Skip to content
2000
image of Dodecanoyl-L-tryptophan: A Novel Natural Antibiotic Isolated from Mesophotic Sponge-associated Salinicola sp. LHM and its Biological Function

Abstract

Background

Sponge-associated microbiota plays a crucial role in maintaining host health by providing chemical defense through the synthesis of diverse secondary metabolites. However, research on these secondary metabolites is still in its early stages.

Objective

The present study aimed to investigate new natural antibiotics from mesophotic sponge symbiotic microbiota and explore its antibacterial activity and preliminary biological function.

Methods

Bacteria strain sp. LHM was isolated from sponge L26 and identified based on the 16S rRNA gene analysis. Subsequently, the strain was fermented using a liquid M9 medium and screened for antibiotics with an antibacterial guiding assay. Extensive chromatographic methods were introduced to isolate the target compound, and its chemical structure was elucidated by spectroscopic analysis (LC-MS, NMR). The minimum inhibitory concentration (MIC) and cytotoxicity experiments evaluated the isolated compound's biological activity. Furthermore, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quartz crystal microbalance with dissipation (QCM-D) were used to study the bactericidal mechanism of DLT. Finally, the preliminary biological function was explored by performing the cell-feeding experiment.

Results

We successfully identified one novel natural antibiotic, dodecanoyl-L-tryptophan (DLT), in sp. LHM isolated from mesophotic sponge L26. DLT exhibited potent antibacterial activity against the and with MIC values of 32 μM and 16 μM, respectively. The bactericidal tests showed that DLT broke the cell membrane to cause cell death by leaking the cell's inner content. Furthermore, the cell-feeding experiment proved that DLT producer- sp. LHM could feed on the inner content of death cells. In addition, DLT also exhibited cytotoxicity against bronchial epithelial cells BEAS-2B, with an EC value of 150 μM, indicating a favorable selectivity profile.

Conclusion

This research identified one novel natural antibiotic DLT and provided initial insights into the chemical defense exerted by sp. LHM with its secondary metabolite DLT.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155309090240425141156
2024-10-25
2025-06-20
Loading full text...

Full text loading...

