Skip to content
2000
image of Recent Advances in the Preparation, Properties, and Applications of Solid Lipid Nanoparticles in Drug Delivery

Abstract

Solid lipid nanoparticles (SLNs) are one of the extensively utilized nanocarriers in the pharmaceutical field due to their biocompatibility and biodegradability. These features of the carrier system have fuelled its use as the drug delivery system since the last three decades. This review presents different SLN preparation techniques, such as high shear homogenization, hot homogenization, cold homogenization, microemulsion-based technique, . The physicochemical nature of SLNs, comprising drug loading, drug release, particle size, zeta potential, stability, cytotoxicity, and cellular uptake, has been concisely discussed. The article also explains why SLNs are preferred to develop drug delivery systems in several pharmaceutical preparations. The key ingredients like lipid, surfactant/stabilizer accompanied by co-surfactant, cryoprotectant, or charge modifiers used to fabricate SLNs are also briefly conferred. Here is an elaborate discussion of drugs that are used through various routes by the SLN carrier system and their outcome for utilization of this system. Regulatory aspects, patent aspects, and future prospects of SLN are also discussed here.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385333634240911075833
2024-09-19
2025-01-19
Loading full text...

Full text loading...

References

  1. CharanTeja V.R. A glimpse on solid lipid nanoparticles as drug delivery systems. J. Global Trends Pharmaceut. Sci. 2014 5 2 1649 57
    [Google Scholar]
  2. Jumaa M. Müller B.W. Lipid emulsions as a novel system to reduce the hemolytic activity of lytic agents: Mechanism of the protective effect. Eur. J. Pharm. Sci. 2000 9 3 285 290 10.1016/S0928‑0987(99)00071‑8 10594386
    [Google Scholar]
  3. Desmet E. Van Gele M. Lambert J. Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders. Expert Opin. Drug Deliv. 2017 14 1 109 122 10.1080/17425247.2016.1206073 27348356
    [Google Scholar]
  4. Cavalli R. Caputo O. Gasco M.R. Solid lipospheres of doxorubicin and idarubicin. Int. J. Pharm. 1993 89 1 R9 R12 10.1016/0378‑5173(93)90313‑5
    [Google Scholar]
  5. Yadav N. Khatak S. Solid lipid nanoparticles a review. Int. J. Appl. Pharmaceut. 2013 5 2 8 18
    [Google Scholar]
  6. Ramya K. Solid lipid nanoparticles- future technology a review. World J. Pharm. Res. 2015 4 8 493 515
    [Google Scholar]
  7. Butani D. Yewale C. Misra A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloids Surf. B Biointerfaces 2016 139 17 24 10.1016/j.colsurfb.2015.07.032 26700229
    [Google Scholar]
  8. Wiedenmann V. Oehlke K. van der Schaaf U. Koivula H.M. Mikkonen K.S. Karbstein H.P. Emulsifier Composition of Solid Lipid Nanoparticles (SLN) Affects Mechanical and Barrier Properties of SLN‐Protein Composite Films. J. Food Sci. 2019 84 12 3642 3652 10.1111/1750‑3841.14950 31774560
    [Google Scholar]
  9. Ebrahimi H.A. Javadzadeh Y. Hamidi M. Jalali M.B. Repaglinide-loaded solid lipid nanoparticles: Effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. Daru 2015 23 1 46 10.1186/s40199‑015‑0128‑3 26392174
    [Google Scholar]
  10. Ganesan P. Narayanasamy D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm. 2017 6 37 56 10.1016/j.scp.2017.07.002
    [Google Scholar]
  11. Ekambaram P. Sathali A. Priyanka K. Solid lipid nanoparticles: A review. Sci. Rev. Chem. Commun. 2012 2 80 102
    [Google Scholar]
  12. Kamble V.A. Jagdale D.M. Kadam V.R.J. Solid lipid nanoparticles as drug delivery system. Int. J. Pharm. Biol. Sci. 2010 1 1 9
    [Google Scholar]
  13. Byrappa K. Ohara S. Adschiri T. Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications. Adv. Drug Deliv. Rev. 2008 60 3 299 327 10.1016/j.addr.2007.09.001 18192071
    [Google Scholar]
  14. Chen Y.J. Jin R.X. Zhou Y.Q. Zeng J. Zhang H. Feng Q.R. [Preparation of solid lipid nanoparticles loaded with Xionggui powder-supercritical carbon dioxide fluid extraction and their evaluation in vitro release]. Zhongguo Zhongyao Zazhi 2006 31 5 376 379 16711418
    [Google Scholar]
