Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Phytopharmaceuticals, derived from natural sources, manifest tremendous potential for therapeutic applications. Nevertheless, effective delivery of these bio-actives presents significant challenges. A breakthrough in fortifying phytopharmaceuticals within phosphatidylcholine is a promising remedy to overcome solubility, permeability, and other related drawbacks. This intrinsic lipid, which is obtained from both natural and synthetic sources, confers numerous benefits, encompassing heightened solubility, augmented bioavailability, and enhanced stability. The conjugation of phytopharmaceuticals with phosphatidylcholine enables improved dermal permeation, absorption, targeted distribution, and the possibility of synergistic results, eventually improving therapeutic efficacy. Additionally, the use of phytopharmaceuticals enriched with phosphatidylcholine presents a promising route for overcoming the limitations imposed by conventional delivery techniques, encouraging more effective treatments. The review provides a thorough analysis of phosphatidylcholine-incorporated phytopharmaceuticals as nanomedicine with variables that significantly affect their therapeutic efficacy. Moreover, the review elaborates on how phosphatidylcholine improves solubility, permeability, and tissue distribution and boosts the potential of phytopharmaceuticals. Further, the review underscores the significance of nano-formulation strategies, analytical methodologies, and forthcoming prospects to propel this field forward. Furthermore, the review emphasizes the potential inherent in this innovative approach while highlighting the importance of additional research endeavors and collaborative initiatives to unlock the therapeutic benefits of phosphatidylcholine-fortified phytopharmaceuticals, enhancing patient well-being.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385277686231127050723
2024-01-24
2024-12-28
Loading full text...

Full text loading...

References

  1. SharmaA. SabharwalP. DadaR. Herbal medicine-an introduction to its history.Herbal Medicine in Andrology.Elsevier20211810.1016/B978‑0‑12‑815565‑3.00001‑1
    [Google Scholar]
  2. QadirS.U. RajaV. Herbal medicine: Old practice and modern perspectives. In: Phytomedicine: A Treasure of Pharmacologically Active Products from PlantsElsevier202114980Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128241097000017
    [Google Scholar]
  3. SayedN. KhuranaA. GoduguC. Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome.J. Drug Deliv. Sci. Technol.20195310120110.1016/j.jddst.2019.101201
    [Google Scholar]
  4. Yasmeen IqubalM.K. KhanM.A. AgarwalN.B. AliJ. BabootaS. Nanoformulations-based advancement in the delivery of phytopharmaceuticals for skin cancer management.J. Drug Deliv. Sci. Technol.20216610291210.1016/j.jddst.2021.102912
    [Google Scholar]
  5. ShafiA. HassanF. ZahoorI. MajeedU. KhandayF.A. Biodiversity, management and sustainable use of medicinal and aromatic plant resources.Medicinal and Aromatic Plants: Healthcare and Industrial Applications.InternetChamSpringer International Publishing20218511110.1007/978‑3‑030‑58975‑2_3
    [Google Scholar]
  6. BerrettaA.A. SilveiraM.A.D. Cóndor CapchaJ.M. De JongD. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease.Biomed. Pharmacother.202013111062210.1016/j.biopha.2020.11062232890967
    [Google Scholar]
  7. ElhalmoushyP.M. ElsheikhM.A. MatarN.A. El-HadidyW.F. KamelM.A. OmranG.A. ElnaggarY.S.R. Elaboration of novel gel-core oleosomes encapsulating phytoconstituent for targeted topical delivery in a vitiligo-induced mouse model: Focus on antioxidant and anti-inflammatory pathways.J. Drug Deliv. Sci. Technol.20238010411910.1016/j.jddst.2022.104119
