Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Innovative colloidal preparations that can alter the pharmacological properties of drugs have been made possible by the advancement of nanotechnology. Recent advances in the sciences of the nanoscale have led to the creation of new methods for treating illnesses. Developments in nanotechnology may lessen the side effects of medicine by using effective and regulated drug delivery methods. A promising drug delivery vehicle is spanlastics, an elastic nanovesicle that can transport a variety of drug compounds. Spanlastics have expanded the growing interest in many types of administrative pathways. Using this special type of vesicular carriers, medications intended for topical, nasal, ocular, and trans-ungual treatments are delivered to specific areas. Their elastic and malleable structure allows them to fit into skin pores, making them ideal for transdermal distribution. Spanlastic is composed of non-ionic surfactants or combinations of surfactants. Numerous studies have demonstrated how spanlastics significantly improve, drug bioavailability, therapeutic effectiveness, and reduce medication toxicity. The several vesicular systems, composition and structure of spanlastics, benefits of spanlastics over alternative drug delivery methods, and the process of drug penetration skin are all summarized in this paper. Additionally, it provides an overview of the many medications that may be treated using spanlastic vesicles. The primary benefits of these formulations were associated with their surface properties, as a variety of proteins might be linked to the look. For instance, procedure assessment and gold nanoparticles were employed as biomarkers for different biomolecules, which included tumor label detection. Anticipate further advancements in the customization and combining of spanlastic vesicles with appropriate zeta potential to transport therapeutic compounds to specific areas for enhanced disease treatment.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385286921240103113543
2024-01-22
2025-01-04
Loading full text...

Full text loading...

References

  1. WitikaB.A. MweetwaL.L. TshiamoK.O. EdlerK. MatafwaliS.K. NtemiP.V. ChikukwaM.T.R. MakoniP.A. Vesicular drug delivery for the treatment of topical disorders: Current and future perspectives.J. Pharm. Pharmacol.202173111427144110.1093/jpp/rgab08234132342
    [Google Scholar]
  2. VindhyaV.S. Krishnananda KamathK. JainA.K. ShabarayaA.R. Spanlastics: A modern formulation approach in drug delivery.EJPMR202310496102
    [Google Scholar]
  3. ElhabakM. IbrahimS. AbouelattaS.M. Topical delivery of l -ascorbic acid spanlastics for stability enhancement and treatment of UVB induced damaged skin.Drug Deliv.202128144545310.1080/10717544.2021.188637733620008
    [Google Scholar]
  4. AlaaeldinE. Abou-TalebH.A. MohamadS.A. ElrehanyM. GaberS.S. MansourH.F. Topical nano-vesicular spanlastics of celecoxib: Enhanced anti-inflammatory effect and downregulation of tnf-α, nf-кb and cox-2 in complete Freund’s adjuvant-induced arthritis model in rats.Int. J. Nanomedicine20211613314510.2147/IJN.S28982833447032
    [Google Scholar]
  5. MosallamS. AlbashR. AbdelbariM.A. Advanced vesicular systems for antifungal drug delivery.AAPS PharmSciTech202223620610.1208/s12249‑022‑02357‑y35896903
    [Google Scholar]