  15. Glaubitt K. Ricci M. Giovagnoli S. Exploring the Nano Spray-Drying Technology as an Innovative Manufacturing Method for Solid Lipid Nanoparticle Dry Powders. AAPS PharmSciTech 2019 20 1 19 10.1208/s12249‑018‑1203‑0 30604256
    [Google Scholar]
  16. Peppas N.A. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 1985 60 4 110 111 4011621
    [Google Scholar]
  17. Darabi F. Saidijam M. Nouri F. Mahjub R. Soleimani M. Anti-CD44 and EGFR Dual-Targeted Solid Lipid Nanoparticles for Delivery of Doxorubicin to Triple-Negative Breast Cancer Cell Line: Preparation, Statistical Optimization, and In Vitro Characterization. BioMed Res. Int. 2022 2022 1 13 10.1155/2022/6253978 35845934
    [Google Scholar]
  18. He H. Wang P. Cai C. Yang R. Tang X. VB12-coated Gel-Core-SLN containing insulin: Another way to improve oral absorption. Int. J. Pharm. 2015 493 1-2 451 459 10.1016/j.ijpharm.2015.08.004 26253378
    [Google Scholar]
  19. Raina H. Kaur S. Jindal A.B. Development of efavirenz loaded solid lipid nanoparticles: Risk assessment, quality-by-design (QbD) based optimisation and physicochemical characterisation. J. Drug Deliv. Sci. Technol. 2017 39 180 191 10.1016/j.jddst.2017.02.013
    [Google Scholar]
  20. Ringe K. Walz C. Sabel B. Nanoparticle drug delivery to the brain. Encyclopedia of Nanoscience and Nanotechnology. Nalwa H.S. New York American Scientific Publishers 2004
    [Google Scholar]
  21. Sohaib M. Shah S.U. Shah K.U. Shah K.U. Khan N.R. Irfan M.M. Niazi Z.R. Alqahtani A.A. Alasiri A. Walbi I.A. Mahmood S. Physicochemical Characterization of Chitosan-Decorated Finasteride Solid Lipid Nanoparticles for Skin Drug Delivery. BioMed Res. Int. 2022 2022 1 10 10.1155/2022/7792180 35971450
    [Google Scholar]
  22. Kumar S. Randhawa J.K. Solid lipid nanoparticles of stearic acid for the drug delivery of paliperidone. RSC Advances 2015 5 84 68743 68750 10.1039/C5RA10642G
    [Google Scholar]
  23. Pandey S. Shaikh F. Gupta A. Tripathi P. Yadav J.S. A Recent Update: Solid Lipid Nanoparticles for Effective Drug Delivery. Adv. Pharm. Bull. 2021 12 1 17 33 10.34172/apb.2022.007 35517874
    [Google Scholar]
  24. Madkhali O.A. Perspectives and Prospective on Solid Lipid Nanoparticles as Drug Delivery Systems. Molecules 2022 27 5 1543 10.3390/molecules27051543 35268643
    [Google Scholar]
  25. Adekiya T.A. Kumar P. Kondiah P.P.D. Ubanako P. Choonara Y.E. In Vivo Evaluation of Praziquantel-Loaded Solid Lipid Nanoparticles against S. mansoni Infection in Preclinical Murine Models. Int. J. Mol. Sci. 2022 23 16 9485 10.3390/ijms23169485 36012770
    [Google Scholar]
  26. Scioli Montoto S. Muraca G. Ruiz M.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020 7 587997 10.3389/fmolb.2020.587997 33195435
    [Google Scholar]
  27. Dantas I.L. Bastos K.T.S. Machado M. Galvão J.G. Lima A.D. Gonsalves J.K.M.C. Almeida E.D.P. Araújo A.A.S. de Meneses C.T. Sarmento V.H.V. Nunes R.S. Lira A.A.M. Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus. J. Therm. Anal. Calorim. 2018 132 3 1557 1566 10.1007/s10973‑018‑7072‑7
    [Google Scholar]
  28. Mishra V. Bansal K.K. Verma A. Yadav N. Thakur S. Sudhakar K. Rosenholm J.M. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics 2018 10 4 191 10.3390/pharmaceutics10040191 30340327
    [Google Scholar]
  29. Pandita D. Ahuja A. Velpandian T. Lather V. Dutta T. Khar R.K. Characterization and in vitro assessment of paclitaxel loaded lipid nanoparticles formulated using modified solvent injection technique. Pharmazie 2009 64 5 301 310 19530440
    [Google Scholar]
  30. Smith T. Affram K. Nottingham E.L. Han B. Amissah F. Krishnan S. Trevino J. Agyare E. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci. Rep. 2020 10 1 16989 10.1038/s41598‑020‑73218‑6 33046724
    [Google Scholar]
  31. Rompicharla S.V.K. Bhatt H. Shah A. Komanduri N. Vijayasarathy D. Ghosh B. Biswas S. Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity. Chem. Phys. Lipids 2017 208 10 18 10.1016/j.chemphyslip.2017.08.009 28842128
    [Google Scholar]
  32. Garg N.K. Singh B. Jain A. Nirbhavane P. Sharma R. Tyagi R.K. Kushwah V. Jain S. Katare O.P. Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Colloids Surf. B Biointerfaces 2016 146 114 126 10.1016/j.colsurfb.2016.05.051 27268228
