensen B. Feldmann S. Ehninger G. Bornhäuser M. Werner C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004 22 3 377 384 10.1634/stemcells.22‑3‑377 15153614
    [Google Scholar]
  10. Tao H. Han Z. Han Z.C. Li Z. Proangiogenic features of mesenchymal stem cells and their therapeutic applications. Stem Cells Int. 2016 2016 1 1314709 10.1155/2016/1314709 26880933
    [Google Scholar]
  11. Merino-González C. Zuñiga F.A. Escudero C. Ormazabal V. Reyes C. Nova-Lamperti E. Salomón C. Aguayo C. Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: Potencial clinical application. Front. Physiol. 2016 7 24 10.3389/fphys.2016.00024 26903875
    [Google Scholar]
  12. Tan F. Li X. Wang Z. Li J. Shahzad K. Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct. Target. Ther. 2024 9 1 17 10.1038/s41392‑023‑01704‑0 38212307
    [Google Scholar]
  13. Moeinabadi-Bidgoli K. Rezaee M. Hossein-Khannazer N. Babajani A. Aghdaei H.A. Arki M.K. Afaghi S. Niknejad H. Vosough M. Exosomes for angiogenesis induction in ischemic disorders. J. Cell. Mol. Med. 2023 27 6 763 787 10.1111/jcmm.17689 36786037
    [Google Scholar]
  14. Barone L. Palano M.T. Gallazzi M. Cucchiara M. Rossi F. Borgese M. Raspanti M. Zecca P.A. Mortara L. Papait R. Bernardini G. Valdatta L. Bruno A. Gornati R. Adipose mesenchymal stem cell-derived soluble factors, produced under hypoxic condition, efficiently support in vivo angiogenesis. Cell Death Discov. 2023 9 1 174 10.1038/s41420‑023‑01464‑4 37221171
    [Google Scholar]
  15. Carrion B. Kong Y.P. Kaigler D. Putnam A.J. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor. Exp. Cell Res. 2013 319 19 2964 2976 10.1016/j.yexcr.2013.09.007 24056178
    [Google Scholar]
  16. Wu M. Chen L. Qi Y. Ci H. Mou S. Yang J. Yuan Q. Yao W. Wang Z. Sun J. Human umbilical cord mesenchymal stem cell promotes angiogenesis via integrin β1/ERK1/2/HIF-1α/VEGF-A signaling pathway for off-the-shelf breast tissue engineering. Stem Cell Res. Ther. 2022 13 1 99 10.1186/s13287‑022‑02770‑x 35255978
    [Google Scholar]
  17. Zhu J. Liu Q. Jiang Y. Wu L. Xu G. Liu X. Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated. Neuroscience 2015 290 288 299 10.1016/j.neuroscience.2015.01.038 25637797
    [Google Scholar]
  18. Divband S. Tasharrofi N. Abroun S. Soufi Zomorrod M. Human umbilical cord mesenchymal stem cells-derived small extracellular vesicles can be considered as cell-free therapeutics for angiogenesis promotion. Cell J. 2022 24 11 689 696 10.22074/cellj.2022.8275 36377219
    [Google Scholar]
  19. Liu J. Yan Z. Yang F. Huang Y. Yu Y. Zhou L. Sun Z. Cui D. Yan Y. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate cutaneous wound healing by enhancing angiogenesis through delivering angiopoietin-2. Stem Cell Rev. Rep. 2021 17 2 305 317 10.1007/s12015‑020‑09992‑7 32613452
    [Google Scholar]
  20. Befani C. Liakos P. The role of hypoxia‐inducible factor‐2 alpha in angiogenesis. J. Cell. Physiol. 2018 233 12 9087 9098 10.1002/jcp.26805 29968905
    [Google Scholar]
  21. Hashimoto T. Shibasaki F. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr. 2015 3 33 10.3389/fped.2015.00033 25964891
    [Google Scholar]
  22. Majmundar A.J. Wong W.J. Simon M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 2010 40 2 294 309 10.1016/j.molcel.2010.09.022 20965423
    [Google Scholar]
  23. Zhang M. Hu S. Liu L. Dang P. Liu Y. Sun Z. Qiao B. Wang C. Engineered exosomes from different sources for cancer-targeted therapy. Signal Transduct. Target. Ther. 2023 8 1 124 10.1038/s41392‑023‑01382‑y 36922504
    [Google Scholar]
  24. Sadeghi S. Tehrani F.R. Tahmasebi S. Shafiee A. Hashemi S.M. Exosome engineering in cell therapy and drug delivery. Inflammopharmacology 2023 31 1 145 169 10.1007/s10787‑022‑01115‑7 36609717
    [Google Scholar]
  25. Tong Z. Cui Q. Wang J. Zhou Y. TransmiR v2.0: An updated transcription factor-microRNA regulation database. Nucleic Acids Res. 2019 47 D1 D253 D258 10.1093/nar/gky1023 30371815
    [Google Scholar]
  26. Shi H.Z. Zeng J.C. Shi S.H. Giannakopoulos H. Zhang Q.Z. Le A.D. Extracellular vesicles of GMSCs alleviate aging-related cell senescence. J. Dent. Res. 2021 100 3 283 292 10.1177/0022034520962463 33073684
    [Google Scholar]
