Skip to content
2000
image of Metallic Nanostructures: An Updated Review on Synthesis, Stability, Safety, and Applications with Tremendous Multifunctional Opportunities

Abstract

Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs). This sustainable approach utilizes biological sources, like actinomycetes, algae, fungi, polymers, crops, waste biomass, and yeast, recognized for their excellent biocompatibility, availability, affordability, and efficiency. Biological extracts act as reducing and stabilizing agents, with the metabolites and enzymes present in these extracts aiding in the conversion of metal ions into nanoparticles. This review offers an in-depth examination of different MNPs, such as copper, gold, platinum, silver, and zinc, emphasizing their distinct characteristics and a variety of synthesis methods. The review further explores the diverse applications of MNPs in biomimetics, agriculture, and various industrial sectors, including energy, catalysis, and wastewater treatment, along with optical enhancement. This review explores stability and toxicity profiles, filling a significant gap in the existing knowledge base and providing valuable insights into the broad applicability of MNPs.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385358312250108180301
2025-01-27
2025-07-11
Loading full text...

Full text loading...

References

  1. Kumar A. Mohite P. Munde S. Puri A. Edet H.O. Ochoule D.O. Chidrawar V.R. Nagime P.V. Uddin M.J. Singh S. Revolutionizing the biomedical and environmental clean-up through polymeric nano-sponges: A review. Nano-Structures & Nano-Objects 2024 39 101193 10.1016/j.nanoso.2024.101193
    [Google Scholar]
  2. Guleria M. Malhan A. Singh S. Chidrawar V.R. Nagime P.V. Navigating the potential of natural products through nano-enabled drug deliveries in mitigation of cancer: A review. Nano Life 2025 15 4 2430006 10.1142/S1793984424300061
    [Google Scholar]
  3. Jayeoye T.J. Nwude E.F. Singh S. Prajapati B.G. Kapoor D.U. Muangsin N. Sustainable synthesis of gold nanoparticles for drug delivery and cosmeceutical applications: A review. Bionanoscience 2024 14 3 3355 3384 10.1007/s12668‑024‑01436‑7
    [Google Scholar]
  4. Kumar A. Jayeoye T.J. Mohite P. Singh S. Rajput T. Munde S. Eze F.N. Chidrawar V.R. Puri A. Prajapati B.G. Parihar A. Sustainable and consumer-centric nanotechnology-based materials: An update on the multifaceted applications, risks and tremendous opportunities. Nano-Structures & Nano-Objects 2024 38 101148 10.1016/j.nanoso.2024.101148
    [Google Scholar]
  5. Makarov V.V. Love A.J. Sinitsyna O.V. Makarova S.S. Yaminsky I.V. Taliansky M.E. Kalinina N.O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat. (Engl. Ed.) 2014 6 1 35 44 10.32607/20758251‑2014‑6‑1‑35‑44 24772325
    [Google Scholar]
  6. Melkamu W.W. Bitew L.T. Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and anti-oxidant activities. Heliyon 2021 7 11 e08459 10.1016/j.heliyon.2021.e08459 34901505
    [Google Scholar]
  7. Hao R. Li D. Zhang J. Jiao T. Green synthesis of iron nanoparticles using green tea and its removal of hexavalent chromium. Nanomaterials 2021 11 3 650 10.3390/nano11030650 33800123
    [Google Scholar]
  8. Alarjani K.M. Huessien D. Rasheed R.A. Kalaiyarasi M. Green synthesis of silver nanoparticles by Pisum sativum L. (pea) pod against multidrug resistant foodborne pathogens. J. King Saud Univ. Sci. 2022 34 3 101897 10.1016/j.jksus.2022.101897
    [Google Scholar]
  9. Oves M. Ahmar Rauf M. Aslam M. Qari H.A. Sonbol H. Ahmad I. Sarwar Zaman G. Saeed M. Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J. Biol. Sci. 2022 29 1 460 471 10.1016/j.sjbs.2021.09.007 35002442
    [Google Scholar]
  10. Malik A. Khan J.M. Alhomida A.S. Ola M.S. Alshehri M.A. Ahmad A. Metal nanoparticles: Biomedical applications and their molecular mechanisms of toxicity. Chem. Zvesti 2022 76 10 6073 6095 10.1007/s11696‑022‑02351‑5
    [Google Scholar]
  11. Kumar D. Kumar P. Vikram K. Singh H. Fabrication and characterization of noble crystalline silver nanoparticles from Pimenta dioica leave extract and analysis of chemical constituents for larvicidal applications. Saudi J. Biol. Sci. 2022 29 2 1134 1146 10.1016/j.sjbs.2021.09.052 35241964