    [Google Scholar]
  33. Ji P. Yu T. Liu Y. Jiang J. Xu J. Zhao Y. Hao Y. Qiu Y. Zhao W. Wu C. Naringenin-loaded solid lipid nanoparticles: Preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des. Devel. Ther. 2016 10 911 925 27041995
    [Google Scholar]
  34. Naseri N. Zakeri-Milani P. Hamishehkar H. Pilehvar-Soltanahmadi Y. Valizadeh H. Development, in vitro characterization, antitumor and aerosol performance evaluation of respirable prepared by self-nanoemulsification method. Drug Res. (Stuttg.) 2017 67 6 343 348 10.1055/s‑0043‑102404 28288490
    [Google Scholar]
  35. Rajpoot K. Jain S.K. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: Preparation, optimization, and in vitro evaluation. Artif. Cells Nanomed. Biotechnol. 2018 46 6 1236 1247 10.1080/21691401.2017.1366338 28849671
    [Google Scholar]
  36. Rodenak-Kladniew B. Islan G.A. de Bravo M.G. Durán N. Castro G.R. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf. B Biointerfaces 2017 154 123 132 10.1016/j.colsurfb.2017.03.021 28334689
    [Google Scholar]
  37. Rahiminejad A. Dinarvand R. Johari B. Nodooshan S.J. Rashti A. Rismani E. Mahdaviani P. Saltanatpour Z. Rahiminejad S. Raigani M. Khosravani M. Preparation and investigation of indirubin‐loaded SLN nanoparticles and their anti‐cancer effects on human glioblastoma U87MG cells. Cell Biol. Int. 2019 43 1 2 11 10.1002/cbin.11037 30080277
    [Google Scholar]
  38. Mori N.M. Sheth N.R. Mendapara V.P. Ashara K.C. Paun J.S. SLN brain targeting drug delivery for CNS: A novel approach. Int. Res. J. Pharm. 2014 5 9 658 662 10.7897/2230‑8407.0509134
    [Google Scholar]
  39. Picone P. Bondi M.L. Picone P. Bondi M.L. Montana G. Bruno A. Pitarresi G. Giammona G. Di Carlo M. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: Improved delivery by solid lipid nanoparticles. Free Radic. Res. 2009 43 11 1133 1145 10.1080/10715760903214454 19863373
    [Google Scholar]
  40. Zhan S.M. Hou D.Z. Ping Q.N. Xu Y. Preparation and entrapment efficiency determination of solid lipid nanoparticles loaded levodopa. Zhongguo Yiyuan Yaoxue Zazhi 2010 14 1171 1175
    [Google Scholar]
  41. Boafo G.F. Magar K.T. Ekpo M.D. Qian W. Tan S. Chen C. The Role of Cryoprotective Agents in Liposome Stabilization and Preservation. Int. J. Mol. Sci. 2022 23 20 12487 10.3390/ijms232012487 36293340
    [Google Scholar]
  42. Esposito E. Fantin M. Marti M. Drechsler M. Paccamiccio L. Mariani P. Sivieri E. Lain F. Menegatti E. Morari M. Cortesi R. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm. Res. 2008 25 7 1521 1530 10.1007/s11095‑007‑9514‑y 18172580
    [Google Scholar]
  43. Tsai M.J. Huang Y.B. Wu P.C. Fu Y.S. Kao Y.R. Fang J.Y. Tsai Y.H. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: Pharmacokinetic and behavioral evaluations. J. Pharm. Sci. 2011 100 2 547 557 10.1002/jps.22285 20740670
    [Google Scholar]
  44. Pardeshi C.V. Rajput P.V. Belgamwar V.S. Tekade A.R. Surana S.J. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: Application of factorial design approach. Drug Deliv. 2013 20 1 47 56 10.3109/10717544.2012.752421 23311653
    [Google Scholar]
  45. Bhatt R. Singh D. Prakash A. Mishra N. Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington’s disease. Drug Deliv. 2015 22 7 931 939 10.3109/10717544.2014.880860 24512295
    [Google Scholar]
  46. Samia O. Hanan R. Kamal E.T. Carbamazepine Mucoadhesive Nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa. Drug Deliv. 2012 19 1 58 67 10.3109/10717544.2011.644349 22191715
    [Google Scholar]
  47. Gao Y. Gu W. Chen L. Xu Z. Li Y. The role of daidzein-loaded sterically stabilized solid lipid nanoparticles in therapy for cardio-cerebrovascular diseases. Biomaterials 2008 29 30 4129 4136 10.1016/j.biomaterials.2008.07.008 18667234
    [Google Scholar]
  48. Morsi N.M. Ghorab D.M. Badie H.A. Brain targeted solid lipid nanoparticles for brain ischemia: Preparation and in vitro characterization. Pharm. Dev. Technol. 2013 18 3 736 744 10.3109/10837450.2012.734513 23477526
    [Google Scholar]
  49. Montenegro L. Campisi A. Sarpietro M.G. Carbone C. Acquaviva R. Raciti G. Puglisi G. In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain. Drug Dev. Ind. Pharm. 2011 37 6 737 746 10.3109/03639045.2010.539231 21204752