  6. GuptaI. AdinS.N. RashidM.A. AlhamhoomY. AqilM. MujeebM. Spanlastics as a potential approach for enhancing the nose-to-brain delivery of piperine: In vitro prospect and in vivo therapeutic efficacy for the management of epilepsy.Pharmaceutics202315264110.3390/pharmaceutics1502064136839963
    [Google Scholar]
  7. MaitiB. KakkarS. KaurI.P. BashaM. Abd El-AlimS.H. Preparation of an anti-inflammatory agent in different dosage forms for topical application a thesis presented By.Int J Pharm20191817077
    [Google Scholar]
  8. GharbaviM. AmaniJ. Kheiri-ManjiliH. DanafarH. SharafiA. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier.Adv. Pharmacol. Sci.2018201811510.1155/2018/684797130651728
    [Google Scholar]
  9. KakkarS. KaurI.P. Spanlastics—A novel nanovesicular carrier system for ocular delivery.Int. J. Pharm.20114131-220221010.1016/j.ijpharm.2011.04.02721540093
    [Google Scholar]
  10. AbdelmonemR. el NabarawiM. AttiaA. Development of novel bioadhesive granisetron hydrochloride spanlastic gel and insert for brain targeting and study their effects on rats.Drug Deliv.2018251707710.1080/10717544.2017.141344729228824
    [Google Scholar]
  11. El-NabarawyN.A. TeaimaM.H. HelalD.A. Assessment of spanlastic vesicles of zolmitriptan for treating migraine in rats.Drug Des. Devel. Ther.2019133929393710.2147/DDDT.S22047331819367
    [Google Scholar]
  12. El MenshaweS.F. NafadyM.M. AboudH.M. KharshoumR.M. ElkelawyA.M.M.H. HamadD.S. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: Mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway.Drug Deliv.20192611140115410.1080/10717544.2019.168608731736366
    [Google Scholar]
  13. ElmowafyE. El-GogaryR.I. RagaiM.H. NasrM. Novel antipsoriatic fluidized spanlastic nanovesicles: In vitro physicochemical characterization, ex vivo cutaneous retention and exploratory clinical therapeutic efficacy.Int. J. Pharm.201956811855610.1016/j.ijpharm.2019.11855631348982
    [Google Scholar]
  14. FarghalyD.A. AboelwafaA.A. HamzaM.Y. MohamedM.I. Topical delivery of fenoprofen calcium via elastic nano-vesicular spanlastics: Optimization using experimental design and in vivo evaluation.AAPS PharmSciTech20171882898290910.1208/s12249‑017‑0771‑828429293
    [Google Scholar]
  15. LiuY. WangY. YangJ. ZhangH. GanL. Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: Prolonged ocular retention, enhanced corneal permeation and improved tear production.Int. J. Pharm.201956513314210.1016/j.ijpharm.2019.05.01831075435
    [Google Scholar]
  16. ShammaR.N. SayedS. SabryN.A. El-SamanoudyS.I. Enhanced skin targeting of retinoic acid spanlastics: In vitro characterization and clinical evaluation in acne patients.J. Liposome Res.201929328329010.1080/08982104.2018.155270630501429
    [Google Scholar]
  17. RaoY. ZhengF. ZhangX. GaoJ. LiangW. In vitro percutaneous permeation and skin accumulation of finasteride using vesicular ethosomal carriers.AAPS PharmSciTech20089386086510.1208/s12249‑008‑9124‑y18649143
    [Google Scholar]
  18. AbdelrahmanF.E. ElsayedI. GadM.K. ElshafeeyA.H. MohamedM.I. Response surface optimization, Ex vivo and In vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone.Int. J. Pharm.20175301-211110.1016/j.ijpharm.2017.07.05028733244
    [Google Scholar]
  19. AlaaeldinE. MostafaM. MansourH.F. SolimanG.M. Spanlastics as an efficient delivery system for the enhancement of thymoquinone anticancer efficacy: Fabrication and cytotoxic studies against breast cancer cell lines.J. Drug Deliv. Sci. Technol.20216510272510.1016/j.jddst.2021.102725
