Skip to content
2000
image of The Impact of Tea Consumption on Cardiovascular Health

Abstract

Tea is a popular beverage that comprises various antioxidants. Tea is the second most consumed beverage in the world after water. The three ideal types of tea include black, white, and green teas. Catechin, Epicatechin gallate, and Epicatechin are the striped flavonoids coeval in the tea. These flavonoids are freed as a rich source for blood circulation in the heart. Tea possesses anti-inflammatory, anti-neoplastic, anti-arthritic, anti-thrombotic, antimicrobial, anti-platelet aggregation, anti-cholesterol, anti-hyperglycemic, and immuno-protective properties. Modern empowering research studies contemplate that minimal consumption of tea can also be of advantage to the cardiovascular system (CVS) as it modulates oxidative stress. Consumption of tea is beneficial for cardiovascular diseases such as atherosclerosis, coronary artery disease, aortic aneurysms, peripheral artery disease, stroke, ischemic heart disease, and cardiomyopathy. Consumption of excess tea may also be detrimental to health, and we highlight different types of tea. The main aim of the present narrative review is to highlight the natural compounds present in tea and discuss their mechanism of action on the cardiovascular system. Based on evidence gathered from published literature, it is thereby concluded that tea is a popular drink with potential cardiovascular health benefits.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155341103241025054033
2024-11-01
2025-07-17
Loading full text...

Full text loading...