  27. Wang Y. Shen K. Sun Y. Cao P. Zhang J. Zhang W. Liu Y. Zhang H. Chen Y. Li S. Xu C. Han C. Qiao Y. Zhang Q. Wang B. Luo L. Yang Y. Guan H. Extracellular vesicles from 3D cultured dermal papilla cells improve wound healing via Krüppel-like factor 4/vascular endothelial growth factor A -driven angiogenesis. Burns Trauma 2023 11 tkad034 10.1093/burnst/tkad034 37908562
    [Google Scholar]
  28. Ma S. Wang J. Cui Z. Yang X. Cui X. Li X. Zhao L. HIF-2α-dependent TGFBI promotes ovarian cancer chemoresistance by activating PI3K/Akt pathway to inhibit apoptosis and facilitate DNA repair process. Sci. Rep. 2024 14 1 3870 10.1038/s41598‑024‑53854‑y 38365849
    [Google Scholar]
  29. Zhu C. Yu J. Pan Q. Yang J. Hao G. Wang Y. Li L. Cao H. Hypoxia-inducible factor-2 alpha promotes the proliferation of human placenta-derived mesenchymal stem cells through the MAPK/ERK signaling pathway. Sci. Rep. 2016 6 1 35489 10.1038/srep35489 27765951
    [Google Scholar]
  30. Song Y.Y. Liang D. Liu D.K. Lin L. Zhang L. Yang W.Q. The role of the ERK signaling pathway in promoting angiogenesis for treating ischemic diseases. Front. Cell Dev. Biol. 2023 11 1164166 10.3389/fcell.2023.1164166 37427386
    [Google Scholar]
  31. Shiojima I. Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 2002 90 12 1243 1250 10.1161/01.RES.0000022200.71892.9F 12089061
    [Google Scholar]
  32. Yang X-M. Xu M. Song J.J. Zhao Z.W. Chen M.J. Chen W.Q. Tu J.F. Ji J-S. Inhibition of microRNA-126 promotes the expression of Spred1 to inhibit angiogenesis in hepatocellular carcinoma after transcatheter arterial chemoembolization: In vivo study. OncoTargets Ther. 2016 9 4357 4367 10.2147/OTT.S106513 27499630
    [Google Scholar]
  33. Cabello P. Torres-Ruiz S. Adam-Artigues A. Forés-Martos J. Martínez M.T. Hernando C. Zazo S. Madoz-Gúrpide J. Rovira A. Burgués O. Rojo F. Albanell J. Lluch A. Bermejo B. Cejalvo J.M. Eroles P. miR-146a-5p promotes angiogenesis and confers trastuzumab resistance in HER2+ breast cancer. Cancers (Basel) 2023 15 7 2138 10.3390/cancers15072138 37046799
    [Google Scholar]
  34. Zhu H. Bai W. Liu J. Zheng Z. Guan H. Zhou Q. Su L. Xie S. Wang Y. Li J. Li N. Zhang Y. Wang H. Hu D. Up-regulation of FGFBP1 signaling contributes to miR-146a-induced angiogenesis in human umbilical vein endothelial cells. Sci. Rep. 2016 6 1 25272 10.1038/srep25272 27121396
    [Google Scholar]
  35. Rau C.S. Yang J.C.S. Chen Y.C. Wu C.J. Lu T.H. Tzeng S.L. Wu Y.C. Hsieh C.H. Lipopolysaccharide-induced microRNA-146a targets CARD10 and regulates angiogenesis in human umbilical vein endothelial cells. Toxicol. Sci. 2014 140 2 315 326 10.1093/toxsci/kfu097 24863965
    [Google Scholar]
  36. Taganov K.D. Boldin M.P. Chang K.J. Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 2006 103 33 12481 12486 10.1073/pnas.0605298103 16885212
    [Google Scholar]
  37. Li J. Wan Y. Guo Q. Zou L. Zhang J. Fang Y. Zhang J. Zhang J. Fu X. Liu H. Lu L. Wu Y. Altered microRNA expression profile with miR-146a upregulation in CD4+T cells from patients with rheumatoid arthritis. Arthritis Res. Ther. 2010 12 3 R81 10.1186/ar3006 20459811
    [Google Scholar]
  38. Petrkova J. Borucka J. Kalab M. Klevcova P. Michalek J. Taborsky M. Petrek M. Increased expression of miR-146a in valvular tissue from patients with aortic valve stenosis. Front. Cardiovasc. Med. 2019 6 86 10.3389/fcvm.2019.00086 31294031
    [Google Scholar]
  39. Zhang R. Zhu Y. Li Y. Liu W. Yin L. Yin S. Ji C. Hu Y. Wang Q. Zhou X. Chen J. Xu W. Qian H. Human umbilical cord mesenchymal stem cell exosomes alleviate sepsis-associated acute kidney injury via regulating microRNA-146b expression. Biotechnol. Lett. 2020 42 4 669 679 10.1007/s10529‑020‑02831‑2 32048128
    [Google Scholar]
  40. Nan C. Zhang Y. Zhang A. Shi Y. Yan D. Sun Z. Jin Q. Huo H. Zhuo Y. Zhao Z. Exosomes derived from human umbilical cord mesenchymal stem cells decrease neuroinflammation and facilitate the restoration of nerve function in rats suffering from intracerebral hemorrhage. Mol. Cell. Biochem. 2024 10.1007/s11010‑024‑04954‑w 38459276
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665347753241028072130
Loading
/content/journals/ppl/10.2174/0109298665347753241028072130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test