    [Google Scholar]
  50. Dang H. Meng M.H.W. Zhao H. Iqbal J. Dai R. Deng Y. Lv F. Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies. J. Nanopart. Res. 2014 16 4 2347 10.1007/s11051‑014‑2347‑9
    [Google Scholar]
  51. Bargoni A. Cavalli R. Zara G.P. Fundarò A. Caputo O. Gasco M.R. Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (sln) after duodenal administration to rats. Part II—Tissue distribution. Pharmacol. Res. 2001 43 5 497 502 10.1006/phrs.2001.0813 11394943
    [Google Scholar]
  52. Bondì M.L. Craparo E.F. Giammona G. Drago F. Brain-targeted solid lipid nanoparticles containing riluzole: Preparation, characterization and biodistribution. Nanomedicine (Lond.) 2010 5 1 25 32 10.2217/nnm.09.67 20025461
    [Google Scholar]
  53. Abdelbary G. Fahmy R.H. Diazepam-loaded solid lipid nanoparticles: Design and characterization. AAPS PharmSciTech 2009 10 1 211 219 10.1208/s12249‑009‑9197‑2 19277870
    [Google Scholar]
  54. Leyva-Gómez G. González-Trujano M.E. López-Ruiz E. Couraud P.O. Wekslerg B. Romero I. Miller F. Delie F. Allémann E. Quintanar-Guerrero D. Nanoparticle formulation improves the anticonvulsant effect of clonazepam on the pentylenetetrazole-induced seizures: Behavior and electroencephalogram. J. Pharm. Sci. 2014 103 8 2509 2519 10.1002/jps.24044 24916334
    [Google Scholar]
  55. Tran T.H. Ramasamy T. Cho H.J. Kim Y.I.I. Poudel B.K. Choi H.G. Yong C.S. Kim J.O. Formulation and optimization of raloxifene-loaded solid lipid nanoparticles to enhance oral bioavailability. J. Nanosci. Nanotechnol. 2014 14 7 4820 4831 10.1166/jnn.2014.8722 24757949
    [Google Scholar]
  56. Hassan M. Tuckman H.P. Patrick R.H. Kountz D.S. Kohn J.L. Hospital length of stay and probability of acquiring infection. Int. J. Pharm. Healthc. Mark. 2010 4 4 324 338 10.1108/17506121011095182
    [Google Scholar]
  57. Namasivayam S.K.R. Nanoformulation of antibacterial antibiotics cefpirome with biocompatible polymeric nanoparticles and evaluation for the improved antibacterial activity and nontarget toxicity studies. Asian J. Pharm. 2017 11 269 281
    [Google Scholar]
  58. Dong Z. Xie S. Zhu L. Wang Y. Wang X. Zhou W. Preparation and in vitro, in vivo evaluations of norfloxacin-loaded solid lipid nanopartices for oral delivery. Drug Deliv. 2011 18 6 441 450 10.3109/10717544.2011.577109 21554156
    [Google Scholar]
  59. Sharma M. Gupta N. Gupta S. Implications of designing clarithromycin loaded solid lipid nanoparticles on their pharmacokinetics, antibacterial activity and safety. RSC Advances 2016 6 80 76621 76631 10.1039/C6RA12841F
    [Google Scholar]
  60. Aljaeid B. Hosny K.M. Miconazole-loaded solid lipid nanoparticles: Formulation and evaluation of a novel formula with high bioavailability and antifungal activity. Int. J. Nanomedicine 2016 11 441 447 10.2147/IJN.S100625 26869787
    [Google Scholar]
  61. Bhandari R. Kaur I.P. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int. J. Pharm. 2013 441 1-2 202 212 10.1016/j.ijpharm.2012.11.042 23220081
    [Google Scholar]
  62. Negi J.S. Chattopadhyay P. Sharma A.K. Ram V. Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self nano-emulsification (SNE) technique. Eur. J. Pharm. Sci. 2013 48 1-2 231 239 10.1016/j.ejps.2012.10.022 23153618
    [Google Scholar]
  63. Gaur P.K. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: In vitro drug release and pharmacokinetics studies. Biomed Res Int. 2014 2014 363404
    [Google Scholar]
  64. Carbone C. Fuochi V. Zielińska A. Musumeci T. Souto E.B. Bonaccorso A. Puglia C. Petronio Petronio G. Furneri P.M. Dual-drugs delivery in solid lipid nanoparticles for the treatment of Candida albicans mycosis. Colloids Surf. B Biointerfaces 2020 186 110705 10.1016/j.colsurfb.2019.110705 31830707
    [Google Scholar]
  65. Hosseini S.M. Farmany A. Abbasalipourkabir R. Soleimani Asl S. Nourian A. Arabestani M.R. Doxycycline-encapsulated solid lipid nanoparticles for the enhanced antibacterial potential to treat the chronic brucellosis and preventing its relapse: In vivo study. Ann. Clin. Microbiol. Antimicrob. 2019 18 1 33 10.1186/s12941‑019‑0333‑x 31706304