    [Google Scholar]
  12. Klębowski B. Depciuch J. Parlińska-Wojtan M. Baran J. Applications of noble metal-based nanoparticles in medicine. Int. J. Mol. Sci. 2018 19 12 4031 10.3390/ijms19124031 30551592
    [Google Scholar]
  13. Nongbet A. Mishra A.K. Mohanta Y.K. Mahanta S. Ray M.K. Khan M. Baek K.H. Chakrabartty I. Nanofertilizers: A smart and sustainable attribute to modern agriculture. Plants 2022 11 19 2587 10.3390/plants11192587 36235454
    [Google Scholar]
  14. Shaikh S. Nazam N. Rizvi S.M.D. Ahmad K. Baig M.H. Lee E.J. Choi I. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int. J. Mol. Sci. 2019 20 10 2468 10.3390/ijms20102468 31109079
    [Google Scholar]
  15. Kumari S. Raturi S. Kulshrestha S. Chauhan K. Dhingra S. András K. Thu K. Khargotra R. Singh T. A comprehensive review on various techniques used for synthesizing nanoparticles. J. Mater. Res. Technol. 2023 27 1739 1763 10.1016/j.jmrt.2023.09.291
    [Google Scholar]
  16. Ijaz I. Gilani E. Nazir A. Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 2020 13 3 223 245 10.1080/17518253.2020.1802517
    [Google Scholar]
  17. Mekuye B. Abera B. Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Select 2023 4 8 486 501 10.1002/nano.202300038
    [Google Scholar]
  18. Nagashima K. Choi E.K. Lin K.Y. Kumar S. Tedrow U.B. Koplan B.A. Michaud G.F. John R.M. Epstein L.M. Tokuda M. Inada K. Couper G.S. Stevenson W.G. Ventricular arrhythmias near the distal great cardiac vein: Challenging arrhythmia for ablation. Circ. Arrhythm. Electrophysiol. 2014 7 5 906 912 10.1161/CIRCEP.114.001615 25110163
    [Google Scholar]
  19. Baig N. Kammakakam I. Falath W. Kammakakam I. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances 2021 2 6 1821 1871 10.1039/D0MA00807A
    [Google Scholar]
  20. Oner G.A. Nadaroglu H. Acar V. Gok S. Flexural and thermal characterization of epoxy composites reinforced with nanoparticles synthesized from waste walnut husk with green synthesis method. Biomass Convers. Biorefin. 2023 ••• 1 12 10.1007/S13399‑023‑04364‑W/METRICS
    [Google Scholar]
  21. Iravani S. Korbekandi H. Mirmohammadi S. V. Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014 9 6 385 406
    [Google Scholar]
  22. Parashar M. Shukla V.K. Singh R. Metal oxides nanoparticles via sol–gel method: A review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron. 2020 31 5 3729 3749 10.1007/s10854‑020‑02994‑8
    [Google Scholar]
  23. Dwivedi N. Kumar S. Malik H.K. Nanostructured titanium/diamond-like carbon multilayer films: Deposition, characterization, and applications. ACS Appl. Mater. Interfaces 2011 3 11 4268 4278 10.1021/am200939j 21942626
    [Google Scholar]
  24. Hayashi H. Hakuta Y. Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 2010 3 7 3794 3817 10.3390/ma3073794 28883312
    [Google Scholar]
  25. Banu A.N. Balasubramanian C. Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol. Res. 2014 113 10 3843 3851 10.1007/s00436‑014‑4052‑0 25085201
    [Google Scholar]
  26. Wang C. Kim Y.J. Singh P. Mathiyalagan R. Jin Y. Yang D.C. Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif. Cells Nanomed. Biotechnol. 2015 44 4 1 6 10.3109/21691401.2015.1011805 25749281
    [Google Scholar]
  27. Keerthiraj N. Eco-friendly synthesis of gold nanoparticles by gold mine bacteria Brevibacillus formosus and their antibacterial and biocompatible studies. 2017 Available from: www.iosrphr.org
  28. He S. Zhang Y. Guo Z. Gu N. Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol. Prog. 2008 24 2 476 480 10.1021/bp0703174 18293997
    [Google Scholar]
  29. Singh N.A. Narang J. Garg D. Jain V. Payasi D. Suleman S. Swami R.K. Nanoparticles synthesis via microorganisms and their prospective applications in agriculture. Plant Nano Biology 2023 5 100047 10.1016/j.plana.2023.100047
    [Google Scholar]
  30. Kaur H. Dolma K. Kaur N. Malhotra A. Kumar N. Dixit P. Sharma D. Mayilraj S. Choudhury A.R. Marine microbe as nano-factories for copper biomineralization. Biotechnol. Bioprocess Eng.; BBE 2015 20 1 51 57 10.1007/s12257‑014‑0432‑7
