Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2665-976X
  • E-ISSN: 2665-9778

Abstract

Test the hypothesis that the catalytic activity of TiO nanoparticles towards a liquid-phase or mechanoactivated multicomponent reaction can be tuned by visible light and the shape of nanoparticles.

Catalytic multicomponent reactions have been proven to be excellent synthetic approaches to a series of biologically relevant compounds including 2-amino-4H-benzo[b]pyrans. However, the potential photocatalytic activity and structural diversity of nanostructured catalysts remained underutilized in the design of new catalytic systems.

Harness the photocatalytic potential and diverse morphology of TiO particles as catalysts for the liquid phase and mechanoactivated multicomponent organic reactions.

The multicomponent reactions have been performed under catalytic, photocatalytic, liquid phase, and mechanoactivated conditions. The catalysts were characterized by XRD and TEM. The organic reactions products were isolated and characterized by NMR and mass spectroscopy.

Catalytic activity of TiO nanoparticles towards multicomponent synthesis of 2-amino-4H-benzo[b]pyrans is increased by visible light. The nanorod-shaped TiO nanoparticles have shown substantially higher catalytic activity towards mechanoactivated multicomponent synthesis of 2-amino-4H-benzo[b]pyrans than their spherically-shaped counterparts.

An efficient methodology for the synthesis of 2-amino-4H-benzo[b]pyrans under ambient light condition has been developed using TiO nanorods (high aspect ratio anatase nanocrystals) as photocatalyst. This simple method furnished the corresponding terahydrobenzopyrans in high yields via three component reaction of aldehyde, malononitrile, and dimidone under solvent free reaction conditions at room temperature. The reaction takes 8-10 min at room temperature under ambient light condition and the catalyst can be reused multiple times. Utilization of light and the nanorod morphology of the catalyst through mechanoactivation has been applied for the -first time to the synthetic technique of multicomponent reactions. The synthetic procedures for 2-amino-4H-benzo[b]pyrans have been improved.

Loading

Article metrics loading...

/content/journals/photocat/10.2174/2665976X01666200128150101
2020-05-01
2024-11-22
Loading full text...

Full text loading...