    [Google Scholar]
  20. LasicD. WeinerN. RiazM. MartinF. Liposomes Pharmaceutical Dosage Forms: Disperse SystemsLieberman, A., Rieger, M., Banker, G. (Eds.)Marcel Dekker, NY1998843
    [Google Scholar]
  21. KaurI.P. RanaC. SinghM. BhushanS. SinghH. KakkarS. Development and evaluation of novel surfactant-based elastic vesicular system for ocular delivery of fluconazole.J. Ocul. Pharmacol. Ther.201228548449610.1089/jop.2011.017622694593
    [Google Scholar]
  22. AmlI MekkawyAI NerminE Combinatorial therapy of letrozole- and quercetin-loaded spanlastics for enhanced cytotoxicity against MCF-7 breast cancer cells.Pharmaceutics.20221481727
    [Google Scholar]
  23. AliM.M. ShoukriR.A. YousryC. Thin film hydration versus modified spraying technique to fabricate intranasal spanlastic nanovesicles for rasagiline mesylate brain delivery: Characterization, statistical optimization, and in vivo pharmacokinetic evaluation.Drug Deliv. Transl. Res.202211636585559
    [Google Scholar]
  24. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.03723036225
    [Google Scholar]
  25. BashaM. Abd El-AlimS.H. ShammaR.N. AwadG.E.A. Design and optimization of surfactant-based nanovesicles for ocular delivery of Clotrimazole.J. Liposome Res.201323320321010.3109/08982104.2013.78802523607316
    [Google Scholar]
  26. GuptaRK RelyveldEH Adjuvants - A balance between toxicity and adjuvanticity.Vaccine 199311293296
    [Google Scholar]
  27. MalhotraM. JainN.K. Niosomes as drug carriers.Indian Drugs1994318186
    [Google Scholar]
  28. AhmadJ. RizwanullahM. AminS. WarsiM.H. AhmadM.Z. BarkatM.A. Nanostructured lipid carriers (NLCs): Nose-to brain delivery and theranostic application.Curr. Drug Metab.202021141136114310.2174/138920022166620071900330432682366
    [Google Scholar]
  29. TayelS.A. El-NabarawiM.A. TadrosM.I. Abd-ElsalamW.H. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: Development, characterization and pharmacokinetic assessments.Int. J. Pharm.20154831-2778810.1016/j.ijpharm.2015.02.01225666025
    [Google Scholar]
  30. KhatoonK. RizwanullahM. AminS. MirS.R. AkhterS. Cilnidipine loaded transfersomes for transdermal application: Formulation optimization, in-vitro and in-vivo study.J. Drug Deliv. Sci. Technol.20195410130310.1016/j.jddst.2019.101303
    [Google Scholar]
  31. FahmyA.M. El-SetouhyD.A. IbrahimA.B. HabibB.A. TayelS.A. BayoumiN.A. Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: In vitro characterization, ex vivo permeation and in vivo biodistribution studies.Drug Deliv.2018251122210.1080/10717544.2017.141026229219628
    [Google Scholar]
  32. FahmyA.M. El-SetouhyD.A. HabibB.A. TayelS.A. Enhancement of transdermal delivery of haloperidol via spanlastic dispersions: entrapment efficiency vs. Particle size.AAPS PharmSciTech20192039510.1208/s12249‑019‑1306‑230694404
    [Google Scholar]
  33. SharmaA. Shilpa PahwaS. Savita BhatiS. KudeshiaP. Formulation and evaluation of dorzolamide spanlastics.Int. J. Pharm. Sci. Res.202011839303935
    [Google Scholar]
  34. ElsherifN.I. ShammaR.N. AbdelbaryG. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: In vitro characterization and ex vivo evaluation.AAPS PharmSciTech201718255156210.1208/s12249‑016‑0528‑927138036
    [Google Scholar]
  35. LimongiT. SusaF. MariniM. AllioneM. TorreB. PisanoR. di FabrizioE. Lipid-based nanovesicular drug delivery systems.Nanomaterials20211112339110.3390/nano1112339134947740