    [Google Scholar]
  31. Saravanan M. Gopinath V. Chaurasia M.K. Syed A. Ameen F. Purushothaman N. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb. Pathog. 2018 115 57 63 10.1016/j.micpath.2017.12.039 29248514
    [Google Scholar]
  32. Tanzil A.H. Sultana S.T. Saunders S.R. Shi L. Marsili E. Beyenal H. Biological synthesis of nanoparticles in biofilms. Enzyme Microb. Technol. 2016 95 4 12 10.1016/j.enzmictec.2016.07.015 27866625
    [Google Scholar]
  33. Koul B. Poonia A.K. Yadav D. Jin J.O. Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects. Biomolecules 2021 11 6 886 10.3390/biom11060886 34203733
    [Google Scholar]
  34. Karthik L. Kumar G. Kirthi A.V. Rahuman A.A. Bhaskara Rao K.V. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst. Eng. 2014 37 2 261 267 10.1007/s00449‑013‑0994‑3 23771163
    [Google Scholar]
  35. Buszewski B. Railean-Plugaru V. Pomastowski P. Rafińska K. Szultka-Mlynska M. Golinska P. Wypij M. Laskowski D. Dahm H. Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J. Microbiol. Immunol. Infect. 2018 51 1 45 54 10.1016/j.jmii.2016.03.002 27103501
    [Google Scholar]
  36. Bakhtiari-Sardari A. Mashreghi M. Eshghi H. Behnam-Rasouli F. Lashani E. Shahnavaz B. Comparative evaluation of silver nanoparticles biosynthesis by two cold-tolerant Streptomyces strains and their biological activities. Biotechnol. Lett. 2020 42 10 1985 1999 10.1007/s10529‑020‑02921‑1 32462288
    [Google Scholar]
  37. El-Gamal M. S. Salem S. S. Biosynthesis, characterization, and antimicrobial activities of silver nanoparticles synthesized by endophytic streptomyces SP. BY. Egypt. J. Biotechnol. 2018 56
    [Google Scholar]
  38. Molnár Z. Bódai V. Szakacs G. Erdélyi B. Fogarassy Z. Sáfrán G. Varga T. Kónya Z. Tóth-Szeles E. Szűcs R. Lagzi I. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep. 2018 8 1 3943 10.1038/s41598‑018‑22112‑3 29500365
    [Google Scholar]
  39. Hulkoti N.I. Taranath T.C. Biosynthesis of nanoparticles using microbes—A review. Colloids Surf. B Biointerfaces 2014 121 474 483 10.1016/j.colsurfb.2014.05.027 25001188
    [Google Scholar]
  40. Mahanty S. Bakshi M. Ghosh S. Chatterjee S. Bhattacharyya S. Das P. Das S. Chaudhuri P. Green synthesis of iron oxide nanoparticles mediated by filamentous fungi isolated from sundarban mangrove ecosystem, India. Bionanoscience 2019 9 3 637 651 10.1007/s12668‑019‑00644‑w
    [Google Scholar]
  41. Ramos M.M. Dos S Morais E. da S Sena I. Lima A.L. de Oliveira F.R. de Freitas C.M. Fernandes C.P. de Carvalho J.C.T. Ferreira I.M. Silver nanoparticle from whole cells of the fungi Trichoderma spp. isolated from Brazilian Amazon. Biotechnol. Lett. 2020 42 5 833 843 10.1007/s10529‑020‑02819‑y 32026287
    [Google Scholar]
  42. Fawcett D. Verduin J.J. Shah M. Sharma S.B. Poinern G.E.J. A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J. Nanoscience. 2017 2017 1 1 15 10.1155/2017/8013850
    [Google Scholar]
  43. da Silva Ferreira V. ConzFerreira M.E. Lima L.M.T.R. Frasés S. de Souza W. Sant’Anna C. Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria. Enzyme Microb. Technol. 2017 97 114 121 10.1016/j.enzmictec.2016.10.018 28010768
    [Google Scholar]
  44. Fatima R. Priya M. Indurthi L. Radhakrishnan V. Sudhakaran R. Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microb. Pathog. 2020 138 103780 10.1016/j.micpath.2019.103780 31622663
    [Google Scholar]
  45. Bhuyar P. Rahim M.H.A. Sundararaju S. Ramaraj R. Maniam G.P. Govindan N. Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni. Suef Univ. J. Basic Appl. Sci. 2020 9 1 1 15 10.1186/S43088‑019‑0031‑Y/FIGURES/10
    [Google Scholar]
  46. Senthilkumar P. Surendran L. Sudhagar B. Ranjith Santhosh Kumar D.S. Facile green synthesis of gold nanoparticles from marine algae Gelidiella acerosa and evaluation of its biological potential. SN Applied Sciences 2019 1 4 284 10.1007/s42452‑019‑0284‑z
    [Google Scholar]
