Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Aims

This research aimed to study the potential of PDEN from fruits (PENC) for regenerating and remodeling HDF.

Background

Large wounds are dangerous and require prompt and effective healing. Various efforts have been undertaken, but have been somewhat ineffective. Plant-derived exosome-like nanoparticles (PDEN) are easily sampled, relatively cost-effective, exhibit high yields, and are non-immunogenic.

Objectives

The objective of the study was to isolate and characterize PDEN from (PENC), and determine PENC’s internalization and toxicity on HDF cells, PENC's ability to regenerate HDF (proliferation and migration), and PENC ability’s to remodel HDF (collagen I and MMP-1 production).

Methods

PENC was isolated using gradual filtration and centrifugation, followed by sedimentation using PEG6000. Characterization was done using a particle size analyzer, zeta potential analyzer, TEM, and BCA assay. Internalization was done using PKH67 staining. Toxicity and proliferation assays were conducted using MTT assay; meanwhile, migration assay was carried out by employing the scratch assay. Collagen I production was performed using immunocytochemistry and MMP-1 production was conducted using ELISA.

Results

MTT assay showed a PENC concentration of 2.5 until 500 µg/mL and being non-toxic to cells. PENC has been found to induce cell proliferation in 1, 3, 5, and 7 days. PENC at a concentration of 2.5, 5, and 7.5 µg/mL, also accelerated HDF migration using the scratch assay in two days. In remodeling, PENC upregulated collagen-1 expression from day 7 to 14 compared to control. MMP-1 declined from day 2 to 7 in every PENC concentration and increased on day 14. Overall, PENC at concentrations of 2.5, 5, and 7.5 µg/mL induced HDF proliferation and migration, upregulated collagen I production, and decreased MMP-1 levels.

Conclusion

Isolated PENC was 190-220 nm in size, circular, covered with membrane, and its zeta potential was -6.7 mV; it could also be stored at 4°C for up to 2 weeks in aqua bidest. Protein concentration ranged between 170-1,395 µg/mL. Using PKH67, PENC could enter HDF within 6 hours. PENC was non-toxic up to a concentration of 500 µg/mL. Using MTT and scratch assay, PENC was found to elevate HDF proliferation and migration, and reorganize actin. Using immunocytochemistry, collagen I was upregulated by PENC, whereas MMP-1 concentration was reduced.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385281838240105110106
2024-01-11
2025-06-21
Loading full text...

Full text loading...

