Skip to content
2000
Volume 31, Issue 7
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

Resistance to anti-tumor agents targeting the epidermal growth factor receptor (EGFR) reduces treatment response and requires the development of novel EGFR antagonists. Mutant epidermal growth factor (EGF) forms with reduced agonistic activity could be promising agents in cancer treatment.

Methods

EGF D46G affinity to EGFR domain III was assessed with affinity chromatography. EGF D46G acute toxicity in Af albino mice at 320 and 3200 μg/kg subcutaneous doses was evaluated. EGF D46G activity in human epidermoid carcinoma cells at 10 ng/mL concentration in serum-free medium and in subcutaneous Ehrlich ascites carcinoma mice model at 320 μg/kg dose was studied.

Results

The D46G substitution decreases the thermal stability of EGF complexes with EGFR domain III by decreasing the ability of the C-terminus to be released from the intermolecular β-sheet. However, with remaining binding sites for EGFR domain I, EGF D46G effectively competes with other EGF-like growth factors for binding to EGFR and does not demonstrate toxic effects in mice. EGF D46G inhibits the proliferation of human epidermoid carcinoma cells compared to native EGF. A single subcutaneous administration of EGF D46G along with Ehrlich carcinoma cells injection inhibits the proliferation of these cells and delays tumor formation for up to seven days.

Conclusion

EGF D46G can be defined as a partial EGFR agonist as this mutant form demonstrates reduced agonistic activity compared to native EGF. The study emphasizes the role of the EGF C-terminus in establishing interactions with EGFR domain III, which are necessary for EGFR activation and subsequent proliferation of cells.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665297321240708044223
2024-07-01
2024-11-26
Loading full text...

Full text loading...