    [Google Scholar]
  8. PokkalathA.S. SawantA. SawarkarS.P. Herbal medicine for ocular diseases: An age old therapy and its future perspective.J. Drug Deliv. Sci. Technol.20226810297910.1016/j.jddst.2021.102979
    [Google Scholar]
  9. ShankarJ. WilsonB. Potential applications of nanomedicine for treating Parkinson’s disease.J. Drug Deliv. Sci. Technol.20216610279310.1016/j.jddst.2021.102793
    [Google Scholar]
  10. KumarS. BaldiA. SharmaD.K. Characterization and In vitro investigation of antiscabietic effect of phytosomes assimilating quercetin and naringenin rich fraction of Pistacia integerrima galls extract against Sarcoptes scabiei.J. Drug Deliv. Sci. Technol.20226710285110.1016/j.jddst.2021.102851
    [Google Scholar]
  11. EnayatiA. BanachM. JamialahmadiT. SahebkarA. Protective role of nutraceuticals against myocarditis.Biomed. Pharmacother.202214611224210.1016/j.biopha.2021.11224234953630
    [Google Scholar]
  12. ShabirI. Kumar PandeyV. ShamsR. DarA.H. DashK.K. KhanS.A. BashirI. JeevarathinamG. RusuA.V. EsatbeyogluT. PandiselvamR. Promising bioactive properties of quercetin for potential food applications and health benefits: A review.Front. Nutr.2022999975210.3389/fnut.2022.99975236532555
    [Google Scholar]
  13. HuY. LinQ. ZhaoH. LiX. SangS. McClementsD.J. LongJ. JinZ. WangJ. QiuC. Bioaccessibility and bioavailability of phytochemicals: Influencing factors, improvements, and evaluations.Food Hydrocoll.202313510816510.1016/j.foodhyd.2022.108165
    [Google Scholar]
  14. ChenR.P. ChavdaV.P. PatelA.B. ChenZ.S. Phytochemical Delivery Through Transferosome (Phytosome): An advanced transdermal drug delivery for complementary medicines.Front. Pharmacol.20221385086210.3389/fphar.2022.85086235281927
    [Google Scholar]
  15. McClementsD.J. ÖztürkB. Utilization of nanotechnology to improve the application and bioavailability of phytochemicals derived from waste streams.J. Agric. Food Chem.202270236884690010.1021/acs.jafc.1c0302034304565
    [Google Scholar]
  16. MahomoodallyM.F. SadeerN. EdooM. VenugopalaK.N. The potential application of novel drug delivery systems for phytopharmaceuticals and natural extracts – current status and future perspectives.Mini-Reviews Med Chem20202118273146
    [Google Scholar]
  17. KapoorD.U. GaurM. PariharA. PrajapatiB.G. SinghS. PatelR.J. Phosphatidylcholine (PCL) fortified nano-phytopharmaceuticals for improvement of therapeutic efficacy.EXCLI J.202322880903
    [Google Scholar]
  18. MohiteP. SinghS. PawarA. SangaleA. PrajapatiB.G. Lipid-based oral formulation in capsules to improve the delivery of poorly water-soluble drugs.Frontiers in Drug Delivery20233123201210.3389/fddev.2023.1232012
    [Google Scholar]
  19. KesharwaniR. JaiswalP. PatelD.K. YadavP.K. Lipid-Based Drug Delivery System (LBDDS): An emerging paradigm to enhance oral bioavailability of poorly soluble drugs.Biomedical Materials & Devices2022
    [Google Scholar]
  20. AhmadA. AhsanH. Lipid-based formulations in cosmeceuticals and biopharmaceuticals.Biomed. Dermatol.2020411210.1186/s41702‑020‑00062‑9
    [Google Scholar]
  21. AroraaS. DhokeV. MoharirK. YendeS. ShahS. Novel drug delivery system of phytopharmaceuticals: A review.Curr. Tradit. Med.202175e26042119302410.2174/2215083807666210426121038
    [Google Scholar]
  22. ParmarG.R. SailorG.U. Nanotechnological approach for design and delivery of phytopharmaceuticals. In: Nanocarriers: Drug Delivery System: An Evidence Based Approach.SingaporeSpringer Singapore202128130110.1007/978‑981‑33‑4497‑6_11