References

  1. Hayat K. Iqbal H. Malik U. Bilal U. Mushtaq S. Tea and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2015 55 7 939 954 10.1080/10408398.2012.678949 24915350
    [Google Scholar]
  2. Zhang Q. Bi G. Li T. Wang Q. Xing Z. LeCompte J. Harkess R.L. Color shade nets affect plant growth and seasonal leaf quality of Camellia sinensis grown in Mississippi, the United States. Front. Nutr. 2022 9 786421 10.3389/fnut.2022.786421 35187030
    [Google Scholar]
  3. Riemersma R.A. Rice-Evans C.A. Tyrrell R.M. Clifford M.N. Lean M.E.J. Tea flavonoids and cardiovascular health. QJM 2001 94 5 277 282 10.1093/qjmed/94.5.277 11353103
    [Google Scholar]
  4. Oya H. Nakano M. Shinohara H. Nagai M. Takimoto Y. Masuda T. Kazumura K. Mochizuki M. Osawa T. Ishikawa H. The Effects of Adlay Tea Intake on immune homeostasis and vascular endothelial function in healthy adults: A randomized, double-blind, parallel-group comparative study. J. Nutr. Sci. Vitaminol. (Tokyo) 2024 70 3 280 287 10.3177/jnsv.70.280 38945894
    [Google Scholar]
  5. Ding P. Yue W. Wang X. Zhang Y. Liu Y. Guo X. Effects of sugary drinks, coffee, tea and fruit juice on incidence rate, mortality and cardiovascular complications of type2 diabetes patients: A systematic review and meta-analysis. J. Diabetes Metab. Disord. 2024 23 1 1113 1123 10.1007/s40200‑024‑01396‑5 38932853
    [Google Scholar]
  6. Kim Y. Je Y. Tea consumption and the risks of all-cause, cardiovascular disease, and cancer mortality: A meta-analysis of 38 prospective cohort data sets. Epidemiol. Health 2024 e2024056 10.4178/epih.e2024056 38938012
    [Google Scholar]
  7. Mukhtar H. Ahmad N. Cancer chemoprevention: Future holds in multiple agents. Toxicol. Appl. Pharmacol. 1999 158 3 207 210 10.1006/taap.1999.8721 10438653
    [Google Scholar]
  8. Winiarska-Mieczan A. The potential protective effect of green, black, red and white tea infusions against adverse effect of cadmium and lead during chronic exposure – A rat model study. Regul. Toxicol. Pharmacol. 2015 73 2 521 529 10.1016/j.yrtph.2015.10.007 26472100
    [Google Scholar]
  9. Wu T. Xu J. Chen Y. Liu R. Zhang M. Oolong tea polysaccharide and polyphenols prevent obesity development in Sprague–Dawley rats. Food Nutr. Res. 2018 62 0 10.29219/fnr.v62.1599 30622452
    [Google Scholar]
  10. Dai Y.L. Li Y. Wang Q. Niu F.J. Li K.W. Wang Y.Y. Wang J. Zhou C.Z. Gao L.N. Chamomile: A review of its traditional uses, chemical constituents, pharmacological activities and quality control studies. Molecules 2022 28 1 133 10.3390/molecules28010133 36615326
    [Google Scholar]
  11. Web M.D. Accessed from website Available from https://www.webmd.com/diet/supplement-guide-ginseng
  12. Kochman J. Jakubczyk K. Antoniewicz J. Mruk H. Janda K. Health benefits and chemical composition of matcha green tea: A review. Molecules 2020 26 1 85 10.3390/molecules26010085 33375458
    [Google Scholar]
  13. Rahaman S.T. Mondal S. Flavonoids: A vital resource in healthcare and medicine. Pharm. Pharmacol. Int. J. 2020 8 2 91 104 10.15406/ppij.2020.08.00285
    [Google Scholar]
  14. Yan Z. Zhong Y. Duan Y. Chen Q. Li F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 2020 6 2 115 123 10.1016/j.aninu.2020.01.001 32542190
    [Google Scholar]
  15. Zhang S. Jin J. Chen J. Ercisli S. Chen L. Purine alkaloids in tea plants: Component, biosynthetic mechanism and genetic variation. Beverage Plant Res. 2022 2 1 1 9 10.48130/BPR‑2022‑0013
    [Google Scholar]
  16. Barnes P.J. Theophylline. Am. J. Respir. Crit. Care Med. 2013 188 8 901 906 10.1164/rccm.201302‑0388PP 23672674
    [Google Scholar]
  17. Yu J. Li J. Lin Z. Zhu Y. Feng Z. Ni D. Zeng S. Zeng X. Wang Y. Ning J. Zhang L. Wan X. Zhai X. Dynamic changes and the effects of key procedures on the characteristic aroma compounds of Lu’an Guapian green tea during the manufacturing process. Food Res. Int. 2024 188 114525 10.1016/j.foodres.2024.114525 38823888
    [Google Scholar]
  18. Ho C.T. Zheng X. Li S. Tea aroma formation. Food Sci. Hum. Wellness 2015 4 1 9 27 10.1016/j.fshw.2015.04.001
    [Google Scholar]
  19. Preedy V.R. Tea in health and disease prevention. Elsevier London 2003 42
    [Google Scholar]
  20. Deng W.W. Fei Y. Wang S. Wan X.C. Zhang Z.Z. Hu X.Y. Effect of shade treatment on theanine biosynthesis in Camellia sinensis seedlings. Plant Growth Regul. 2013 71 3 295 299 10.1007/s10725‑013‑9828‑1
    [Google Scholar]
  21. Ozturk B. Seyhan F. Ozdemir I.S. Karadeniz B. Bahar B. Ertas E. Ilgaz S. Change of enzyme activity and quality during the processing of Turkish green tea. Lebensm. Wiss. Technol. 2016 65 318 324 10.1016/j.lwt.2015.07.068
    [Google Scholar]