References

  1. MajekM. JacobiA. von Wangelin. Angew. Ambient‐Light‐Mediated Copper‐Catalyzed C-C and C-N Bond Formation.Chem. Int. Ed.201352235919592110.1002/anie.201301843
    [Google Scholar]
  2. SeredaG. RajparaV. Photoactivated and photopassivated benzylic oxidation catalyzed by pristine and oxidized carbons.Catal. Commun.20111266967210.1016/j.catcom.2010.12.027
    [Google Scholar]
  3. a) ZhaoG. YangC. GuoL. SunH. ChenaC. XiaW. Visible light-induced oxidative coupling reaction: easy access to Mannich-type products.Chem. Commun. 20124823372339
    [Google Scholar]
  4. b) RuepingM. VilaC. Visible Light Photoredox-Catalyzed Multicomponent Reactions.Org. Lett.201315920922095 23586924
    [Google Scholar]
  5. MaitaniM.M. TanakaK. MochizukiD. WadaY. Enhancement of photoexcited charge transfer by {001} facet-dominating TiO2 nanoparticles.J. Phys. Chem. Lett.201122655265910.1021/jz2011622
    [Google Scholar]
  6. KibomboH.S. PengR. RanjitS.R. KoodaliT. Versatility of heterogeneous photocatalysis: synthetic methodologies epitomizing the role of silica support in TiO2 based mixed oxides.Catal. Sci. Technol.201221737174010.1039/c2cy20247f
    [Google Scholar]
  7. VilaC. RuepingM. Visible-light mediated heterogeneous C–H functionalization: oxidative multi-component reactions using a recyclable titanium dioxide (TiO2) catalyst.Green Chem.2013152056205910.1039/c3gc40587g
    [Google Scholar]
  8. HoffmannN. Photocatalysis with TiO2 applied to organic synthesis.Aust. J. Chem.2015681621163910.1071/CH15322
    [Google Scholar]
  9. ManleyD.W. WaltonJ.C. Preparative semiconductor photoredox catalysis: An emerging theme in organic synthesis.Beilstein J. Org. Chem.2015111570158210.3762/bjoc.11.173 26664577
    [Google Scholar]
  10. ShiraishiY HiraiT . Selective organic transformations on titanium oxide-based photocatalysts. J. Photochem. Photobiol. C Photochemistry Reviews,200891571582
    [Google Scholar]
  11. KischH. Semiconductor photocatalysis for organic synthesis.Adv. Photochem.20012693143
    [Google Scholar]
  12. MirjaliliaB.F. BamoniribA. AkbariZ. TaghaviniaN. Nano-TiO2: An eco-friendly and re-usable catalyst for the synthesis of 14-Aryl or alkyl-14H-dibenzo[a,j]xanthenes.J. Iran. Chem. Soc.2011812913410.1007/BF03254289.
    [Google Scholar]
  13. MirjaliliB.F. AkbariZ. Nano-TiO2: an eco-friendly and re-usable catalyst for the one-pot synthesis of β-Acetamido ketones.Naturforsch200964B34735010.1515/znb‑2009‑0318
    [Google Scholar]
  14. Zaman KassaeeM. MasrouriH. MovahediF. MohammadiR. TiO2 as a reusable catalyst for the one pot synthesis of 3,4 dihydropyrimidin 2(1H) ones under solvent free conditions.Helv. Chim. Acta20109326126410.1002/hlca.200900197
    [Google Scholar]
  15. RanaS. BrownM. DuttaA. BhaumikA. MukhopadhyayC. Site-selective multicomponent synthesis of densely substituted 2-oxo dihydropyrroles catalyzed by clean, reusable, and heterogeneous TiO2 nanopowder.Tetrahedron Lett.2013541371137910.1016/j.tetlet.2012.12.109
    [Google Scholar]
  16. YuH. ZhuY. LiuC. YangZ. LuX. FengX. Preparation of novel mesoporous SO42−/TiO2 solid acid catalyst and its catalytic activity for esterification.Chin. J. Catal.200930265271
    [Google Scholar]
  17. GuoS.B. WangS.X. LiJ.T.D,L Proline Catalyzed one pot synthesis of pyrans and pyrano[2,3‐c]pyrazole derivatives by a grinding method under solvent‐free conditions.Synth. Commun.2007372111212010.1080/00397910701396906
    [Google Scholar]
  18. Abulkalam AzathI. PuthiarajP. PitchumaniK. One-Pot multicomponent solvent-free synthesis of 2-amino-4H-benzo[b]pyrans catalyzed by per-6-amino-β-cyclodextrin.ACS Sustain. Chem. Eng.2013117417910.1021/sc3000866.
    [Google Scholar]
  19. BanerjeeS. HornA.H. KhatriH. SeredaG. A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst.Tetrahedron Lett.2011521878188110.1016/j.tetlet.2011.02.031
    [Google Scholar]
  20. ZhuJ. BienaymeH. Multicomponent Reactions.WeinheimWiley- VCH200510.1002/3527605118
    [Google Scholar]
  21. ShaabaniA. GhadariR. SarvaryA. RezayanA.H. Synthesis of highly functionalized bis(4H-chromene) and 4H-benzo[g]chromene derivatives via an isocyanide-based pseudo-five-component reaction.J. Org. Chem.200974114372437410.1021/jo9005427 19397302
    [Google Scholar]
  22. SkommerJ. WlodkowicD. MvttcM. ErayM. PelkonenJ. HA14-1, a small molecule Bcl-2 antagonist, induces apoptosis and modulates action of selected anticancer drugs in follicular lymphoma B cells.Leuk. Res.200630322331
    [Google Scholar]
  23. FoyeW.O. Principi di Chemico Farmaceutica.Piccin: Padova1991I416
    [Google Scholar]
  24. GaoS. TsaiC.H. TsengC. YaoC.F. Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media.Tetrahedron2008649143914910.1016/j.tet.2008.06.061
    [Google Scholar]
  25. BhosaleR.S. MagarC.V. SolankeK.S. ManeS.B. ChoudharyS.S. PawarR.P. Molecular iodine: An efficient catalyst for the synthesis of tetrahydrobenzo[b]pyrans.Synth. Commun.2007374353435710.1080/00397910701578578
    [Google Scholar]
  26. BhattacharyyaP. PradhanK. PaulS. DasA.R. Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media.Tetrahedron Lett.2012534687469110.1016/j.tetlet.2012.06.086
    [Google Scholar]
  27. KalbasiR.J. MosaddeghN. Synthesis and characterization of poly(4-vinylpyridine)/MCM-48 catalyst for one-pot synthesis of substituted 4H-chromenes.Catal. Commun.2011121231123710.1016/j.catcom.2011.04.004
    [Google Scholar]
  28. XuJ.C. LiW.M. ZhengH. LaiY.F. ZhangP.F. One-pot synthesis of tetrahydrochromene derivatives catalyzed by lipase.Tetrahedron2011679582958710.1016/j.tet.2011.09.137
    [Google Scholar]
  29. ZhiH. LüC. ZhangQ. LuoJ. A new PEG-1000-based dicationic ionic liquid exhibiting temperature-dependent phase behavior with toluene and its application in one-pot synthesis of benzopyrans.Chem. Commun. (Camb.)2009202878288010.1039/b822481a 19436896
    [Google Scholar]
  30. WangL.M. ShaoJ.H. TianH. WangY.H. LiuB. Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot synthesis of benzopyran derivatives.J. Fluor. Chem.20061279710010.1016/j.jfluchem.2005.10.004
    [Google Scholar]
  31. PenjgY. SongG. Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans.Catal. Commun.2007811111410.1016/j.catcom.2006.05.031
    [Google Scholar]
  32. JooJ. KwonS.G. YuT. ChoM. LeeJ. YoonJ. HyeonT. Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli.J. Phys. Chem. B200510932152971530210.1021/jp052458z 16852938
    [Google Scholar]
  33. SayilkanF. AsilturkM. SenerS. ErdemogluS. ErdemogluM. SayilkanH. Hydrothermal synthesis, characterization and photocatalytic activity of nanosized TiO2 based catalysts for rhodamine B degradation.Turk. J. Chem.200731211221
    [Google Scholar]
  34. WagnerP.J. ZeppR.G. LiuK.C. ThomasM. LeeT.J. TurroN.J. Competing photocyclization and photoenolization of phenyl. alpha.-diketones.J. Am. Chem. Soc.1976988125813410.1021/ja00441a042
    [Google Scholar]
  35. BihaniM. BoraPP. BezG. Synthesis of polyfunctionalized 4H-pyrans. J. Chem.2013 Article ID78593017
    [Google Scholar]
  36. KazachekM.V. VovnaV. Modeling of the electronic absorption spectra and photoionization of scandium and titanium tris(acetylacetonates) by the DV-XαMethod.Russ. J. Coord. Chem.20012710511110.1023/A:1009575232219
    [Google Scholar]
/content/journals/photocat/10.2174/2665976X01666200128150101
Loading
/content/journals/photocat/10.2174/2665976X01666200128150101
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test