    [Google Scholar]
  66. Yurtdaş-Kırımlıoğlu G. Development and characterization of lyophilized cefpodoxime proxetil-Pluronic ® F127/polyvinylpyrrolidone K30 solid dispersions with improved dissolution and enhanced antibacterial activity. Pharm. Dev. Technol. 2021 26 4 476 489 10.1080/10837450.2021.1889584 33616480
    [Google Scholar]
  67. Shazly Gamal A. Ciprofloxacin Controlled-Solid Lipid Nanoparticles: Characterization, In Vitro Release, and Antibacterial Activity Assessment. Biomed Res Int 2017 2017 2120734
    [Google Scholar]
  68. Gaspar D.P. Gaspar M.M. Eleutério C.V. Grenha A. Blanco M. Gonçalves L.M.D. Taboada P. Almeida A.J. Remuñán-López C. Microencapsulated Solid Lipid Nanoparticles as a Hybrid Platform for Pulmonary Antibiotic Delivery. Mol. Pharm. 2017 14 9 2977 2990 10.1021/acs.molpharmaceut.7b00169
    [Google Scholar]
  69. Ghanbarzadeh S. Hariri R. Kouhsoltani M. Shokri J. Javadzadeh Y. Hamishehkar H. Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. Colloids Surf. B Biointerfaces 2015 136 1004 1010 10.1016/j.colsurfb.2015.10.041 26579567
    [Google Scholar]
  70. Jenning V Gysler A Schäfer-Korting M Gohla SH Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm. 2000 49 3 211 8 10.1016/S0939‑6411(99)00075‑2
    [Google Scholar]
  71. Montenegro L. Sinico C. Castangia I. Carbone C. Puglisi G. Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: In vitro evaluation. Int. J. Pharm. 2012 434 1-2 169 174 10.1016/j.ijpharm.2012.05.046 22659127
    [Google Scholar]
  72. Jain A.K. Jain A. Garg N.K. Agarwal A. Jain A. Jain S.A. Tyagi R.K. Jain R.K. Agrawal H. Agrawal G.P. Adapalene loaded solid lipid nanoparticles gel: An effective approach for acne treatment. Colloids Surf. B Biointerfaces 2014 121 222 229 10.1016/j.colsurfb.2014.05.041 25016424
    [Google Scholar]
  73. Vaghasiya H. Kumar A. Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur. J. Pharm. Sci. 2013 49 2 311 322 10.1016/j.ejps.2013.03.013 23557842
    [Google Scholar]
  74. Ansari H. Singh P. Formulation and in-vivo Evaluation of Novel Topical Gel of Lopinavir for Targeting HIV. Curr. HIV Res. 2019 16 4 270 279 10.2174/1570162X16666180924101650 30246641
    [Google Scholar]
  75. Kurakula M. Ahmed O.A.A. Fahmy U.A. Ahmed T.A. Solid lipid nanoparticles for transdermal delivery of avanafil: Optimization, formulation, in-vitro and ex-vivo studies. J. Liposome Res. 2016 26 4 288 296 10.3109/08982104.2015.1117490 26784833
    [Google Scholar]
  76. Kheradmandnia S. Vasheghani-Farahani E. Nosrati M. Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine 2010 6 6 753 759 10.1016/j.nano.2010.06.003 20599527
    [Google Scholar]
  77. Vyas S.P. Paliwal R. Paliwal S.R. Ocular delivery of peptides and proteins. Peptide and protein delivery. Van Der Walle C. London Academic Press 2011 10.1016/B978‑0‑12‑384935‑9.10005‑7
    [Google Scholar]
  78. Üstündag-Okur N. Gökçe E.H. Eğrilmez S. Özer Ö. Ertan G. Novel ofloxacin-loaded microemulsion formulations for ocular delivery. J. Ocul. Pharmacol. Ther. 2014 30 4 319 332 10.1089/jop.2013.0114 24367973
    [Google Scholar]
  79. Li N. Zhuang C. Wang M. Sun X. Nie S. Pan W. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int. J. Pharm. 2009 379 1 131 138 10.1016/j.ijpharm.2009.06.020 19559775
    [Google Scholar]
  80. Üstündağ-Okur N. Gökçe E.H. Bozbıyık D.İ. Eğrilmez S. Özer Ö. Ertan G. Preparation and in vitro–in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur. J. Pharm. Sci. 2014 63 204 215 10.1016/j.ejps.2014.07.013 25111119
    [Google Scholar]
  81. Mehnert W. Mäder K. Solid lipid nanoparticles Production, characterization and applications. Adv. Drug Deliv. Rev. 2001 47 2-3 165 196 10.1016/S0169‑409X(01)00105‑3 11311991
    [Google Scholar]
  82. del Pozo-Rodríguez A. Delgado D. Solinís M.A. Gascón A.R. Pedraz J.L. Solid lipid nanoparticles for retinal gene therapy: Transfection and intracellular trafficking in RPE cells. Int. J. Pharm. 2008 360 1-2 177 183 10.1016/j.ijpharm.2008.04.023 18508211
    [Google Scholar]
  83. Li X. Nie S. Kong J. Li N. Ju C. Pan W. A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int. J. Pharm. 2008 363 1-2 177 182 10.1016/j.ijpharm.2008.07.017 18706987