    [Google Scholar]
  23. Renovato-NúñezJ. Cobos-PucL.E. Viveros-ValdezE. IlináA. Segura-CenicerosE.P. Rodríguez-HerreraR. Nanoencapsulated systems for delivery of phytopharmaceuticals.Advances in Novel Formulations for Drug Delivery.InternetWiley202312715110.1002/9781394167708.ch7
    [Google Scholar]
  24. DuttY. PandeyR.P. DuttM. GuptaA. VibhutiA. RajV.S. ChangC-M. PriyadarshiniA. Liposomes and phytosomes: Nanocarrier systems and their applications for the delivery of phytoconstituents.Coord. Chem. Rev.202349121525110.1016/j.ccr.2023.215251
    [Google Scholar]
  25. MohiteP. JoshiA. SinghS. PrajapatiB. Solubility enhancement of fexofenadine using self-nano emulsifying drug delivery system for improved biomimetic attributes.Annales Pharmaceutiques Françaises.Elsevier Masson202310.1016/j.pharma.2023.10.003
    [Google Scholar]
  26. UngJ. TanS.F. FoxT.E. ShawJ.J.P. VassL.R. Costa-PinheiroP. Garrett-BakelmanF.E. KengM.K. SharmaA. ClaxtonD.F. LevineR.L. TallmanM.S. CabotM.C. KesterM. FeithD.J. LoughranT.P.Jr Harnessing the power of sphingolipids: Prospects for acute myeloid leukemia.Blood Rev.20225510095010.1016/j.blre.2022.10095035487785
    [Google Scholar]
  27. AL QtaishN. Sphingolipid extracts enhance gene delivery of cationic lipid vesicles into retina and brain.Eur J Pharm Biopharm.2021169103112
    [Google Scholar]
  28. FritschD.A. JacksonM.I. WernimontS.M. FeldG.K. MacLeayJ.M. BrejdaJ.J. CochraneC.Y. GrossK.L. Microbiome function underpins the efficacy of a fiber-supplemented dietary intervention in dogs with chronic large bowel diarrhea.BMC Vet. Res.202218124510.1186/s12917‑022‑03315‑335751094
    [Google Scholar]
  29. De LucaM. PappalardoI. LimongiA.R. VivianoE. RadiceR.P. TodiscoS. MartelliG. InfantinoV. VassalloA. Lipids from microalgae for cosmetic applications.Cosmetics2021825210.3390/cosmetics8020052
    [Google Scholar]
  30. Abu HajlehM.N. Abu-HuwaijR. AL-SamydaiA. Al-HalasehL.K. Al-DujailiE.A. The revolution of cosmeceuticals delivery by using nanotechnology: A narrative review of advantages and side effects.J. Cosmet. Dermatol.202120123818382810.1111/jocd.1444134510691
    [Google Scholar]
  31. LeeY.Y. TangT.K. ChanE.S. PhuahE.T. LaiO.M. TanC.P. WangY. Ab KarimN.A. Mat DianN.H. TanJ.S. Medium chain triglyceride and medium-and long chain triglyceride: metabolism, production, health impacts and its applications – a review.Crit. Rev. Food Sci. Nutr.202262154169418510.1080/10408398.2021.187372933480262
    [Google Scholar]
  32. AkbariJ. SaeediM. AhmadiF. HashemiS.M.H. BabaeiA. YaddollahiS. RostamkalaeiS.S. Asare-AddoK. NokhodchiA. Solid lipid nanoparticles and nanostructured lipid carriers: a review of the methods of manufacture and routes of administration.Pharm. Dev. Technol.202227552554410.1080/10837450.2022.208455435635506
    [Google Scholar]
  33. NesW.D. Biosynthesis of cholesterol and other sterols.Chem. Rev.2011111106423645110.1021/cr200021m21902244
    [Google Scholar]
  34. FananiM.L. NocelliN.E. Zulueta DíazY.M. What can we learn about amphiphile-membrane interaction from model lipid membranes?Biochim. Biophys. Acta Biomembr.20221864118378110.1016/j.bbamem.2021.18378134555419
    [Google Scholar]
  35. HannanM.A. SohagA.A.M. DashR. HaqueM.N. MohibbullahM. OktavianiD.F. HossainM.T. ChoiH.J. MoonI.S. Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology.Phytomedicine20206915320110.1016/j.phymed.2020.15320132276177
    [Google Scholar]