  47. Aisida S.O. Ugwu K. Akpa P.A. Nwanya A.C. Nwankwo U. Botha S.S. Ejikeme P.M. Ahmad I. Maaza M. Ezema F.I. Biosynthesis of silver nanoparticles using bitter leave (Veronica amygdalina) for antibacterial activities. Surf. Interfaces 2019 17 100359 10.1016/j.surfin.2019.100359
    [Google Scholar]
  48. Ogunyemi S.O. Abdallah Y. Zhang M. Fouad H. Hong X. Ibrahim E. Masum M.M.I. Hossain A. Mo J. Li B. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol. 2019 47 1 341 352 10.1080/21691401.2018.1557671 30691311
    [Google Scholar]
  49. Ahmad N. Sharma S. Singh V.N. Shamsi S.F. Fatma A. Mehta B.R. Biosynthesis of silver nanoparticles from desmodium triflorum: A novel approach towards weed utilization. Biotechnol. Res. Int. 2011 2011 1 1 8 10.4061/2011/454090 21350660
    [Google Scholar]
  50. Ali M.A. Ahmed T. Wu W. Hossain A. Hafeez R. Islam Masum M.M. Wang Y. An Q. Sun G. Li B. Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 2020 10 6 1146 10.3390/nano10061146 32545239
    [Google Scholar]
  51. Ahmad K.S. Yaqoob S. Gul M.M. Dynamic green synthesis of iron oxide and manganese oxide nanoparticles and their cogent antimicrobial, environmental and electrical applications. Rev. Inorg. Chem. 2022 42 3 239 263 10.1515/revic‑2021‑0033
    [Google Scholar]
  52. Muddapur U.M. Alshehri S. Ghoneim M.M. Mahnashi M.H. Alshahrani M.A. Khan A.A. Iqubal S.M.S. Bahafi A. More S.S. Shaikh I.A. Mannasaheb B.A. Othman N. Maqbul M.S. Ahmad M.Z. Plant-based synthesis of gold nanoparticles and theranostic applications: A review. Molecules 2022 27 4 1391 10.3390/molecules27041391 35209180
    [Google Scholar]
  53. Hano C. Abbasi B.H. Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules 2021 12 1 31 10.3390/biom12010031 35053179
    [Google Scholar]
  54. Karunakaran G. Sudha K.G. Ali S. Cho E.B. Biosynthesis of nanoparticles from various biological sources and its biomedical applications. Molecules 2023 28 11 4527 10.3390/molecules28114527 37299004
    [Google Scholar]
  55. Nwabor O.F. Singh S. Paosen S. Vongkamjan K. Voravuthikunchai S.P. Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci. 2020 36 100609 10.1016/j.fbio.2020.100609
    [Google Scholar]
  56. El-Esawy M.A. Elsharkawy S. Youssif M.M. Raafat Tartour A. Ramadan Elsharkawy F. Ahmed Saad Badr S. Recent advances of green nanoparticles in energy and biological applications. Mater. Today 2024 72 117 139 10.1016/j.mattod.2023.12.001
    [Google Scholar]
  57. Alphandéry E. Natural metallic nanoparticles for application in nano-oncology. Int. J. Mol. Sci. 2020 21 12 4412 10.3390/ijms21124412 32575884
    [Google Scholar]
  58. Nagime P.V. Singh S. Shaikh N.M. Gomare K.S. Chitme H. Abdel-Wahab B.A. Alqahtany Y.S. Khateeb M.M. Habeeb M.S. Bakir M.B. Biogenic fabrication of silver nanoparticles using calotropis procera flower extract with enhanced biomimetics attributes. Materials 2023 16 11 4058 10.3390/ma16114058 37297192
    [Google Scholar]
  59. Azad A. Zafar H. Raza F. Sulaiman M. Factors influencing the green synthesis of metallic nanoparticles using plant extracts: A comprehensive review. Pharm. Fronts. 2023 5 3 e117 e131 10.1055/s‑0043‑1774289
    [Google Scholar]
  60. Erci F. Cakir-Koc R. Isildak I. Green synthesis of silver nanoparticles using Thymbra spicata L. var. spicata (zahter) aqueous leaf extract and evaluation of their morphology-dependent antibacterial and cytotoxic activity. Artif. Cells Nanomed. Biotechnol. 2018 46 sup1 150 158 10.1080/21691401.2017.1415917
    [Google Scholar]
  61. Długosz O. Chwastowski J. Banach M. Hawthorn berries extract for the green synthesis of copper and silver nanoparticles. Chem. Pap. 2020 74 1 239 252 10.1007/s11696‑019‑00873‑z
    [Google Scholar]
  62. Zha J. Dong C. Wang X. Zhang X. Xiao X. Yang X. Green synthesis and characterization of monodisperse gold nanoparticles using Ginkgo Biloba leaf extract. Optik (Stuttg.) 2017 144 511 521 10.1016/j.ijleo.2017.06.088
    [Google Scholar]
  63. Puri A. Mohite P. Patil S. Chidrawar V.R. Ushir Y.V. Dodiya R. Singh S. Facile green synthesis and characterization of Terminalia arjuna bark phenolic–selenium nanogel: A biocompatible and green nano-biomaterial for multifaceted biological applications. Front Chem. 2023 11 1273360 10.3389/fchem.2023.1273360 37810585