    [Google Scholar]
  84. Gökçe E.H. Sandri G. Bonferoni M.C. Rossi S. Ferrari F. Güneri T. Caramella C. Cyclosporine A loaded SLNs: Evaluation of cellular uptake and corneal cytotoxicity. Int. J. Pharm. 2008 364 1 76 86 10.1016/j.ijpharm.2008.07.028 18725276
    [Google Scholar]
  85. Ekambaram P. Solid lipid nanoparticles: A review. Sci. Revs. Chem. Commun. 2012 2 1 80 102
    [Google Scholar]
  86. Suresh G. Manjunath K. Venkateswarlu V. Satyanarayana V. Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles. AAPS PharmSciTech 2007 8 1 E162 E170 10.1208/pt0801024 17408223
    [Google Scholar]
  87. Baek JS So JW Shin SC Cho CW Solid lipid nanoparticles of paclitaxel strengthened by hydroxypropyl-b-cyclodextrin as an oral delivery system. Int. J. Mol. Med. 2012 30 4 953 9 10.3892/ijmm.2012.1086
    [Google Scholar]
  88. Cho HJ Park JW Yoon IS Kim DD Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: Enhanced intestinal absorption and lymphatic uptake. Int J Nanomedicine 2014 9 495 504
    [Google Scholar]
  89. Patro N.M. Devi K. Pai R.S. Suresh S. Evaluation of bioavailability, efficacy, and safety profile of doxorubicin-loaded solid lipid nanoparticles. J. Nanopart. Res. 2013 15 12 2124 10.1007/s11051‑013‑2124‑1
    [Google Scholar]
  90. Hansraj GP Singh SK Kumar P Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced antimigraine potential. Int. J. Biol. Macromol. 2015 81 467 476
    [Google Scholar]
  91. Gomes F.L.T. Maranhão R.C. Tavares E.R. Carvalho P.O. Higuchi M.L. Mattos F.R. Pitta F.G. Hatab S.A. Kalil-Filho R. Serrano C.V. Jr Regression of atherosclerotic plaques of cholesterol-fed rabbits by combined chemotherapy with Paclitaxel and Methotrexate carried in lipid core nanoparticles. J. Cardiovasc. Pharmacol. Ther. 2018 23 6 561 569 10.1177/1074248418778836 29779420
    [Google Scholar]
  92. Vicente-Pascual M. Albano A. Solinís M.Á. Serpe L. Rodríguez-Gascón A. Foglietta F. Muntoni E. Torrecilla J. Pozo-Rodríguez A. Battaglia L. Gene delivery in the cornea: In vitro & ex vivo evaluation of solid lipid nanoparticle-based vectors. Nanomedicine (Lond.) 2018 13 15 1847 1854 10.2217/nnm‑2018‑0112 29792369
    [Google Scholar]
  93. Tran P.A. Zhang L. Webster T.J. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv. Drug Deliv. Rev. 2009 61 12 1097 1114 10.1016/j.addr.2009.07.010 19647768
    [Google Scholar]
  94. Ji S. Liu C. Zhang B. Yang F. Xu J. Long J. Jin C. Fu D. Ni Q. Yu X. Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta Rev. Cancer 2010 1806 1 29 35 10.1016/j.bbcan.2010.02.004 20193746
    [Google Scholar]
  95. Jin J. Bae K.H. Yang H. Lee S.J. Kim H. Kim Y. Joo K.M. Seo S.W. Park T.G. Nam D.H. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjug. Chem. 2011 22 12 2568 2572 10.1021/bc200406n 22070554
    [Google Scholar]
  96. Carrillo Carolina The distribution of electronic charge in some biologically active amines . Proc R Soc Lond B Biol Sci 1977 199 1135 291 307 10.1016/j.ejps.2013.02.011
    [Google Scholar]
  97. Jin R. Zhu W. Lin G. Liu G. Ai H. MRI-Visible Nanovehicle for Efficient siRNA Delivery. Methods Mol. Biol. 2021 2282 195 208 10.1007/978‑1‑0716‑1298‑9_13 33928578
    [Google Scholar]
  98. Montana G. Bondì M.L. Carrotta R. Picone P. Craparo E.F. San Biagio P.L. Giammona G. Di Carlo M. Employment of cationic solid-lipid nanoparticles as RNA carriers. Bioconjug. Chem. 2007 18 2 302 308 10.1021/bc0601166 17253655
    [Google Scholar]
  99. Stelzner J.J. Behrens M. Behrens S.E. Mäder K. Squalene containing solid lipid nanoparticles, a promising adjuvant system for yeast vaccines. Vaccine 2018 36 17 2314 2320 10.1016/j.vaccine.2018.03.019 29567034
    [Google Scholar]
  100. Li S. Yang Y. Lin X. Li Z. Ma G. Su Z. Zhang S. Biocompatible cationic solid lipid nanoparticles as adjuvants effectively improve humoral and T cell immune response of foot and mouth disease vaccines. Vaccine 2020 38 11 2478 2486 10.1016/j.vaccine.2020.02.004 32057580
    [Google Scholar]
  101. Zambrano-Zaragoza M. González-Reza R. Mendoza-Muñoz N. Miranda-Linares V. Bernal-Couoh T. Mendoza-Elvira S. Quintanar-Guerrero D. Nanosystems in edible coatings: A novel strategy for food preservation. Int. J. Mol. Sci. 2018 19 3 705 10.3390/ijms19030705 29494548