  36. ChoiG.S. LimJ.H. Rod-InW. JungS.K. ParkW.J. Anti-inflammatory properties of neutral lipids, glycolipids, and phospholipids isolated from Ammodytes personatus eggs in LPS-stimulated RAW264.7 cells.Fish Shellfish Immunol.20221311109111710.1016/j.fsi.2022.10.03936283595
    [Google Scholar]
  37. KeyhanfarF. KhaniS. BohlooliS. Evaluation of lipid-based drug delivery system (Phytosolve) on oral bioavailability of dibudipine.Iran. J. Pharm. Res.20141341149115625587302
    [Google Scholar]
  38. LimC.L. RajuC.S. MahboobT. KayesthS. GuptaK.K. JainG.K. DhobiM. NawazM. WilairatanaP. de Lourdes PereiraM. PatraJ.K. PaulA.K. RahmatullahM. NissapatornV. Precision and advanced nano-phytopharmaceuticals for therapeutic applications.Nanomaterials 202212223810.3390/nano1202023835055257
    [Google Scholar]
  39. BolatZ.B. IslekZ. DemirB.N. YilmazE.N. SahinF. UcisikM.H. Curcumin- and piperine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model.Front. Bioeng. Biotechnol.202085010.3389/fbioe.2020.0005032117930
    [Google Scholar]
  40. JohnO.O. AmarachiI.S. ChinazomA.P. AdaezeE. KaleM.B. UmareM.D. Phytotherapy: A promising approach for the treatment of Alzheimer's disease.Pharmacological Research - Modern Chinese Medicine2022210003010.1016/j.prmcm.2021.100030
    [Google Scholar]
  41. NgC.X. AffendiM.M. ChongP.P. LeeS.H. The Potential of Plant-Derived Extracts and Compounds to Augment Anticancer Effects of Chemotherapeutic Drugs.Nutr. Cancer20227493058307610.1080/01635581.2022.206927435675271
    [Google Scholar]
  42. BhatwalkarS.B. MondalR. KrishnaS.B.N. AdamJ.K. GovenderP. AnupamR. Antibacterial properties of organosulfur compounds of garlic (Allium sativum).Front. Microbiol.20211261307710.3389/fmicb.2021.61307734394014
    [Google Scholar]
  43. El GendyS.N. ElmotayamA.K. SamirR. EzzatM.I. El SayedA.M. A review of the desert gold jojoba (Simmondsia chinensis) whole plant, oil, and meal: Phytochemical composition, medicinal uses, and detoxification.JAOCS20231008591614
    [Google Scholar]
  44. SinghS. UshirY.V. Phytosomes and herbosomes: a vesicular drug delivery system for improving the bioavailability of natural products. Lipid-based drug delivery systems: principles and applications.1st ed PrajapatiB. PatelJ. Jenny Stanford Publishing202342346010.1201/9781003459811‑11
    [Google Scholar]
  45. KumarB. AggarwalR. PrakashU. SahooP.K. Emerging therapeutic potential of curcumin in the management of dermatological diseases: an extensive review of drug and pharmacological activities.Future Journal of Pharmaceutical Sciences20239110.1186/s43094‑023‑00493‑1
    [Google Scholar]
  46. MancaM.L. CastangiaI. CaddeoC. PandoD. EscribanoE. ValentiD. LampisS. ZaruM. FaddaA.M. ManconiM. Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles.Colloids Surf. B Biointerfaces201412356657410.1016/j.colsurfb.2014.09.05925444664
    [Google Scholar]
  47. RanaD. SalaveS. PatelR. KhuntD. MisraM. PrajapatiB. PatelJ. Solid Lipid Nanoparticles in Tuberculosis. In: Tubercular Drug Delivery Systems: Advances in Treatment of Infectious Diseases.ChamSpringer International Publishing20239912110.1007/978‑3‑031‑14100‑3_6
    [Google Scholar]
  48. ShirodkarR.K. KumarL. MutalikS. LewisS. Solid lipid nanoparticles and nanostructured lipid carriers: Emerging lipid based drug delivery systems.Pharm. Chem. J.201953544045310.1007/s11094‑019‑02017‑9
    [Google Scholar]
  49. YadavH. MahalvarA. PradhanM. YadavK. Kumar SahuK. YadavR. Exploring the potential of phytochemicals and nanomaterial: A boon to antimicrobial treatment.Medicine in Drug Discovery202317202310015110.1016/j.medidd.2023.100151
    [Google Scholar]