References

  1. Thakur N.L. Müller W.E.G. Biotechnological potential of marine sponges. Curr. Sci. 2004 86 11 1506 1512
    [Google Scholar]
  2. Bell J.J. The functional roles of marine sponges. Estuar. Coast. Shelf Sci. 2008 79 3 341 353 10.1016/j.ecss.2008.05.002
    [Google Scholar]
  3. Carroll A.R. Copp B.R. Davis R.A. Keyzers R.A. Prinsep M.R. Marine natural products. Nat. Prod. Rep. 2023 40 2 275 325 10.1039/D2NP00083K 36786022
    [Google Scholar]
  4. Carroll A.R. Copp B.R. Davis R.A. Keyzers R.A. Prinsep M.R. Marine natural products. Nat. Prod. Rep. 2021 38 2 362 413 10.1039/D0NP00089B 33570537
    [Google Scholar]
  5. Carroll A.R. Copp B.R. Davis R.A. Keyzers R.A. Prinsep M.R. Marine natural products. Nat. Prod. Rep. 2022 39 6 1122 1171 10.1039/D1NP00076D 35201245
    [Google Scholar]
  6. Gloeckner V. Wehrl M. Moitinho-Silva L. Gernert C. Schupp P. Pawlik J.R. Lindquist N.L. Erpenbeck D. Wörheide G. Hentschel U. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol. Bull. 2014 227 1 78 88 10.1086/BBLv227n1p78 25216505
    [Google Scholar]
  7. Reiswig H.M. Partial Carbon and Energy Budgets of the Bacteriosponge Verohgia fistularis (Porifera: Demospongiae) in Barbados. Mar. Ecol. (Berl.) 1981 2 4 273 293 10.1111/j.1439‑0485.1981.tb00271.x
    [Google Scholar]
  8. Webster N.S. Hill R.T. The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α-Proteobacterium. Mar. Biol. 2001 138 4 843 851 10.1007/s002270000503
    [Google Scholar]
  9. Vacelet J. Donadey C. Electron microscope study of the association between some sponges and bacteria. J. Exp. Mar. Biol. Ecol. 1977 30 3 301 314 10.1016/0022‑0981(77)90038‑7
    [Google Scholar]
  10. Kiran G.S. Sekar S. Ramasamy P. Thinesh T. Hassan S. Lipton A.N. Ninawe A.S. Selvin J. Marine sponge microbial association: Towards disclosing unique symbiotic interactions. Mar. Environ. Res. 2018 140 169 179 10.1016/j.marenvres.2018.04.017 29935729
    [Google Scholar]
  11. Preston C.M. Wu K.Y. Molinski T.F. DeLong E.F. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl. Acad. Sci. USA 1996 93 13 6241 6246 10.1073/pnas.93.13.6241 8692799
    [Google Scholar]
  12. Kelecom A. Secondary metabolites from marine microorganisms. An. Acad. Bras. Cienc. 2002 74 1 151 170 10.1590/S0001‑37652002000100012 11960184
    [Google Scholar]
  13. Li P. Lu H. Zhang Y. Zhang X. Liu L. Wang M. Liu L. The natural products discovered in marine sponge-associated microorganisms: structures, activities, and mining strategy. Front. Mar. Sci. 2023 10 1191858 10.3389/fmars.2023.1191858
    [Google Scholar]
  14. Cheng M.M. Tang X.L. Sun Y.T. Song D.Y. Cheng Y.J. Liu H. Li P.L. Li G.Q. Biological and chemical diversity of marine sponge-derived microorganisms over the last two decades from 1998 to 2017. Molecules 2020 25 4 853 10.3390/molecules25040853 32075151
    [Google Scholar]
  15. Furrow F.B. Amsler C.D. McClintock J.B. Baker B.J. Surface sequestration of chemical feeding deterrents in the Antarctic sponge Latrunculia apicalis as an optimal defense against sea star spongivory. Mar. Biol. 2003 143 3 443 449 10.1007/s00227‑003‑1109‑5
    [Google Scholar]
  16. Becerro M.A. Paul V.J. Starmer J. Intracolonial variation in chemical defenses of the sponge Cacospongia sp. and its consequences on generalist fish predators and the specialist nudibranch predator Glossodoris pallida. Mar. Ecol. Prog. Ser. 1998 168 187 196 10.3354/meps168187
    [Google Scholar]
  17. Hinderstein L.M. Marr J.C.A. Martinez F.A. Dowgiallo M.J. Puglise K.A. Pyle R.L. Zawada D.G. Appeldoorn R. Theme section on “mesophotic coral ecosystems: characterization, ecology, and management”. Coral Reefs 2010 29 2 247 251 10.1007/s00338‑010‑0614‑5
    [Google Scholar]
  18. Pyle R.L. Copus J.M. Mesophotic Coral Ecosystems: Introduction and Overview. Mesophotic Coral Ecosystems. Loya Y. Puglise K.A. Bridge T.C.L. Cham Springer International Publishing 2019 3 27 10.1007/978‑3‑319‑92735‑0_1
    [Google Scholar]
  19. Gurgui C. Piel J. Metagenomic approaches to identify and isolate bioactive natural products from microbiota of marine sponges. Methods Mol. Biol. 2010 668 247 264 10.1007/978‑1‑60761‑823‑2_17 20830569
    [Google Scholar]
  20. López-Legentil S. Erwin P.M. Henkel T.P. Loh T.L. Pawlik J.R. Phenotypic plasticity in the Caribbean sponge <i>Callyspongia vaginalis</i> (Porifera: Haplosclerida). Sci. Mar. 2010 74 3 445 453 10.3989/scimar.2010.74n3445
    [Google Scholar]
  21. Watkins R.F. Beckenbach A.T. Partial sequence of a sponge mitochondrial genome reveals sequence similarity to Cnidaria in cytochrome oxidase subunit II and the large ribosomal RNA subunit. J. Mol. Evol. 1999 48 5 542 554 10.1007/PL00006497 10198120
    [Google Scholar]
  22. Heuer H. Krsek M. Baker P. Smalla K. Wellington E.M. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 1997 63 8 3233 3241 10.1128/aem.63.8.3233‑3241.1997 9251210
    [Google Scholar]