    [Google Scholar]
  102. Albuquerque J. Moura C. Sarmento B. Reis S. Solid lipid nanoparticles: A potential multifunctional approach towards rheumatoid arthritis theranostics. Molecules 2015 20 6 11103 11118 10.3390/molecules200611103 26087258
    [Google Scholar]
  103. Jain D. Bajaj A. Maskare R. Braroo P. Babul N. Kao H. Design of solid lipid nanoparticles of the NSAID dexflurbiprofen for topical delivery. J. Pain 2013 14 4 S86 10.1016/j.jpain.2013.01.680
    [Google Scholar]
  104. Maia CS Mehnert W Schäfer-Korting M Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int J Pharm. 2000 196 2 165 7 10.1016/S0378‑5173(99)00413‑5
    [Google Scholar]
  105. Khurana S. Bedi P.M.S. Jain N.K. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem. Phys. Lipids 2013 175-176 65 72 10.1016/j.chemphyslip.2013.07.010 23994283
    [Google Scholar]
  106. Ahangarpour A. Oroojan A.A. Khorsandi L. Kouchak M. Badavi M. Solid Lipid Nanoparticles of Myricitrin Have Antioxidant and Antidiabetic Effects on Streptozotocin‐Nicotinamide‐Induced Diabetic Model and Myotube Cell of Male Mouse. Oxid. Med. Cell. Longev. 2018 2018 1 7496936 10.1155/2018/7496936 30116491
    [Google Scholar]
  107. Ansari M.J. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: Pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats. Drug Deliv. 2016 23 6 1972 9 10.3109/10717544.2015.1039666
    [Google Scholar]
  108. Mohseni R. ArabSadeghabadi Z. Ziamajidi N. Abbasalipourkabir R. RezaeiFarimani A. Oral Administration of Resveratrol-Loaded Solid Lipid Nanoparticle Improves Insulin Resistance Through Targeting Expression of SNARE Proteins in Adipose and Muscle Tissue in Rats with Type 2 Diabetes. Nanoscale Res. Lett. 2019 14 1 227 10.1186/s11671‑019‑3042‑7 31290033
    [Google Scholar]
  109. Sarmento B. Martins S. Ferreira D. Souto E.B. Oral insulin delivery by means of solid lipid nanoparticles. Int. J. Nanomedicine 2007 2 4 743 749 18203440
    [Google Scholar]
  110. Elkarray S.M. Farid R.M. Abd-Alhaseeb M.M. Omran G.A. Habib D.A. Intranasal repaglinide-solid lipid nanoparticles integrated in situ gel outperform conventional oral route in hypoglycemic activity. J. Drug Deliv. Sci. Technol. 2022 68 103086 10.1016/j.jddst.2021.103086
    [Google Scholar]
  111. Pooja D. Kulhari H. Kuncha M. Rachamalla S.S. Adams D.J. Bansal V. Sistla R. Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles. Mol. Pharm. 2016 13 11 3903 3912 10.1021/acs.molpharmaceut.6b00691 27696858
    [Google Scholar]
  112. Hashem F.M. Nasr M. Khairy A. In vitro cytotoxicity and bioavailability of solid lipid nanoparticles containing tamoxifen citrate. Pharm. Dev. Technol. 2014 19 7 824 832 10.3109/10837450.2013.836218 24032414
    [Google Scholar]
  113. Thakkar A. Chenreddy S. Wang J. Prabhu S. Ferulic acid combined with aspirin demonstrates chemopreventive potential towards pancreatic cancer when delivered using chitosan-coated solid-lipid nanoparticles. Cell Biosci. 2015 5 1 46 10.1186/s13578‑015‑0041‑y 26301084
    [Google Scholar]
  114. Girotra P. Singh S.K. Multivariate optimization of rizatriptan benzoate-loaded solid lipid nanoparticles for brain targeting and migraine management. AAPS PharmSciTech 2016 18 2 517 528 10.1208/s12249‑016‑0532‑0 27126007
    [Google Scholar]
  115. Ramalingam P. Ko Y.T. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf. B Biointerfaces 2016 139 52 61 10.1016/j.colsurfb.2015.11.050 26700233
    [Google Scholar]
  116. Omwoyo WN Ogutu B Oloo F Swai H Kalombo L Melariri P Mahanga GM Gathirwa JW Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int J Nanomedicine 2014 9 3865 74
    [Google Scholar]
  117. Souza A.L.R. Andreani T. de Oliveira R.N. Kiill C.P. Santos F.K. Allegretti S.M. Chaud M.V. Souto E.B. Silva A.M. Gremião M.P.D. In vitro evaluation of permeation, toxicity and effect of praziquantel-loaded solid lipid nanoparticles against Schistosoma mansoni as a strategy to improve efficacy of the schistosomiasis treatment. Int. J. Pharm. 2014 463 1 31 37 10.1016/j.ijpharm.2013.12.022 24370839
    [Google Scholar]