  50. AljuffaliI.A. LinC.H. YangS.C. AlalaiweA. FangJ.Y. Nanoencapsulation of tea catechins for enhancing skin absorption and therapeutic efficacy.AAPS PharmSciTech202223618710.1208/s12249‑022‑02344‑335798907
    [Google Scholar]
  51. WadhwaK. KadianV. PuriV. BhardwajB.Y. SharmaA. PahwaR. New insights into quercetin nanoformulations for topical delivery.Phytomedicine Plus20222210025710.1016/j.phyplu.2022.100257
    [Google Scholar]
  52. VermaP. PathakK. Therapeutic and cosmeceutical potential of ethosomes: An overview.J. Adv. Pharm. Technol. Res.20101327428210.4103/0110‑5558.7241522247858
    [Google Scholar]
  53. AbdulbaqiI.M. DarwisY. KhanN.A.K. AssiR.A. KhanA.A. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials.Int. J. Nanomedicine2016112279230410.2147/IJN.S10501627307730
    [Google Scholar]
  54. DubeyS.K. DeyA. SinghviG. PandeyM.M. SinghV. KesharwaniP. Emerging trends of nanotechnology in advanced cosmetics.Colloids Surf. B Biointerfaces202221411244010.1016/j.colsurfb.2022.11244035344873
    [Google Scholar]
  55. LuM. QiuQ. LuoX. LiuX. SunJ. WangC. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents.Asian Journal of Pharmaceutical Sciences2019143265274
    [Google Scholar]
  56. DewanjeeS. ChakrabortyP. BhattacharyaH. SinghS.K. DuaK. DeyA. JhaN.K. Recent advances in flavonoid-based nanocarriers as an emerging drug delivery approach for cancer chemotherapy.Drug Discov. Today202328110340910.1016/j.drudis.2022.10340936265733
    [Google Scholar]
  57. BaraniM. SangiovanniE. AngaranoM. RajizadehM.A. MehrabaniM. PiazzaS. GangadharappaH.V. PardakhtyA. MehrbaniM. Dell’AgliM. NematollahiM.H. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature.Int. J. Nanomedicine2021166983702210.2147/IJN.S31841634703224
    [Google Scholar]
  58. KiddP.M. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts.Altern. Med. Rev.200914322624619803548
    [Google Scholar]
  59. H ShariareM. AfnanK. IqbalF. A AltamimiM. AhamadS.R. S AldughaimM. K AlanaziF. KaziM. Development and optimization of Epigallocatechin-3-Gallate (EGCG) nano phytosome using design of experiment (DoE) and their in vivo anti-inflammatory studies.Molecules20202522545310.3390/molecules2522545333233756
    [Google Scholar]
  60. HabbuP. MadagundiS. KulkarniR. JadavS. VanakudriR. KulkarniV. Preparation and evaluation of Bacopa-phospholipid complex for antiamnesic activity in rodents.Drug Invention Today201351132110.1016/j.dit.2013.02.004
    [Google Scholar]
  61. MorettonM.A. ChiappettaD.A. SosnikA. Cryoprotection–lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles.J. R. Soc. Interface201296848750210.1098/rsif.2011.041421865255
    [Google Scholar]
  62. YuF. AoM. ZhengX. LiN. XiaJ. LiY. LiD. HouZ. QiZ. ChenX.D. PEG–lipid–PLGA hybrid nanoparticles loaded with berberine–phospholipid complex to facilitate the oral delivery efficiency.Drug Deliv.201724182583310.1080/10717544.2017.132106228509588
    [Google Scholar]
  63. Güngör-AkA. Küpeli-AkkolE. AksuB. KarataşA. Preparation and optimization of berberine phospholipid complexes using QbD approach and in vivo evaluation for anti-inflammatory, analgesic and antipyretic activity.J Res Pharm2022262370382
    [Google Scholar]
  64. NakagawaK. NinomiyaM. OkuboT. AoiN. JunejaL.R. KimM. YamanakaK. MiyazawaT. Tea catechin supplementation increases antioxidant capacity and prevents phospholipid hydroperoxidation in plasma of humans.J. Agric. Food Chem.199947103967397310.1021/jf981195l10552751
    [Google Scholar]