    [Google Scholar]
  36. ElMeshadA.N. MohsenA.M. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle.Drug Deliv.20162372115212310.3109/10717544.2014.94281125080226
    [Google Scholar]
  37. Al-mahallawiA.M. KhowessahO.M. ShoukriR.A. Enhanced non invasive trans -tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies.Int. J. Pharm.20175221-215716410.1016/j.ijpharm.2017.03.00528279741
    [Google Scholar]
  38. BadriaF. MazyedE. Formulation of nanospanlastics as a promising approach for improving the topical delivery of a natural leukotriene inhibitor (3-acetyl-11-keto-β-boswellic acid): Statistical optimization, in vitro characterization, and ex vivo permeation study.Drug Des. Devel. Ther.2020143697372110.2147/DDDT.S26516732982176
    [Google Scholar]
  39. SallamN.M. SanadR.A.B. AhmedM.M. KhafagyE.L.S. GhorabM. GadS. Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models.Drug Deliv. Transl. Res.20211131009103610.1007/s13346‑020‑00814‑432607938
    [Google Scholar]
  40. KakkarS. Pal KaurI. A novel nanovesicular carrier system to deliver drug topically.Pharm. Dev. Technol.201318367368510.3109/10837450.2012.68565522612232
    [Google Scholar]
  41. SharmaA. PahwaS. BhatiS. KudeshiaP. Spanlastics: A modern approach for nanovesicular drug delivery system.Int. J. Pharm. Sci. Res.20201110571065
    [Google Scholar]
  42. ZhengW. FangX. WangL. ZhangY. Preparation and quality assessment of itraconazole transfersomes.Int. J. Pharm.20124361-229129810.1016/j.ijpharm.2012.07.00322796030
    [Google Scholar]
  43. AbdelbariM.A. El-mancyS.S. ElshafeeyA.H. AbdelbaryA.A. Implementing spanlastics for improving the ocular delivery of clotrimazole: In vitro characterization, ex vivo permeability, microbiological assessment and in vivo safety study.Int. J. Nanomedicine2021166249626110.2147/IJN.S31934834531656
    [Google Scholar]
  44. MazyedE.A. HelalD.A. ElkhoudaryM.M. Abd ElhameedA.G. YasserM. Formulation and optimization of nanospanlastics for improving the bioavailability of green tea epigallocatechin gallate.Pharmaceuticals20211416810.3390/ph1401006833467631
    [Google Scholar]
  45. Mary DCruzC.E. BhideP.J. KumarL. ShirodkarR.K. DCruz CE Novel nano spanlastic carrier system for buccal delivery of lacidipine.J. Drug Deliv. Sci. Technol.20226810306110.1016/j.jddst.2021.103061
    [Google Scholar]
  46. SinghS. AwasthiR. Breakthroughs and bottlenecks of psoriasis therapy: Emerging trends and advances in lipid based nano-drug delivery platforms for dermal and transdermal drug delivery.J. Drug Deliv. Sci. Technol.20238410454810.1016/j.jddst.2023.104548
    [Google Scholar]
  47. BarakatE.H. AklM.A. IbrahimM.F. Mohamed DawabaH. AfounaM.I. Formulation and optimization of theophylline-loaded enteric-coated spanlastic nanovesicles for colon delivery; Ameliorate acetic acid-induced ulcerative colitis.Int. J. Pharm.202364312325310.1016/j.ijpharm.2023.12325337473974
    [Google Scholar]
  48. ElgewellyM.A. ElmasryS.M. SayedN.S.E. AbbasH. Resveratrol-loaded vesicular elastic nanocarriers gel in imiquimod-induced psoriasis treatment: In vitro and in vivo evaluation.J. Pharm. Sci.2022111241743110.1016/j.xphs.2021.08.02334461114
    [Google Scholar]
  49. ElzoghbyA.O. Abd-ElwakilM.M. Abd-ElsalamK. ElsayedM.T. HashemY. MohamedO. Natural polymeric nanoparticles for brain-targeting: Implications on drug and gene delivery.Curr. Pharm. Des.201622223305332310.2174/138161282266616020412082926845323