References

  1. YuX. SharmaK.D. TakahashiT. IwamotoR. MekadaE. Ligand-independent dimer formation of epidermal growth factor receptor (EGFR) is a step separable from ligand-induced EGFR signaling.Mol. Biol. Cell20021372547255710.1091/mbc.01‑08‑041112134089
    [Google Scholar]
  2. Zanetti-DominguesL.C. KorovesisD. NeedhamS.R. TynanC.J. SagawaS. RobertsS.K. KuzmanicA. Ortiz-ZapaterE. JainP. RooversR.C. LajevardipourA. van Bergen en HenegouwenP.M.P. SantisG. ClaytonA.H.A. ClarkeD.T. GervasioF.L. ShanY. ShawD.E. RolfeD.J. ParkerP.J. Martin-FernandezM.L. The architecture of EGFR’s basal complexes reveals autoinhibition mechanisms in dimers and oligomers.Nat. Commun.201891432510.1038/s41467‑018‑06632‑030337523
    [Google Scholar]
  3. LiuP. ClevelandT.E.IV BouyainS. ByrneP.O. LongoP.A. LeahyD.J. A single ligand is sufficient to activate EGFR dimers.Proc. Natl. Acad. Sci.201210927108611086610.1073/pnas.120111410922699492
    [Google Scholar]
  4. ChungI. AkitaR. VandlenR. ToomreD. SchlessingerJ. MellmanI. Spatial control of EGF receptor activation by reversible dimerization on living cells.Nature2010464728978378710.1038/nature0882720208517
    [Google Scholar]
  5. AkunevichA.A. KhrustalevV.V. KhrustalevaT.A. PoboinevV.V. ShalygoN.V. StojarovA.N. ArutyunyanA.M. KordyukovaL.V. SaponY.G. Equilibrium between dimeric and monomeric forms of human epidermal growth factor is shifted towards dimers in a solution.Protein J.202241224525910.1007/s10930‑022‑10051‑y35348971
    [Google Scholar]
  6. OgisoH. IshitaniR. NurekiO. FukaiS. YamanakaM. KimJ.H. SaitoK. SakamotoA. InoueM. ShirouzuM. YokoyamaS. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains.Cell2002110677578710.1016/S0092‑8674(02)00963‑712297050
    [Google Scholar]
  7. HuangH.W. MohanS.K. YuC. The NMR solution structure of human epidermal growth factor (hEGF) at physiological pH and its interactions with suramin.Biochem. Biophys. Res. Commun.2010402470571010.1016/j.bbrc.2010.10.08921029725
    [Google Scholar]
  8. PanosaC. TebarF. Ferrer-BatalléM. FongeH. SenoM. ReillyR.M. MassaguerA. De LlorensR. Development of an epidermal growth factor derivative with EGFR blocking activity.PLoS One201387e6932510.1371/journal.pone.006932523935985
    [Google Scholar]
  9. KovacsE. ZornJ.A. HuangY. BarrosT. KuriyanJ. A structural perspective on the regulation of the epidermal growth factor receptor.Annu. Rev. Biochem.201584173976410.1146/annurev‑biochem‑060614‑03440225621509
    [Google Scholar]
  10. WeeP. WangZ. Epidermal growth factor receptor cell proliferation signaling pathways.Cancers2017955210.3390/cancers905005228513565
    [Google Scholar]
  11. ConteA. SigismundS. The ubiquitin network in the control of EGFR endocytosis and signaling.Prog. Mol. Biol. Transl. Sci.201614122527610.1016/bs.pmbts.2016.03.00227378759
    [Google Scholar]
  12. UribeM.L. MarroccoI. YardenY. EGFR in Cancer: Signaling mechanisms, drugs, and acquired resistance.Cancers20211311274810.3390/cancers1311274834206026
    [Google Scholar]
  13. SigismundS. AvanzatoD. LanzettiL. Emerging functions of the EGFR in cancer.Mol. Oncol.201812132010.1002/1878‑0261.1215529124875
    [Google Scholar]
  14. MartinelliE. De PalmaR. OrdituraM. De VitaF. CiardielloF. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy.Clin. Exp. Immunol.200915811910.1111/j.1365‑2249.2009.03992.x19737224
    [Google Scholar]
  15. KimuraH. SakaiK. AraoT. ShimoyamaT. TamuraT. NishioK. Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor.Cancer Sci.20079881275128010.1111/j.1349‑7006.2007.00510.x17498200
    [Google Scholar]
  16. García-FoncillasJ. SunakawaY. AderkaD. WainbergZ. RongaP. WitzlerP. StintzingS. Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors.Front. Oncol.2019984910.3389/fonc.2019.0084931616627