  65. AthmouniK. Mkadmini HammiK. El FekiA. AyadiH. Development of catechin–phospholipid complex to enhance the bioavailability and modulatory potential against cadmium-induced oxidative stress in rats liver.Arch. Physiol. Biochem.20201261828810.1080/13813455.2018.149360830269601
    [Google Scholar]
  66. BhattacharyyaS. MajhiS. SahaB.P. MukherjeeP.K. Chlorogenic acid–phospholipid complex improve protection against UVA induced oxidative stress.J. Photochem. Photobiol. B201413029329810.1016/j.jphotobiol.2013.11.02024378330
    [Google Scholar]
  67. FengY. SunC. YuanY. ZhuY. WanJ. FirempongC.K. Omari-SiawE. XuY. PuZ. YuJ. XuX. Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation.Int. J. Pharm.20165011-234234910.1016/j.ijpharm.2016.01.08126861689
    [Google Scholar]
  68. MarczyloT.H. VerschoyleR.D. CookeD.N. MorazzoniP. StewardW.P. GescherA.J. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine.Cancer Chemother. Pharmacol.200760217117710.1007/s00280‑006‑0355‑x17051370
    [Google Scholar]
  69. PatelR. SinghS.K. SinghS. ShethN.R. GendleR. Development and characterization of curcumin loaded transfersome for transdermal delivery.J. Pharm. Sci. Res.20091471
    [Google Scholar]
  70. GuptaN.K. DixitV.K. Bioavailability enhancement of curcumin by complexation with phosphatidyl choline.J. Pharm. Sci.201110051987199510.1002/jps.2239321374628
    [Google Scholar]
  71. GuptaN.K. DixitV.K. Development and evaluation of vesicular system for curcumin delivery.Arch. Dermatol. Res.201130328910110.1007/s00403‑010‑1096‑621085975
    [Google Scholar]
  72. LiuW. ZhaiY. HengX. CheF.Y. ChenW. SunD. ZhaiG. Oral bioavailability of curcumin: Problems and advancements.J. Drug Target.201624869470210.3109/1061186X.2016.115788326942997
    [Google Scholar]
  73. AvachatA.M. PatelV.G. Self nanoemulsifying drug delivery system of stabilized ellagic acid–phospholipid complex with improved dissolution and permeability.Saudi Pharm. J.201523327628910.1016/j.jsps.2014.11.00126106276
    [Google Scholar]
  74. MuruganV. MukherjeeK. MaitiK. MukherjeeP.K. Enhanced oral bioavailability and antioxidant profile of ellagic acid by phospholipids.J. Agric. Food Chem.200957114559456510.1021/jf803710519449806
    [Google Scholar]
  75. SinghD. Singh Maniyari RawatM. SemaltyA. SemaltyM. Gallic acid-phospholipid complex: Drug incorporation and physicochemical characterization.Lett. Drug Des. Discov.20118328429110.2174/157018011794578240
    [Google Scholar]
  76. AbdouE.M. MasoudM.M. Gallic acid–PAMAM and gallic acid–phospholipid conjugates, physicochemical characterization and in vivo evaluation.Pharm. Dev. Technol.2018231556610.1080/10837450.2017.134499428627282
    [Google Scholar]
  77. WuX. WangY. JiaR. FangF. LiuY. CuiW. Computational and biological investigation of the soybean lecithin–gallic acid complex for ameliorating alcoholic liver disease in mice with iron overload.Food Funct.20191085203521410.1039/C9FO01022J31380553
    [Google Scholar]
  78. KosuruR.Y. RoyA. DasS.K. BeraS. Gallic acid and gallates in human health and disease: Do mitochondria hold the key to success?Mol. Nutr. Food Res.2018621170069910.1002/mnfr.20170069929178387
    [Google Scholar]
  79. BhattacharyyaS. AhammedS.M. SahaB.P. MukherjeeP.K. The gallic acid-phospholipid complex improved the antioxidant potential of gallic acid by enhancing its bioavailability.AAPS PharmSciTech20131431025103310.1208/s12249‑013‑9991‑823800857
    [Google Scholar]
  80. KhuranaR.K. BansalA.K. BegS. BurrowA.J. KatareO.P. SinghK.K. SinghB. Enhancing biopharmaceutical attributes of phospholipid complex-loaded nanostructured lipidic carriers of mangiferin: Systematic development, characterization and evaluation.Int. J. Pharm.20175181-228930610.1016/j.ijpharm.2016.12.04428025072