    [Google Scholar]
  50. LiX. TsibouklisJ. WengT. ZhangB. YinG. FengG. CuiY. SavinaI.N. MikhalovskaL.I. SandemanS.R. HowelC.A. MikhalovskyS.V. Nano carriers for drug transport across the blood–brain barrier.J. Drug Target.2017251172810.1080/1061186X.2016.118427227126681
    [Google Scholar]
  51. MuntimaduguE. DhommatiR. JainA. ChallaV.G.S. ShaheenM. KhanW. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease.Eur. J. Pharm. Sci.20169222423410.1016/j.ejps.2016.05.01227185298
    [Google Scholar]
  52. AliA.U. KhallafI.S.A. KamelA.A. BadranA.Y. GomaaA.S. El fahamT.H. MortagiY.I. Impact of quercetin spanlastics on livin and caspase-9 expression in the treatment of psoriasis vulgaris.J. Drug Deliv. Sci. Technol.20227610380910.1016/j.jddst.2022.103809
    [Google Scholar]
  53. AghaO.A. GirgisG.N.S. El-SokkaryM.M.A. SolimanO.A.E.A. Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study.Int. J. Pharm. X2023610020110.1016/j.ijpx.2023.10020137560488
    [Google Scholar]
  54. AlharbiW.S. HareeriR.H. BazuhairM. AlfalehM.A. AlhakamyN.A. FahmyU.A. AlamoudiA.A. Badr-EldinS.M. AhmedO.A. AlGhamdiS.A. NaguibM.J. Spanlastics as a potential platform for enhancing the brain delivery of flibanserin: In vitro response-surface optimization and in vivo pharmacokinetics assessment.Pharmaceutics20221412262710.3390/pharmaceutics1412262736559120
    [Google Scholar]
  55. AlmeidaH. AmaralM. LobaoP. FrigerioC. Sousa LoboJ. Nanoparticles in ocular drug delivery systems for topical administration: Promises and challenges.Curr. Pharm. Des.201521365212522410.2174/138161282166615092309515526412360
    [Google Scholar]
  56. IbrahimS.S. Abd-allahH. “Spanlastic nanovesicles for enhanced ocular delivery of vanillic acid: Design, in vitro characterization, and in vivo anti-inflammatory evaluation”.Int. J. Pharm.202262512206810.1016/j.ijpharm.2022.12206835926753
    [Google Scholar]
  57. AnsariM.D. khanI. SolankiP. PanditJ. JahanR.N. AqilM. SultanaY. Fabrication and optimization of raloxifene loaded spanlastics vesicle for transdermal delivery.J. Drug Deliv. Sci. Technol.20226810310210.1016/j.jddst.2022.103102
    [Google Scholar]
  58. DomínguezA. Suárez-MerinoB. Goñi-de-CerioF. Nanoparticles and blood-brain barrier: the key to central nervous system diseases.J. Nanosci. Nanotechnol.201414176677910.1166/jnn.2014.911924730296
    [Google Scholar]
  59. ZemekF. DrtinovaL. NepovimovaE. SepsovaV. KorabecnyJ. KlimesJ. KucaK. Outcomes of alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine.Expert Opin. Drug Saf.201413675977424845946
    [Google Scholar]
  60. Abdul ManapA.S. Wei TanA.C. LeongW.H. Yin ChiaA.Y. VijayabalanS. AryaA. WongE.H. RizwanF. BindalU. KoshyS. MadhavanP. Synergistic effects of curcumin and piperine as potent acetylcholine and amyloidogenic inhibitors with significant neuroprotective activity in SH-SY5Y cells via computational molecular modeling and in vitro assay.Front. Aging Neurosci.20191120610.3389/fnagi.2019.0020631507403
    [Google Scholar]
  61. ElzayatN.A. AbbasH. HelmyM.W. HabibD.A. Phyto-therapeutic and nanomedicinal approaches: A new hope for management of alzheimer’s disease.Int. J. Pharm.202262712221310.1016/j.ijpharm.2022.12221336179926
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385286921240103113543
Loading
/content/journals/pnt/10.2174/0122117385286921240103113543
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test