    [Google Scholar]
  17. ZubairT. BandyopadhyayD. Small molecule EGFR inhibitors as anti-cancer agents: Discovery, mechanisms of action, and opportunities.Int. J. Mol. Sci.2023243265110.3390/ijms2403265136768973
    [Google Scholar]
  18. ZhouJ. JiQ. LiQ. Resistance to anti-EGFR therapies in metastatic colorectal cancer: Underlying mechanisms and reversal strategies.J. Exp. Clin. Cancer Res.202140132810.1186/s13046‑021‑02130‑234663410
    [Google Scholar]
  19. TetsuO. HangauerM.J. PhuchareonJ. EiseleD.W. McCormickF. Drug resistance to EGFR inhibitors in lung cancer.Chemotherapy201661522323510.1159/00044336826910730
    [Google Scholar]
  20. HochmairM.J. BuderA. SchwabS. BurghuberO.C. ProschH. HilbeW. CsehA. FritzR. FilipitsM. Liquid-biopsy-based identification of EGFR T790M mutation-mediated resistance to afatinib treatment in patients with advanced EGFR mutation-positive NSCLC, and subsequent response to osimertinib.Target. Oncol.2019141758310.1007/s11523‑018‑0612‑z30539501
    [Google Scholar]
  21. ChengZ. CuiH. WangY. YangJ. LinC. ShiX. ZouY. ChenJ. JiaX. SuL. The advance of the third-generation EGFR-TKI in the treatment of non-small cell lung cancer (Review).Oncol. Rep.20235111610.3892/or.2023.867538063215
    [Google Scholar]
  22. MahfoudhiE. RicordelC. LecuyerG. MouricC. LenaH. PedeuxR. Preclinical models for acquired resistance to third-generation EGFR inhibitors in NSCLC: Functional studies and drug combinations used to overcome resistance.Front. Oncol.20221285350110.3389/fonc.2022.85350135463360
    [Google Scholar]
  23. ShiK. WangG. PeiJ. ZhangJ. WangJ. OuyangL. WangY. LiW. Emerging strategies to overcome resistance to third-generation EGFR inhibitors.J. Hematol. Oncol.20221519410.1186/s13045‑022‑01311‑635840984
    [Google Scholar]
  24. XuL. XuB. WangJ. GaoY. HeX. XieT. YeX.Y. Recent advances of novel fourth generation EGFR inhibitors in overcoming C797S mutation of lung cancer therapy.Eur. J. Med. Chem.2023245Pt 111490010.1016/j.ejmech.2022.11490036417820
    [Google Scholar]
  25. LetoS.M. TrusolinoL. Primary and acquired resistance to EGFR-targeted therapies in colorectal cancer: Impact on future treatment strategies.J. Mol. Med.201492770972210.1007/s00109‑014‑1161‑224811491
    [Google Scholar]
  26. YuanM. WangZ. LvW. PanH. The role of anti-EGFR monoclonal antibody in mcrc maintenance therapy.Front. Mol. Biosci.2022987039510.3389/fmolb.2022.87039535433839
    [Google Scholar]
  27. SurD. HavasiA. GorzoA. BurzC. A critical review of second-generation anti-EGFR monoclonal antibodies in metastatic colorectal cancer.Curr. Drug Targets20212291034104210.2174/138945012166620072712101132718285
    [Google Scholar]
  28. FerraroD.A. GaboritN. MaronR. Cohen-DvashiH. PoratZ. ParejaF. LaviS. LindzenM. Ben-ChetritN. SelaM. YardenY. Inhibition of triple-negative breast cancer models by combinations of antibodies to EGFR.Proc. Natl. Acad. Sci.201311051815182010.1073/pnas.122076311023319610
    [Google Scholar]
  29. JonesS. KingP.J. AntonescuC.N. SugiyamaM.G. BhamraA. SurinovaS. AngelopoulosN. KraghM. PedersenM.W. HartleyJ.A. FutterC.E. HochhauserD. Targeting of EGFR by a combination of antibodies mediates unconventional EGFR trafficking and degradation.Sci. Rep.202010166310.1038/s41598‑019‑57153‑931959764
    [Google Scholar]
  30. MansourM.A. AboulMagdA.M. AbbasS.H. Abdel-RahmanH.M. Abdel-AzizM. Insights into fourth generation selective inhibitors of (C797S) EGFR mutation combating non-small cell lung cancer resistance: A critical review.RSC Advances20231327188251885310.1039/D3RA02347H37350862
    [Google Scholar]