References

  1. SinghN. SinghS. MauryaP. AryaM. KhanF. An updated review on Physalis peruviana fruit: Cultivational, nutraceutical and pharmaceutical aspects.Indian J. Nat. Prod. Resour.201910297110
    [Google Scholar]
  2. BurriB.J. Beta‐cryptoxanthin as a source of vitamin A.J. Sci. Food Agric.20159591786179410.1002/jsfa.694225270992
    [Google Scholar]
  3. KasaliF.M. TusiimireJ. KadimaJ.N. ToloC.U. WeisheitA. AgabaA.G. Ethnotherapeutic uses and phytochemical composition of Physalis peruviana L.: An overview.ScientificWorldJournal2021202112210.1155/2021/521234834671227
    [Google Scholar]
  4. Bazalar PeredaM.S. NazarenoM.A. ViturroC.I. Nutritional and antioxidant properties of Physalis peruviana L. fruits from the argentinean northern andean region.Plant Foods Hum. Nutr.2019741687510.1007/s11130‑018‑0702‑130471071
    [Google Scholar]
  5. KimJ. LiS. ZhangS. WangJ. Plant-derived exosome-like nanoparticles and their therapeutic activities.Asian J. Pharmaceut. Sci.2022171536910.1016/j.ajps.2021.05.00635261644
    [Google Scholar]
  6. KalarikkalS.P. PrasadD. KasiappanR. ChaudhariS.R. SundaramG.M. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes.Sci. Rep.2020101445610.1038/s41598‑020‑61358‑832157137
    [Google Scholar]
  7. LiuX.Y. NothiasJ.M. ScavoneA. GarfinkelM. MillisJ.M. Biocompatibility investigation of polyethylene glycol and alginate-poly-L-lysine for islet encapsulation.ASAIO J.201056324124510.1097/MAT.0b013e3181d7b8e320400892
    [Google Scholar]
  8. ZhuH. HeW. Ginger: a representative material of herb-derived exosome-like nanoparticles.Front. Nutr.202310122334910.3389/fnut.2023.122334937521414
    [Google Scholar]
  9. LiA. LiD. GuY. LiuR. TangX. ZhaoY. QiF. WeiJ. LiuJ. Plant-derived nanovesicles: Further exploration of biomedical function and application potential.Acta Pharm. Sin. B20231383300332010.1016/j.apsb.2022.12.02237655320
    [Google Scholar]
  10. LiP. KaslanM. LeeS.H. YaoJ. GaoZ. Progress in exosome isolation techniques.Theranostics20177378980410.7150/thno.1813328255367
    [Google Scholar]
  11. YangS. LuS. RenL. BianS. ZhaoD. LiuM. WangJ. Ginseng-derived nanoparticles induce skin cell proliferation and promote wound healing.J. Ginseng Res.202347113314310.1016/j.jgr.2022.07.00536644388
    [Google Scholar]
  12. ŞahinF. KoçakP. GüneşM.Y. Özkanİ. YıldırımE. KalaE.Y. In vitro wound healing activity of wheat-derived nanovesicles.Appl. Biochem. Biotechnol.2019188238139410.1007/s12010‑018‑2913‑130474796
    [Google Scholar]
  13. FredericH. Fundamentals Of Anatomy & Physiology.10th ed.Abe Books2015
    [Google Scholar]
  14. JourdanM. MadfesD. LimaE. TianY. SeitéS. Skin care management for medical and aesthetic procedures to prevent scarring.Clin. Cosmet. Investig. Dermatol.20191279980410.2147/CCID.S21813431695468
    [Google Scholar]
  15. DhivyaS. PadmaV.V. SanthiniE. Wound dressings – A review.Biomedicine2015542210.7603/s40681‑015‑0022‑926615539
    [Google Scholar]
  16. Lima-JuniorE.M. de Moraes FilhoM.O. CostaB.A. FechineF.V. de MoraesM.E.A. Silva-JuniorF.R. SoaresM.F.A.N. RochaM.B.S. LeontsinisC.M.P. Innovative treatment using tilapia skin as a xenograft for partial thickness burns after a gunpowder explosion.J. Surg. Case Rep.201920196rjz18110.1093/jscr/rjz18131214319
    [Google Scholar]
  17. SinghM.K. SinghA. Particle size analysis.In: Characterization of polymers and fibres.Elsevier202234135810.1016/B978‑0‑12‑823986‑5.00009‑9
    [Google Scholar]
  18. CoryG. Scratch-wound assay.In: Methods in Molecular Biology.Humana Press2011253010.1007/978‑1‑61779‑207‑6_2
    [Google Scholar]
  19. AmirrahI.N. LokanathanY. ZulkifleeI. WeeM.F.M.R. MottaA. FauziM.B. A comprehensive review on collagen type I development of biomaterials for tissue engineering: From biosynthesis to bioscaffold.Biomedicines2022109230710.3390/biomedicines1009230736140407
    [Google Scholar]
  20. PerutF. RoncuzziL. AvnetS. MassaA. ZiniN. SabbadiniS. GiampieriF. MezzettiB. BaldiniN. Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells.Biomolecules20211118710.3390/biom1101008733445656
    [Google Scholar]
  21. JosephE. SinghviG. Multifunctional nanocrystals for cancer therapy: A potential nanocarrier.In: Nanomaterials for Drug Delivery and Therapy.Elsevier20199111610.1016/B978‑0‑12‑816505‑8.00007‑2
    [Google Scholar]
  22. GumustasM. Sengel-TurkC.T. GumustasA. OzkanS.A. UsluB. Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems.In: Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics.Elsevier20176710810.1016/B978‑0‑323‑52725‑5.00005‑8
    [Google Scholar]
  23. GolchoobiA. KhosraviA. ModarressH. AhmadzadehA. Effect of charge, size and temperature on stability of charged colloidal nano particles.Chin. J. Chem. Phys.201225561762410.1088/1674‑0068/25/05/617‑624