    [Google Scholar]
  81. BhattacharyyaS. AhmmedS.M. SahaB.P. MukherjeeP.K. Soya phospholipid complex of mangiferin enhances its hepatoprotectivity by improving its bioavailability and pharmacokinetics.J. Sci. Food Agric.20149471380138810.1002/jsfa.642224114670
    [Google Scholar]
  82. SemaltyA. SemaltyM. SinghD. RawatM.S.M. Preparation and characterization of phospholipid complexes of naringenin for effective drug delivery.J. Incl. Phenom. Macrocycl. Chem.2010673-425326010.1007/s10847‑009‑9705‑8
    [Google Scholar]
  83. AugustinM.A. SanguansriL. LockettT. Nano‐ and micro‐encapsulated systems for enhancing the delivery of resveratrol.Ann. N. Y. Acad. Sci.20131290110711210.1111/nyas.1213023855472
    [Google Scholar]
  84. MukherjeeK. VenkateshM. VenkateshP. SahaB.P. MukherjeeP.K. Effect of soy phosphatidyl choline on the bioavailability and nutritional health benefits of resveratrol.Food Res. Int.20114441088109310.1016/j.foodres.2011.03.034
    [Google Scholar]
  85. GausuzzamanS.A.L. SahaM. DipS.J. AlamS. KumarA. DasH. SharkerS.M. RashidM.A. KaziM. RezaH.M. A QbD approach to design and to optimize the self-emulsifying resveratrol–phospholipid complex to enhance drug bioavailability through lymphatic transport.Polymers20221415322010.3390/polym1415322035956734
    [Google Scholar]
  86. DasM.K. KalitaB. Design and evaluation of phyto-phospholipid complexes (phytosomes) of rutin for transdermal application.J. Appl. Pharm. Sci.2014410515710.7324/JAPS.2014.401010
    [Google Scholar]
  87. BabazadehA. GhanbarzadehB. HamishehkarH. Phosphatidylcholine-rutin complex as a potential nanocarrier for food applications.J. Funct. Foods20173313414110.1016/j.jff.2017.03.038
    [Google Scholar]
  88. RaviG.S. CharyuluR.N. DubeyA. PrabhuP. HebbarS. MathiasA.C. Nano-lipid Complex of Rutin: Development, Characterisation and In Vivo Investigation of Hepatoprotective, Antioxidant Activity and Bioavailability Study in Rats.AAPS PharmSciTech20181983631364910.1208/s12249‑018‑1195‑930280357
    [Google Scholar]
  89. HooresfandZ. GhanbarzadehS. HamishehkarH. Preparation and characterization of rutin-loaded nanophytosomes.Pharm. Sci.201521314515110.15171/PS.2015.29
    [Google Scholar]
  90. AhmadH. AryaA. AgrawalS. MallP. SamuelS.S. SharmaK. SinghP.K. SinghS.K. ValicherlaG.R. MitraK. GayenJ.R. PaliwalS. ShuklaR. DwivediA.K. Rutin phospholipid complexes confer neuro-protection in ischemic-stroke rats.RSC Advances2016699964459645410.1039/C6RA17874J
    [Google Scholar]
  91. VankudriR. HabbuP. HiremathM. PatilB.S. SavantC. Preparation and therapeutic evaluation of rutin-phospholipid complex for antidiabetic activity.J. Appl. Pharm. Sci.201661
    [Google Scholar]
  92. LazzeroniM. Guerrieri-GonzagaA. GandiniS. JohanssonH. SerranoD. CazzanigaM. AristarcoV. PuccioA. MoraS. CaldarellaP. PaganiG. PruneriG. RivaA. PetrangoliniG. MorazzoniP. DeCensiA. BonanniB. A presurgical study of oral silybin-phosphatidylcholine in patients with early breast cancer.Cancer Prev. Res.201691899510.1158/1940‑6207.CAPR‑15‑012326526990
    [Google Scholar]
  93. Méndez-SánchezN. Dibildox-MartinezM. Sosa-NogueraJ. Sánchez-MedalR. Flores-MurrietaF.J. Superior silybin bioavailability of silybin–phosphatidylcholine complex in oily-medium soft-gel capsules versus conventional silymarin tablets in healthy volunteers.BMC Pharmacol. Toxicol.2019201510.1186/s40360‑018‑0280‑830635055
    [Google Scholar]
  94. LoguercioC. FestiD. Silybin and the liver: From basic research to clinical practice.World J. Gastroenterol.201117182288230110.3748/wjg.v17.i18.228821633595