  31. LimS.M. FujinoT. KimC. LeeG. LeeY.H. KimD.W. AhnJ.S. MitsudomiT. JinT. LeeS.Y. BBT-176, a novel fourth-generation tyrosine kinase inhibitor for osimertinib-resistant EGFR mutations in non–small cell lung cancer.Clin. Cancer Res.202329163004301610.1158/1078‑0432.CCR‑22‑390137249619
    [Google Scholar]
  32. GuerrabA.E. BamdadM. KwiatkowskiF. BignonY.J. Penault-LlorcaF. AubelC. Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer.Oncotarget2016745736187363710.18632/oncotarget.1203727655662
    [Google Scholar]
  33. ten HoornS. SommeijerD.W. ElliottF. FisherD. de BackT.R. TrinhA. KoensL. MaughanT. SeligmannJ. SeymourM.T. QuirkeP. AdamsR. RichmanS.D. PuntC.J.A. VermeulenL. Molecular subtype-specific efficacy of anti-EGFR therapy in colorectal cancer is dependent on the chemotherapy backbone.Br. J. Cancer202112581080108810.1038/s41416‑021‑01477‑934253874
    [Google Scholar]
  34. ThakurM. MergelK. WengA. von MallinckrodtB. Gilabert-OriolR. DürkopH. MelzigM.F. FuchsH. Targeted tumor therapy by epidermal growth factor appended toxin and purified saponin: An evaluation of toxicity and therapeutic potential in syngeneic tumor bearing mice.Mol. Oncol.20137347548310.1016/j.molonc.2012.12.00423298730
    [Google Scholar]
  35. HashimiS. GrantB. AlqurashiN. AlowaidiF. WeiM. EGF ligand fused to truncated Pseudomonas aeruginosa exotoxin A specifically targets and inhibits EGFR-positive cancer cells.Oncol. Rep.20184052690269710.3892/or.2018.668530226622
    [Google Scholar]
  36. NieslerN. ArndtJ. SilberreisK. FuchsH. Generation of a soluble and stable apoptin-EGF fusion protein, a targeted viral protein applicable for tumor therapy.Protein Expr. Purif.202017510568710.1016/j.pep.2020.10568732681952
    [Google Scholar]
  37. QiZ. QiuY. WangZ. ZhangH. LuL. LiuY. MathesD. PomfretE.A. GaoD. LuS.L. WangZ. A novel diphtheria toxin-based bivalent human EGF fusion toxin for treatment of head and neck squamous cell carcinoma.Mol. Oncol.20211541054106810.1002/1878‑0261.1291933540470
    [Google Scholar]
  38. FergusonK.M. BergerM.B. MendrolaJ.M. ChoH.S. LeahyD.J. LemmonM.A. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization.Mol. Cell200311250751710.1016/S1097‑2765(03)00047‑912620237
    [Google Scholar]
  39. HebertT.L. WuX. YuG. GohB.C. HalvorsenY.D.C. WangZ. MoroC. GimbleJ.M. Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis.J. Tissue Eng. Regen. Med.20093755356110.1002/term.19819670348
    [Google Scholar]
  40. HäderM. Stach-MachadoD. PflügerK.H. RotschM. HeimannB. MoellingK. HavemannK. Epidermal growth factor receptor expression, proliferation, and colony stimulating activity production in the urinary bladder carcinoma cell line 5637.J. Cancer Res. Clin. Oncol.1987113657958510.1007/BF003908703316242
    [Google Scholar]
  41. LeeJ.B. ShinB. LeeS.H. LeeB.Y. KimT.H. KimM.G. YooS.D. Exposure assessment of epidermal growth factor to various tissues in mice after intravenous and subcutaneous administration.J. Pharm. Pharmacol.201567111519152710.1111/jphp.1246426255780
    [Google Scholar]
  42. Vladislav VictorovichK. Tatyana AleksandrovnaK. Victor VitoldovichP. Aleksander NicolaevichS. Larisa ValentinovnaK. Anastasia AleksandrovnaA. Spectra of tryptophan fluorescence are the result of co-existence of certain most abundant stabilized excited state and certain most abundant destabilized excited state.Spectrochim. Acta A. Mol. Biomol. Spectrosc.202125711978410.1016/j.saa.2021.11978433892250
    [Google Scholar]
  43. ZhaoJ. KlausenC. QiuX. ChengJ.C. ChangH.M. LeungP.C.K. Betacellulin induces Slug-mediated down-regulation of E-cadherin and cell migration in ovarian cancer cells.Oncotarget2016720288812889010.18632/oncotarget.759127129169
    [Google Scholar]