    [Google Scholar]
  64. Singh S. Nwabor O.F. Sukri D.M. Wunnoo S. Dumjun K. Lethongkam S. Kusolphat P. Hemtanon N. Klinprathum K. Sunghan J. Dejyong K. Lertwittayanon K. Pisuchpen S. Voravuthikunchai S.P. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. Int. J. Biol. Macromol. 2022 216 235 250 10.1016/j.ijbiomac.2022.06.172 35780920
    [Google Scholar]
  65. Jayeoye T.J. Eze F.N. Olatunde O.O. Singh S. Zuo J. Olatunji O.J. Multifarious biological applications and toxic Hg2+ sensing potentiality of biogenic silver nanoparticles based on securidaca inappendiculata hassk stem extract. Int. J. Nanomedicine 2021 16 7557 7574 10.2147/IJN.S325996 34803379
    [Google Scholar]
  66. Okaiyeto K. Ojemaye M.O. Hoppe H. Mabinya L.V. Okoh A.I. Phytofabrication of silver/silver chloride nanoparticles using aqueous leaf extract of oedera genistifolia: Characterization and antibacterial potential. Molecules 2019 24 23 4382 10.3390/molecules24234382 31801244
    [Google Scholar]
  67. Nwabor O.F. Singh S. Ontong J.C. Vongkamjan K. Voravuthikunchai S.P. Valorization of wastepaper through antimicrobial functionalization with biogenic silver nanoparticles, a sustainable packaging composite. Waste Biomass Valoriz. 2021 12 6 3287 3301 10.1007/s12649‑020‑01237‑5
    [Google Scholar]
  68. Nwabor O.F. Singh S. Wunnoo S. Lerwittayanon K. Voravuthikunchai S.P. Facile deposition of biogenic silver nanoparticles on porous alumina discs, an efficient antimicrobial, antibiofilm, and antifouling strategy for functional contact surfaces. Biofouling 2021 37 5 538 554 10.1080/08927014.2021.1934457 34148443
    [Google Scholar]
  69. Syukri D.M. Nwabor O.F. Singh S. Voravuthikunchai S.P. Antibacterial functionalization of nylon monofilament surgical sutures through in situ deposition of biogenic silver nanoparticles. Surf. Coat. Tech. 2021 413 127090 10.1016/j.surfcoat.2021.127090
    [Google Scholar]
  70. Jayeoye T.J. Eze F.N. Singh S. Olatunde O.O. Benjakul S. Rujiralai T. Synthesis of gold nanoparticles/polyaniline boronic acid/sodium alginate aqueous nanocomposite based on chemical oxidative polymerization for biological applications. Int. J. Biol. Macromol. 2021 179 196 205 10.1016/j.ijbiomac.2021.02.199 33675826
    [Google Scholar]
  71. Ontong J.C. Singh S. Nwabor O.F. Chusri S. Voravuthikunchai S.P. Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin. Biotechnol. Lett. 2020 42 12 2653 2664 10.1007/s10529‑020‑02971‑5 32683522
    [Google Scholar]
  72. Gharbavi M. Johari B. Ghorbani R. Madanchi H. Sharafi A. Green synthesis of Zn nanoparticles and in situ hybridized with BSA nanoparticles for Baicalein targeted delivery mediated with glutamate receptors to U87‐MG cancer cell lines. Appl. Organomet. Chem. 2023 37 1 e6926 10.1002/aoc.6926
    [Google Scholar]
  73. Asadi N. Gharbavi M. Rezaeejam H. Farajollahi A. Johari B. Zinc nanoparticles coated with doxorubicin-conjugated alginate as a radiation sensitizer in triple-negative breast cancer cells. Int. J. Pharm. 2024 659 124285 10.1016/j.ijpharm.2024.124285 38821433
    [Google Scholar]
  74. Shete P.B. Ramesh J. Karunakaran R. Raja P. Bandeswaran C. Characterization and in vitro cytotoxicity study of copper and cobalt nano particles synthesized by physical method. Anim. Nutr. Feed Technol. 2023 23 2 319 332 10.5958/0974‑181X.2023.00027.6
    [Google Scholar]
  75. Ansari S.M. Bhor R.D. Pai K.R. Sen D. Mazumder S. Ghosh K. Kolekar Y.D. Ramana C.V. Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility. Appl. Surf. Sci. 2017 414 171 187 10.1016/j.apsusc.2017.03.002
    [Google Scholar]
  76. Abdelhai M.F. Shabaan R.H. Kamal N.M. Elemary E.A. Abd-Elhalim B.T. Hassan E.A. Copper nanoparticles biosynthesis by Stevia rebaudiana extract: Biocompatibility and antimicrobial application. AMB Express 2024 14 1 59 10.1186/s13568‑024‑01707‑2 38761277
    [Google Scholar]
  77. Ahmed S. A. Gaber M. H. Salama A. A. Ali S. A. Efficacy of copper nanoparticles encapsulated in soya lecithin liposomes in treating breast cancer cells (MCF-7) in vitro. Sci. Rep. 2023 13 1 1 12 10.1038/s41598‑023‑42514‑2