  23. Wiegand I. Hilpert K. Hancock R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008 3 2 163 175 10.1038/nprot.2007.521 18274517
    [Google Scholar]
  24. He S. Li P. Wang J. Zhang Y. Lu H. Shi L. Huang T. Zhang W. Ding L. He S. Liu L. Discovery of New Secondary Metabolites from Marine Bacteria Hahella Based on an Omics Strategy. Mar. Drugs 2022 20 4 269 10.3390/md20040269 35447942
    [Google Scholar]
  25. Zhang X. Lei L. Zhang H. Zhang S. Xing W. Wang J. Li H. Zhao Q. Xing B. Interactions of polymeric drug carriers with DDT reduce their combined cytotoxicity. Environ. Pollut. 2018 241 701 709 10.1016/j.envpol.2018.06.010 29902753
    [Google Scholar]
  26. Beutler J.A. Natural products as a foundation for drug discovery. Curr. Protocols Pharmacol. 2019 86 1 e67 10.1002/cpph.67 31539923
    [Google Scholar]
  27. Steele A.D. Teijaro C.N. Yang D. Shen B. Leveraging a large microbial strain collection for natural product discovery. J. Biol. Chem. 2019 294 45 16567 16576 10.1074/jbc.REV119.006514 31570525
    [Google Scholar]
  28. Anan’ina L.N. Plotnikova E.G. Gavrish E.Iu. Demakov V.A. Evtushenko L.I. [Salinicola socius gen. nov., sp. nov., a moderately halophilic bacterium from a naphthalene-utilizing microbial association]. Mikrobiologiia 2007 76 3 369 376 17633412
    [Google Scholar]
  29. Wilfried M.A.N. Ricardo A. Correa C. Front Matter. Interpretation of MS‐MS Mass Spectra of Drugs and Pesticides John Wiley & Sons, Inc. 2017 55 70 10.1002/9781119294269
    [Google Scholar]
  30. Ron E.Z. Rosenberg E. Natural roles of biosurfactants. Environ. Microbiol. 2001 3 4 229 236 10.1046/j.1462‑2920.2001.00190.x 11359508
    [Google Scholar]
  31. Sheppard J.D. Jumarie C. Cooper D.G. Laprade R. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim. Biophys. Acta Biomembr. 1991 1064 1 13 23 10.1016/0005‑2736(91)90406‑X 1709052
    [Google Scholar]
  32. Monson B.K. Stringham J. Jones B.B. Abdel-Aziz S. Cutler Peck C.M. Olson R.J. Scanning electron microscopy visualization of methicillin-resistant Staphylococcus aureus after contact with gatifloxacin with and without preservative. J. Ocul. Pharmacol. Ther. 2010 26 2 133 136 10.1089/jop.2009.0108 20334536
    [Google Scholar]
  33. Ma Y. Guo Z. Xia B. Zhang Y. Liu X. Yu Y. Tang N. Tong X. Wang M. Ye X. Feng J. Chen Y. Wang J. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat. Biotechnol. 2022 40 6 921 931 10.1038/s41587‑022‑01226‑0 35241840
    [Google Scholar]
  34. le Maire M. Champeil P. Møller J.V. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta Biomembr. 2000 1508 1-2 86 111 10.1016/S0304‑4157(00)00010‑1 11090820
    [Google Scholar]
  35. Kragh-Hansen U. le Maire M. Møller J.V. The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys. J. 1998 75 6 2932 2946 10.1016/S0006‑3495(98)77735‑5 9826614
    [Google Scholar]
  36. Sengupta S. Chattopadhyay M.K. Grossart H.P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front. Microbiol. 2013 4 47 10.3389/fmicb.2013.00047 23487476
    [Google Scholar]
  37. McRose D.L. Newman D.K. Redox-active antibiotics enhance phosphorus bioavailability. Science 2021 371 6533 1033 1037 10.1126/science.abd1515 33674490
    [Google Scholar]
  38. Velasco V. Buyukcangaz E. Sherwood J.S. Stepan R.M. Koslofsky R.J. Logue C.M. Characterization of Staphylococcus aureus from Humans and a Comparison with İsolates of Animal Origin, in North Dakota, United States. PLoS One 2015 10 10 e0140497 10.1371/journal.pone.0140497 26484768
    [Google Scholar]
  39. Haque M.A. Wang F. Chen Y. Hossen F. Islam M.A. Hossain M.A. Siddique N. He C. Ahmed F. Bacillus spp. Contamination: A Novel Risk Originated From Animal Feed to Human Food Chains in South-Eastern Bangladesh. Front. Microbiol. 2022 12 783103 10.3389/fmicb.2021.783103 35058902
    [Google Scholar]
  40. El-Sersy N.A. Abou-Elela G.M. El-Shenawy M.A. Associated microbial community of two deep water infected sponge Hippospongia sp. and Cacospongia sp. Int. J. Environ. Stud. 2006 63 5 691 701 10.1080/00207230600963957
    [Google Scholar]
  41. Slaby B.M. Franke A. Rix L. Pita L. Bayer K. Jahn M.T. Hentschel U. Marine Sponge Holobionts in Health and Disease Symbiotic Microbiomes of Coral Reefs Sponges and Corals. Li Z. Dordrecht Springer Netherlands 2019 81 104 10.1007/978‑94‑024‑1612‑1_7
    [Google Scholar]
  42. Cervino J.M. Winiarski-Cervino K. Polson S.W. Goreau T. Smith G.W. Identification of bacteria associated with a disease affecting the marine sponge Ianthella basta in New Britain, Papua New Guinea. Mar. Ecol. Prog. Ser. 2006 324 139 150 10.3354/meps324139
    [Google Scholar]
  43. Yang J. Zhou Y. Yang B. Huang L. Liu C. Han F. Xu B. Comparative study on the syntheses and properties of three N‐lauroyl aromatic amino acid surfactants. J. Surfactants Deterg. 2020 23 4 687 695 10.1002/jsde.12405
    [Google Scholar]
/content/journals/npj/10.2174/0122103155309090240425141156
Loading
/content/journals/npj/10.2174/0122103155309090240425141156
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test