    [Google Scholar]
  95. BarzaghiN. CremaF. GattiG. PifferiG. PeruccaE. Pharmacokinetic studies on IdB 1016, a silybin-phosphatidylcholine complex, in healthy human subjects.Eur. J. Drug Metab. Pharmacokinet.199015433333810.1007/BF031902232088770
    [Google Scholar]
  96. ProvincialiM. PapaliniF. OrlandoF. PierpaoliS. DonniniA. MorazzoniP. RivaA. SmorlesiA. Effect of the silybin-phosphatidylcholine complex (IdB 1016) on the development of mammary tumors in HER-2/neu transgenic mice.Cancer Res.20076752022202910.1158/0008‑5472.CAN‑06‑260117332330
    [Google Scholar]
  97. GalloD. GiacomelliS. FerliniC. RaspaglioG. ApollonioP. PrisleiS. RivaA. MorazzoniP. BombardelliE. ScambiaG. Antitumour activity of the silybin-phosphatidylcholine complex, IdB 1016, against human ovarian cancer.Eur. J. Cancer200339162403241010.1016/S0959‑8049(03)00624‑514556934
    [Google Scholar]
  98. CanA. TylerA.I.I. MackieA.R. Potential use of bile salts in lipid self-assembled systems for the delivery of phytochemicals.Curr. Opin. Colloid Interface Sci.20215610150210.1016/j.cocis.2021.101502
    [Google Scholar]
  99. PriyaS. DesaiV.M. SinghviG. Surface Modification of Lipid-Based Nanocarriers: A Potential Approach to Enhance Targeted Drug Delivery.ACS Omega202381748610.1021/acsomega.2c0597636643539
    [Google Scholar]
  100. RistovskiM. FarhatD. BancudS.E.M. LeeJ.Y. Lipid transporters beam signals from cell membranes.Membranes202111856210.3390/membranes1108056234436325
    [Google Scholar]
  101. HmingthansangaV. SinghN. BanerjeeS. ManickamS. VelayuthamR. NatesanS. Improved topical drug delivery: Role of permeation enhancers and advanced approaches.Pharmaceutics20221412281810.3390/pharmaceutics1412281836559311
    [Google Scholar]
  102. BiéJ. SepodesB. FernandesP.C.B. RibeiroM.H.L. Polyphenols in health and disease: Gut microbiota, bioaccessibility, and bioavailability.Compounds2023314072
    [Google Scholar]
  103. N’DaD. Prodrug strategies for enhancing the percutaneous absorption of drugs.Molecules20141912207802080710.3390/molecules19122078025514222
    [Google Scholar]
  104. YuY.Q. YangX. WuX.F. FanY.B. Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications.Front. Bioeng. Biotechnol.2021964655410.3389/fbioe.2021.646554
    [Google Scholar]
  105. TsuchiyaH. Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants.Molecules20152010189231896610.3390/molecules20101892326501254
    [Google Scholar]
  106. RajagopalM. PaulA.K. LeeM.T. JoykinA.R. PorC.S. MahboobT. SalibayC.C. TorresM.S. GuiangM.M.M. RahmatullahM. JahanR. JannatK. WilairatanaP. de Lourdes PereiraM. LimC.L. NissapatornV. Phytochemicals and Nano-Phytopharmaceuticals Use in Skin, Urogenital and Locomotor Disorders: Are We There?Plants2022119126510.3390/plants1109126535567266
    [Google Scholar]
  107. Denisow-PietrzykM. PietrzykŁ. DenisowB. Asteraceae species as potential environmental factors of allergy.Environ. Sci. Pollut. Res. Int.20192676290630010.1007/s11356‑019‑04146‑w30666578
    [Google Scholar]
  108. BabyT.B. NarasimmanT. Intellectual property rights: Bioprospecting, biopiracy and protection of traditional knowledge - an indian perspective.2022Available from: https://www.intechopen.com/chapters/78249
  109. LimS.B. BanerjeeA. ÖnyükselH. Improvement of drug safety by the use of lipid-based nanocarriers.J. Control. Release20121631344510.1016/j.jconrel.2012.06.00222698939
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385277686231127050723
Loading
/content/journals/pnt/10.2174/0122117385277686231127050723
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test