  44. KapałczyńskaM. KolendaT. PrzybyłaW. ZajączkowskaM. TeresiakA. FilasV. IbbsM. BliźniakR. ŁuczewskiŁ. LamperskaK. 2D and 3D cell cultures a comparison of different types of cancer cell cultures.Arch. Med. Sci.201614491091910.5114/aoms.2016.6374330002710
    [Google Scholar]
  45. GrauM. TebarF. RamírezI. SoleyM. Epidermal growth factor administration decreases liver glycogen and causes mild hyperglycaemia in mice.Biochem. J.1996315128929310.1042/bj31502898670120
    [Google Scholar]
  46. SubhanF. YoonT.D. ChoiH.J. MuhammadI. LeeJ. HongC. OhS.O. BaekS.Y. KimB.S. YoonS. Epidermal growth factor-like domain 8 inhibits the survival and proliferation of mouse thymocytes.Int. J. Mol. Med.201332495295810.3892/ijmm.2013.144823877103
    [Google Scholar]
  47. BeheshtiA. WageJ. McDonaldJ.T. LamontC. PelusoM. HahnfeldtP. HlatkyL. Tumor-host signaling interaction reveals a systemic, age-dependent splenic immune influence on tumor development.Oncotarget2015634354193543210.18632/oncotarget.621426497558
    [Google Scholar]
  48. JiangW. LiY. ZhangS. KongG. LiZ. Association between cellular immune response and spleen weight in mice with hepatocellular carcinoma.Oncol. Lett.202122262510.3892/ol.2021.1288634267817
    [Google Scholar]
  49. MishraS. TamtaA.K. SarikhaniM. DesinguP.A. KizkekraS.M. PanditA.S. KumarS. KhanD. RaghavanS.C. SundaresanN.R. Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy.Sci. Rep.201881559910.1038/s41598‑018‑23669‑929618792
    [Google Scholar]
  50. SunS. JiH. FengY. KangY. YuJ. LiuA. A novel mechanism of tumor-induced thymic atrophy in mice bearing H22 hepatocellular carcinoma.Cancer Manag. Res.20181041742410.2147/CMAR.S15751229551914
    [Google Scholar]
  51. Marquèze-PoueyB. MailfertS. RougerV. GoaillardJ.M. MarguetD. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.PLoS One201499e10680310.1371/journal.pone.010680325265278
    [Google Scholar]
  52. Pinilla-MacuaI. GrassartA. DuvvuriU. WatkinsS.C. SorkinA. EGF receptor signaling, phosphorylation, ubiquitylation and endocytosis in tumors in vivo. eLife20176e3199310.7554/eLife.3199329268862
    [Google Scholar]
  53. BaiX. SunP. WangX. LongC. LiaoS. DangS. ZhuangS. DuY. ZhangX. LiN. HeK. ZhangZ. Structure and dynamics of the EGFR/HER2 heterodimer.Cell Discov.2023911810.1038/s41421‑023‑00523‑536781849
    [Google Scholar]
  54. SpassovD.S. AtanasovaM. DoytchinovaI. A role of salt bridges in mediating drug potency: A lesson from the N-myristoyltransferase inhibitors.Front. Mol. Biosci.202399106602910.3389/fmolb.2022.106602936703920
    [Google Scholar]
  55. GarveyC.M. LauR. SanchezA. SunR.X. FongE.J. DocheM.E. ChenO. JusufA. LenzH.J. LarsonB. MumenthalerS.M. Anti-EGFR Therapy induces egf secretion by cancer-associated fibroblasts to confer colorectal cancer chemoresistance.Cancers2020126139310.3390/cancers1206139332481658
    [Google Scholar]
  56. IyerR.S. NeedhamS.R. GaldadasI. DavisB.M. RobertsS.K. ManR.C.H. Zanetti-DominguesL.C. ClarkeD.T. FruhwirthG.O. ParkerP.J. RolfeD.J. GervasioF.L. Martin-FernandezM.L. Drug-resistant EGFR mutations promote lung cancer by stabilizing interfaces in ligand-free kinase-active EGFR oligomers.Nat. Commun.2024151213010.1038/s41467‑024‑46284‑x38503739
    [Google Scholar]
  57. NairS. TrummellH.Q. RajbhandariR. ThudiN.K. NozellS.E. WarramJ.M. WilleyC.D. YangE.S. PlaczekW.J. BonnerJ.A. BredelM. Novel EGFR ectodomain mutations associated with ligand-independent activation and cetuximab resistance in head and neck cancer.PLoS One2020152e022907710.1371/journal.pone.022907732069320
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665297321240708044223
Loading
/content/journals/ppl/10.2174/0109298665297321240708044223
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test