    [Google Scholar]
  24. KimK. ParkJ. SohnY. OhC.E. ParkJ.H. YukJ.M. YeonJ.H. Stability of plant leaf-derived extracellular vesicles according to preservative and storage temperature.Pharmaceutics202214245710.3390/pharmaceutics1402045735214189
    [Google Scholar]
  25. BoschS. de BeaurepaireL. AllardM. MosserM. HeichetteC. ChrétienD. JegouD. BachJ.M. Trehalose prevents aggregation of exosomes and cryodamage.Sci. Rep.2016613616210.1038/srep3616227824088
    [Google Scholar]
  26. SmithP.K. KrohnR.I. HermansonG.T. MalliaA.K. GartnerF.H. ProvenzanoM.D. FujimotoE.K. GoekeN.M. OlsonB.J. KlenkD.C. Measurement of protein using bicinchoninic acid.Anal. Biochem.19851501768510.1016/0003‑2697(85)90442‑73843705
    [Google Scholar]
  27. MontgomeryD.R. BikléA. Soil health and nutrient density: Beyond organic vs. conventional farming.Front. Sustain. Food Syst.2021569914710.3389/fsufs.2021.699147
    [Google Scholar]
  28. SubhaD. HarshniiK. MadhikirubaK.G. NandhiniM. TamilselviK.S. Plant derived exosome- like Nanovesicles: An updated overview.Plant Nano Biology2023310002210.1016/j.plana.2022.100022
    [Google Scholar]
  29. NemidkanamV. ChaichanawongsarojN. Characterizing Kaempferia parviflora extracellular vesicles, a nanomedicine candidate.PLoS One2022171e026288410.1371/journal.pone.026288435077499
    [Google Scholar]
  30. JuS. MuJ. DoklandT. ZhuangX. WangQ. JiangH. XiangX. DengZ.B. WangB. ZhangL. RothM. WeltiR. MobleyJ. JunY. MillerD. ZhangH.G. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis.Mol. Ther.20132171345135710.1038/mt.2013.6423752315
    [Google Scholar]
  31. WangY. WeiY. LiaoH. FuH. YangX. XiangQ. ZhangS. Plant exosome-like nanoparticles as biological shuttles for transdermal drug delivery.Bioengineering202310110410.3390/bioengineering1001010436671676
    [Google Scholar]
  32. GhasemiM. TurnbullT. SebastianS. KempsonI. The MTT Assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis.Int. J. Mol. Sci.202122231282710.3390/ijms22231282734884632
    [Google Scholar]
  33. CaiY. ZhangL. ZhangY. LuR. Plant-derived exosomes as a drug-delivery approach for the treatment of inflammatory bowel disease and colitis-associated cancer.Pharmaceutics202214482210.3390/pharmaceutics1404082235456656
    [Google Scholar]
  34. Allahbakhshian-FarsaniM. AbdianN. Ghasemi-DehkordiP. SadeghianiM. Saffari-ChaleshtoriJ. Hashemzadeh-ChaleshtoriM. Khosravi-FarsaniS. Cytogentic analysis of human dermal fibroblasts (HDFs) in early and late passages using both karyotyping and comet assay techniques.Cytotechnology201466581582210.1007/s10616‑013‑9630‑y23996453
    [Google Scholar]
  35. AddisR. CrucianiS. SantanielloS. BelluE. SaraisG. VenturaC. MaioliM. PintoreG. Fibroblast proliferation and migration in wound healing by phytochemicals: Evidence for a novel synergic outcome.Int. J. Med. Sci.20201781030104210.7150/ijms.4398632410832
    [Google Scholar]
  36. MahdipourE. Beta vulgaris juice contains biologically active exosome-like nanoparticles.Tissue Cell20227610180010.1016/j.tice.2022.10180035489194
    [Google Scholar]
  37. KimM.K. ChoiY.C. ChoS.H. ChoiJ.S. ChoY.W. The antioxidant effect of small extracellular vesicles derived from aloe vera peels for wound healing.Tissue Eng. Regen. Med.202118456157110.1007/s13770‑021‑00367‑834313971
    [Google Scholar]
  38. ZhaoW. BianY. WangQ. YinF. YinL. ZhangY. LiuJ. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress.Acta Pharmacol. Sin.202243364565810.1038/s41401‑021‑00681‑w33990765
    [Google Scholar]
  39. TaiY. WoodsE.L. DallyJ. KongD. SteadmanR. MoseleyR. MidgleyA.C. Myofibroblasts: Function, formation, and scope of molecular therapies for skin fibrosis.Biomolecules2021118109510.3390/biom1108109534439762
    [Google Scholar]
  40. PB. Wound healing and the role of fibroblasts.J. Wound Care2013228407412, 410-41210.12968/jowc.2013.22.8.40723924840
    [Google Scholar]
  41. TracyL.E. MinasianR.A. CatersonE.J. Extracellular matrix and dermal fibroblast function in the healing wound.Adv. Wound Care20165311913610.1089/wound.2014.056126989578
    [Google Scholar]
  42. GonzalezA.C.O. CostaT.F. AndradeZ.A. MedradoA.R.A.P. Wound healing - A literature review.An. Bras. Dermatol.201691561462010.1590/abd1806‑4841.2016474127828635
    [Google Scholar]
  43. XieY. GuanQ. GuoJ. ChenY. YinY. HanX. Hydrogels for exosome delivery in biomedical applications.Gels20228632810.3390/gels806032835735672
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385281838240105110106
Loading
/content/journals/pnt/10.2174/0122117385281838240105110106
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): fibroblast; human dermal fibroblast; PENC; Physalis peruviana; regeneration; remodeling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test