  118. Ramalingam P. Ko Y.T. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: Pharmacokinetic and brain distribution evaluations. Pharm. Res. 2015 32 2 389 402 10.1007/s11095‑014‑1469‑1 25082210
    [Google Scholar]
  119. Shazly G.A. Alshehri S. Ibrahim M.A. Tawfeek H.M. Razik J.A. Hassan Y.A. Shakeel F. Development of Domperidone Solid Lipid Nanoparticles: In Vitro and In Vivo Characterization. AAPS PharmSciTech 2018 19 4 1712 1719 10.1208/s12249‑018‑0987‑2 29532427
    [Google Scholar]
  120. Eiras F. Amaral M.H. Silva R. Martins E. Lobo J.M.S. Silva A.C. Characterization and biocompatibility evaluation of cutaneous formulations containing lipid nanoparticles. Int. J. Pharm. 2017 519 1-2 373 380 10.1016/j.ijpharm.2017.01.045 28131849
    [Google Scholar]
  121. Shastri VP Sussman E Jayagopal A Functionalized solid lipid nanoparticles and methods of making and using same. US Patent 20060083781A1 2006
  122. Herzog B. Formulation of UV absorbers by incorporation in solid lipid nanoparticles. US Patent 7147841B2 2006
  123. Gasco MR Lipid nanoparticles as vehicles for nucleic acids. EP Patent 1761251A1 2007
  124. Chung GJ Hahm KB Jin SW Lee DH Na K Shinn HC Solid lipid nanoparticles for drug delivery, a production method therefor, and an injectable preparation comprising the nanoparticles. WO Patent 2009102121A2 2009
  125. Ivri Y. Intracochlear drug delivery to the central nervous system. US Patent 20110208161A1 2011
  126. Gascon AR Aspíazu MAS Rodríguez ADP Vicente DDS Muñoz JLP Lipid nanoparticles for Gene therapy. US Patent 20120183589A1 2012
  127. Viladot PJL Delgado GR Fernández BA Lipid nanoparticle cap sules. EP Patent 2549977A2 2013
  128. Cal K Wosicka H Solid lipid nanoparticles of roxithromycin for hair loss or acne. WO Patent 2014077712A1 2014
  129. Gallarate M Peira E Battaglia LS Method for preparing solid lipid nanoparticles containing antibodies in ion pair form using the fatty acid coacervation technique. WO Patent 2015007398A1 2015
  130. Parveen S Misra R Sahoo SK Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed Nanotechnol Biol Med 2012 8 2 147e66
    [Google Scholar]
  131. Marchan R Reif R Hengstler JG Toxicology of magnetic nanoparticles: Disturbed body iron homeostasis? Arch Toxicol. 2012 86 5 683e4
    [Google Scholar]
  132. Shinde SK Toxicity induced by nanoparticles. Asian Pac J Trop Dis 2012 2 4 331e4
    [Google Scholar]
  133. Doktorovová S. Kovačević A.B. Garcia M.L. Souto E.B. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2016 108 Suppl. C 235 252 10.1016/j.ejpb.2016.08.001 27519829
    [Google Scholar]
  134. Monteiro-Riviere N Cl T. Nanotoxicology: Characterization, dosing and health effects. Boca Rato CRC Press 2007 10.3109/9781420045154
    [Google Scholar]
  135. Dhawan A Sharma V Toxicity assessment of nanomaterials: Methods and challenges. Anal Bioanal Chem 2010 398 2 589 605 10.1007/s00216‑010‑3996‑x
    [Google Scholar]
  136. Marquis B Analytical methods to assess nanoparticle toxicity. Analyst 2009 134 425e39 10.1039/b818082b
    [Google Scholar]
  137. Silva A.M. Alvarado H.L. Abrego G. Martins-Gomes C. Garduño-Ramirez M.L. García M.L. Calpena A.C. Souto E.B. In vitro Cytotoxicity of oleanolic/ursolic acids-loaded in PLGA nanoparticles in different cell lines. Pharmaceutics 2019 11 8 362 10.3390/pharmaceutics11080362 31344882
    [Google Scholar]
  138. Pardeike J. Hommoss A. Müller R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009 366 1-2 170 184 10.1016/j.ijpharm.2008.10.003 18992314
    [Google Scholar]
  139. Ilić T. Pantelić I. Savić S. The Implications of Regulatory Framework for Topical Semisolid Drug Products: From Critical Quality and Performance Attributes towards Establishing Bioequivalence. Pharmaceutics 2021 13 5 710 10.3390/pharmaceutics13050710 34068036
    [Google Scholar]
  140. Jana M. Biswas U.K. Patra C.S. Debnath B. Sharma S. Naskar S. Solid Lipid Nanoparticles: A Review of their Biomedical Applications and Preparation. Pharm. Nanotechnol. 2024 12 2100018 10.2174/0122117385312175240502100018 38797906
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385333634240911075833
Loading
/content/journals/pnt/10.2174/0122117385333634240911075833
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test