    [Google Scholar]
  78. Cao B. Zhang Q. Guo J. Guo R. Fan X. Bi Y. Synthesis and evaluation of Grateloupia Livida polysaccharides-functionalized selenium nanoparticles. Int. J. Biol. Macromol. 2021 191 832 839 10.1016/j.ijbiomac.2021.09.087 34547315
    [Google Scholar]
  79. Gunti L. Dass R.S. Kalagatur N.K. Phytofabrication of selenium nanoparticles from emblica officinalis fruit extract and exploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility. Front. Microbiol. 2019 10 APR 931 10.3389/fmicb.2019.00931 31114564
    [Google Scholar]
  80. Nassar A. R. A. Eid A. M. Atta H. M. El Naghy W. S. Fouda A. Exploring the antimicrobial, antioxidant, anticancer, biocompatibility, and larvicidal activities of selenium nanoparticles fabricated by endophytic fungal strain Penicillium verhagenii. Sci. Rep. 2023 13 1 9054 10.1038/s41598‑023‑35360‑9
    [Google Scholar]
  81. I M El-Sayed Abeer. Mycosynthesis of selenium nanoparticles using Penicillium tardochrysogenum as a therapeutic agent and their combination with infrared irradiation against Ehrlich carcinoma. Sci. Rep. 2024 14 1 2547 10.1038/s41598‑024‑52982‑9
    [Google Scholar]
  82. Satpathy S. Panigrahi L.L. Samal P. Sahoo K.K. Arakha M. Biogenic synthesis of selenium nanoparticles from Nyctanthes arbor-tristis L. and evaluation of their antimicrobial, antioxidant and photocatalytic efficacy. Heliyon 2024 10 12 e32499 10.1016/j.heliyon.2024.e32499 39183842
    [Google Scholar]
  83. Vundela S.R. Kalagatur N.K. Nagaraj A. Kadirvelu K. Chandranayaka S. Kondapalli K. Hashem A. Abd Allah E.F. Poda S. Multi-biofunctional properties of phytofabricated selenium nanoparticles from carica papaya fruit extract: Antioxidant, antimicrobial, antimycotoxin, anticancer, and biocompatibility. Front. Microbiol. 2022 12 769891 10.3389/fmicb.2021.769891 35250900
    [Google Scholar]
  84. Jameel M.S. Aziz A.A. Dheyab M.A. Mehrdel B. Khaniabadi P.M. Rapid sonochemically-assisted green synthesis of highly stable and biocompatible platinum nanoparticles. Surf. Interfaces 2020 20 100635 10.1016/j.surfin.2020.100635
    [Google Scholar]
  85. Xiang A.D. Li B. Du Y.F. Abbaspoor S. Jalil A.T. Saleh M.M. He H-C. Guo F. In vivo and in vitro biocompatibility studies of Pt based nanoparticles: A new agent for chemoradiation therapy. J. Cluster Sci. 2023 34 5 2653 2663 10.1007/s10876‑023‑02418‑7
    [Google Scholar]
  86. Selvaraj R. Nagendran V. Varadavenkatesan T. Goveas L.C. Vinayagam R. Stable silver nanoparticles synthesis using Tabebuia aurea leaf extract for efficient water treatment: A sustainable approach to environmental remediation. Chem. Eng. Res. Des. 2024 208 456 463 10.1016/j.cherd.2024.07.012
    [Google Scholar]
  87. Kumar G.S. Reddy N.R. Siddiqui Q.T. Yusuf K. Pabba D.P. Sai Kumar A. Kim J.S. Joo S.W. A facile green synthesis of gold nanoparticles using Canthium parviflorum extract sustainable and energy efficient photocatalytic degradation of organic pollutants for environmental remediation. Environ. Res. 2024 258 119471 10.1016/j.envres.2024.119471 38914256
    [Google Scholar]
  88. El-sayed M.E.A. Nanoadsorbents for water and wastewater remediation. Sci. Total Environ. 2020 739 139903 10.1016/j.scitotenv.2020.139903 32544683
    [Google Scholar]
  89. Amir M. Raheem A. Kumar A. Jalil S.U. Shadab M. Ansari N.G. Ansari M.I. Role of phytofabricated gold nanoparticles for enhancing sustainable Spinacia oleracea L. production. S. Afr. J. Bot. 2024 166 386 397 10.1016/j.sajb.2024.01.028
    [Google Scholar]
  90. Mawale K.S. Nandini B. Giridhar P. Copper and silver nanoparticle seed priming and foliar spray modulate plant growth and thrips infestation in capsicum spp. ACS Omega 2024 9 3 acsomega.3c06961 10.1021/acsomega.3c06961 38284086
    [Google Scholar]
  91. Santhoshkumar R. Hima Parvathy A. Soniya E.V. Biocompatible silver nanoparticles as nanopriming mediators for improved rice germination and root growth: A transcriptomic perspective. Plant Physiol. Biochem. 2024 210 108645 10.1016/j.plaphy.2024.108645 38663266
    [Google Scholar]
  92. Mittal D. Kaur G. Singh P. Yadav K. Ali S.A. Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Front. Nanotechnol. 2020 2 579954 10.3389/fnano.2020.579954
    [Google Scholar]
  93. Venugopal K. Rather H.A. Rajagopal K. Shanthi M.P. Sheriff K. Illiyas M. Rather R.A. Manikandan E. Uvarajan S. Bhaskar M. Maaza M. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J. Photochem. Photobiol. B 2017 167 282 289 10.1016/j.jphotobiol.2016.12.013 28110253
    [Google Scholar]
  94. Elangovan K. Elumalai D. Anupriya S. Shenbhagaraman R. Kaleena P.K. Murugesan K. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. J. Photochem. Photobiol. B 2015 151 118 124 10.1016/j.jphotobiol.2015.05.015 26233711
    [Google Scholar]
  95. Syukri D.M. Nwabor O.F. Singh S. Ontong J.C. Wunnoo S. Paosen S. Munah S. Voravuthikunchai S.P. Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections. J. Microbiol. Methods 2020 174 105955 10.1016/j.mimet.2020.105955 32442657
    [Google Scholar]
  96. Syukri D.M. Singh S. Nwabor O.F. Ontong J.C. Dejyong K. Sunghan J. Dejyong K. Lethongkam S. Voravuthikunchai S.P. Prevention of post-operative bacterial colonization on mice buccal mucosa using biogenic silver nanoparticles-coated nylon sutures. Regen. Eng. Transl. Med. 2024 10 2 294 308 10.1007/s40883‑024‑00335‑3
    [Google Scholar]
  97. Ge X. Cao Z. Chu L. The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxidants 2022 11 4 791 10.3390/antiox11040791 35453476
    [Google Scholar]
  98. Çiçek S. Özoğul F. Effects of selenium nanoparticles on growth performance, hematological, serum biochemical parameters, and antioxidant status in fish. Anim. Feed Sci. Technol. 2021 281 115099 10.1016/j.anifeedsci.2021.115099
    [Google Scholar]
  99. Kumar B. Smita K. Debut A. Cumbal L. Andean capuli fruit derived anisotropic gold nanoparticles with antioxidant and photocatalytic activity. Bionanoscience 2021 11 4 962 969 10.1007/s12668‑021‑00911‑9
    [Google Scholar]
  100. Jayeoye T.J. Singh S. Eze F.N. Olatunji O.J. Olatunde O.O. Omaka O.N. Odogiyon O.B. Okpara K.E. Exploration of biocompatible ascorbic acid reduced and stabilized gold nanoparticles, as sensitive and selective detection nanoplatform for silver ion in solution. Plasmonics 2024 ••• 1 18 10.1007/s11468‑024‑02413‑2
    [Google Scholar]
  101. Londhe S. Haque S. Patra C. R. Gold and silver nanoparticles. Synthesis and Applications Elsevier 2023 247 290 10.1016/B978‑0‑323‑99454‑5.00006‑8
    [Google Scholar]
  102. Nagime P.V. Shaikh N.M. Shaikh S.B. Lokhande C.D. Patil V.V. Shafi S. Syukri D.M. Chidrawar V.R. Kumar A. Singh S. Facile synthesis of silver nanoparticles using Calotropis procera leaves: Unraveling biological and electrochemical potentials. Discover Nano 2024 19 1 139 10.1186/s11671‑024‑04090‑w 39227530
    [Google Scholar]
  103. Nagime P.V. Syukri D.M. Sjahriani T. Hermawan D. Shaikh N.M. Shafi S. Chidrawar V.R. Singh S. Kausar N. Elamin A. Phyto-mediated biosynthesis of silver nanoparticles using Aloe barbadensis Miller leaves gel with improved antibacterial, anti-fungal, antioxidant, anti-inflammatory, anti-diabetic, and anti-cancer activities. Nano-Structures & Nano-Objects 2024 40 101368 10.1016/j.nanoso.2024.101368
    [Google Scholar]
  104. Burlec A.F. Corciova A. Boev M. Batir-Marin D. Mircea C. Cioanca O. Danila G. Danila M. Bucur A.F. Hancianu M. Current overview of metal nanoparticles’ synthesis, characterization, and biomedical applications, with a focus on silver and gold nanoparticles. Pharmaceuticals 2023 16 10 1410 10.3390/ph16101410 37895881
    [Google Scholar]
  105. Ali Alharbi A. Alghamdi A.M. Talal Al-Goul S. Allohibi A. Baty R.S. Qahl S.H. Beyari E.A. Valorizing pomegranate wastes by producing functional silver nanoparticles with antioxidant, anticancer, antiviral, and antimicrobial activities and its potential in food preservation. Saudi J. Biol. Sci. 2024 31 1 103880 10.1016/j.sjbs.2023.103880 38161386
    [Google Scholar]
  106. Lan Chi N.T. Narayanan M. Chinnathambi A. Govindasamy C. Subramani B. Brindhadevi K. Pimpimon T. Pikulkaew S. Fabrication, characterization, anti-inflammatory, and anti-diabetic activity of silver nanoparticles synthesized from Azadirachta indica kernel aqueous extract. Environ. Res. 2022 208 112684 10.1016/j.envres.2022.112684 34995544
    [Google Scholar]
  107. Chandrakala V. Aruna V. Angajala G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Materials 2022 5 6 1593 1615 10.1007/s42247‑021‑00335‑x 35005431
    [Google Scholar]
  108. Bera S. Sahu P. Dutta A. Nobile C. Pradhan N. Cozzoli P.D. Partial chemicalization of nanoscale metals: An intra‐material transformative approach for the synthesis of functional colloidal metal‐semiconductor nanoheterostructures. Adv. Mater. 2023 35 49 2305985 10.1002/adma.202305985 37724799
    [Google Scholar]
  109. Verma J. Warsame C. Seenivasagam R. K. Katiyar N. K. Aleem E. Goel S. Nanoparticle-mediated cancer cell therapy: Basic science to clinical applications. Cancer Metastasis Rev. 2023 42 3 601 627 10.1007/s10555‑023‑10086‑2
    [Google Scholar]
  110. Choi N. Zhang Y. Wang Y. Schlücker S. iSERS: From nanotag design to protein assays and ex vivo imaging. Chem. Soc. Rev. 2024 53 13 6675 6693 10.1039/D3CS01060K 38828554
    [Google Scholar]
  111. Eremina O.E. Yarenkov N.R. Bikbaeva G.I. Kapitanova O.O. Samodelova M.V. Shekhovtsova T.N. Kolesnikov I.E. Syuy A.V. Arsenin A.V. Volkov V.S. Tselikov G.I. Novikov S.M. Manshina A.A. Veselova I.A. Silver nanoparticle-based SERS sensors for sensitive detection of amyloid-β aggregates in biological fluids. Talanta 2024 266 Pt 1 124970 10.1016/j.talanta.2023.124970 37536108
    [Google Scholar]
  112. Singh J. Dutta T. Kim K.H. Rawat M. Samddar P. Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology 2018 16 1 84 10.1186/s12951‑018‑0408‑4 30373622
    [Google Scholar]
  113. Sun Q. Cai X. Li J. Zheng M. Chen Z. Yu C.P. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 2014 444 226 231 10.1016/j.colsurfa.2013.12.065
    [Google Scholar]
  114. Sadeghi B. Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 134 310 315 10.1016/j.saa.2014.06.046 25022503
    [Google Scholar]
  115. Sharma V.K. Siskova K.M. Zboril R. Gardea-Torresdey J.L. Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Adv. Colloid Interface Sci. 2014 204 15 34 10.1016/j.cis.2013.12.002 24406050
    [Google Scholar]
  116. Tejamaya M. Römer I. Merrifield R.C. Lead J.R. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol. 2012 46 13 7011 7017 10.1021/es2038596 22432856
    [Google Scholar]
  117. Levard C. Hotze E.M. Lowry G.V. Brown G.E. Jr Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 2012 46 13 6900 6914 10.1021/es2037405 22339502
    [Google Scholar]
  118. Virkutyte J. Varma R.S. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2011 2 5 837 846 10.1039/C0SC00338G
    [Google Scholar]
  119. Leonard K. Ahmmad B. Okamura H. Kurawaki J. In situ green synthesis of biocompatible ginseng capped gold nanoparticles with remarkable stability. Colloids Surf. B Biointerfaces 2011 82 2 391 396 10.1016/j.colsurfb.2010.09.020 20980131
    [Google Scholar]
  120. Eze F.N. Eze R.C. Singh S. Okpara K.E. Fabrication of a versatile and efficient ultraviolet blocking biodegradable composite film consisting of Tara gum/PVA/Riceberry phenolics reinforced with biogenic riceberry phenolic-rich extract-nano‑silver. Int. J. Biol. Macromol. 2024 278 Pt 3 134914 10.1016/j.ijbiomac.2024.134914 39173805
    [Google Scholar]
  121. Jayeoye T.J. Singh S. Eze F.N. Olatunji O. Oguntimehin I. Tyopine A.A. Odogiyon O.B. Olatunji O.J. Green synthesis of silver nanoparticles using cyto-compatible polymer derivative of tara gum for gold (III) ion detection in water samples. J. Polym. Environ. 2024 32 12 6667 6686 10.1007/s10924‑024‑03393‑4
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385358312250108180301
Loading
/content/journals/pnt/10.2174/0122117385358312250108180301
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Nanoparticles ; food packaging ; biomedical ; toxicity ; stability
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test