  22. Yue C. Wang Z. Yang P. Review: The effect of light on the key pigment compounds of photosensitive etiolated tea plant. Bot. Stud. (Taipei, Taiwan) 2021 62 1 21 10.1186/s40529‑021‑00329‑2 34897570
    [Google Scholar]
  23. Shevchuk A. Megías-Pérez R. Zemedie Y. Kuhnert N. Evaluation of carbohydrates and quality parameters in six types of commercial teas by targeted statistical analysis. Food Res. Int. 2020 133 109122 10.1016/j.foodres.2020.109122 32466950
    [Google Scholar]
  24. Baek G.H. Yang S.W. Yun C.I. Lee J.G. Kim Y.J. Determination of methylxanthine contents and risk characterisation for various types of tea in Korea. Food Control 2022 132 108543 10.1016/j.foodcont.2021.108543
    [Google Scholar]
  25. Ratnani S. Malik S. Therapeutic properties of green tea: A Review. J. Multidiscip. Appl. Nat. Sci. 2022 2 2 90 102 10.47352/jmans.2774‑3047.117
    [Google Scholar]
  26. Shi Y. Zhu Y. Ma W. Shi J. Peng Q. Lin Z. Lv H. Comprehensive investigation on non-volatile and volatile metabolites in four types of green teas obtained from the same tea cultivar of Longjing 43 (Camellia sinensis var. sinensis) using the widely targeted metabolomics. Food Chem. 2022 394 133501 10.1016/j.foodchem.2022.133501 35728471
    [Google Scholar]
  27. El-Aswad A.F. Aisu J. Khalifa M.H. Biological activity of tannins extracts from processed Camellia sinensis (black and green tea), Vicia faba and Urtica dioica and Allium cepa essential oil on three economic insects. J. Plant Dis. Prot. 2023 130 3 495 508 10.1007/s41348‑022‑00680‑x
    [Google Scholar]
  28. Flora G.D. Nayak M.K. A brief review of cardiovascular diseases, associated risk factors and current treatment regimes. Curr. Pharm. Des. 2019 25 38 4063 4084 10.2174/1381612825666190925163827 31553287
    [Google Scholar]
  29. Totoń-Żurańska J. Mikolajczyk T.P. Saju B. Guzik T.J. Vascular remodelling in cardiovascular diseases: Hypertension, oxidation, and inflammation. Clin. Sci. (Lond.) 2024 138 13 817 850 10.1042/CS20220797 38920058
    [Google Scholar]
  30. Bedrood Z. Rameshrad M. Hosseinzadeh H. Toxicological effects ofCamellia sinensis (green tea): A review. Phytother. Res. 2018 32 7 1163 1180 10.1002/ptr.6063 29575316
    [Google Scholar]
  31. Ganesan R. Henkels K.M. Wrenshall L.E. Kanaho Y. Di Paolo G. Frohman M.A. Gomez-Cambronero J. Oxidized LDL phagocytosis during foam cell formation in atherosclerotic plaques relies on a PLD2–CD36 functional interdependence. J. Leukoc. Biol. 2018 103 5 867 883 10.1002/JLB.2A1017‑407RR 29656494
    [Google Scholar]
  32. Duffy S.J. Keaney J.F. Jr Holbrook M. Gokce N. Swerdloff P.L. Frei B. Vita J.A. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation 2001 104 2 151 156 10.1161/01.CIR.104.2.151 11447078
    [Google Scholar]
  33. Health encyclopedia. University of Rochester Medical Centre Available from https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=85&contentid=p00236#:~:text=Peripheral%20vascular%20disease%20%28PVD%29%20is%20a%20slow%20and,This%20includes%20the%20arteries%2C%20veins%2C%20or%20lymphatic%20vessels
  34. Bondonno N.P. Murray K. Cassidy A. Bondonno C.P. Lewis J.R. Croft K.D. Kyrø C. Gislason G. Torp-Pedersen C. Scalbert A. Tjønneland A. Hodgson J.M. Dalgaard F. Higher habitual flavonoid intakes are associated with a lower risk of peripheral artery disease hospitalizations. Am. J. Clin. Nutr. 2021 113 1 187 199 10.1093/ajcn/nqaa300 33236045
    [Google Scholar]
  35. Shahjehan R.D. Bhutta B.S. Coronary Artery Disease. StatPearls StatPearls Publishing Treasure Island 2024
    [Google Scholar]
  36. Dludla P.V. Nkambule B.B. Mazibuko-Mbeje S.E. Nyambuya T.M. Orlando P. Silvestri S. Marcheggiani F. Cirilli I. Ziqubu K. Ndevahoma F. Mxinwa V. Mokgalaboni K. Sabbatinelli J. Louw J. Tiano L. Tea consumption and its effects on primary and secondary prevention of coronary artery disease: Qualitative synthesis of evidence from randomized controlled trials. Clin. Nutr. ESPEN 2021 41 77 87 10.1016/j.clnesp.2020.11.006 33487310
    [Google Scholar]
  37. Pham M.H.C. Sigvardsen P.E. Fuchs A. Kühl J.T. Sillesen H. Afzal S. Nordestgaard B.G. Køber L.V. Kofoed K.F. Aortic aneurysms in a general population cohort: Prevalence and risk factors in men and women. Eur. Heart J. Cardiovasc. Imaging 2024 25 9 1235 1243 10.1093/ehjci/jeae103 38662458
    [Google Scholar]
  38. Kaluza J. Stackelberg O. Harris H.R. Björck M. Wolk A. Tea consumption and the risk of abdominal aortic aneurysm. Br. J. Surg. 2022 109 4 346 354 10.1093/bjs/znab468 35237794
    [Google Scholar]
  39. Li Y. Peng J. Karim M.R. Wang B. Effects of green tea (−)-Epigallocatechin-3-Gallate (EGCG) on cardiac function - A review of the therapeutic mechanism and potentials. Mini Rev. Med. Chem. 2022 22 18 2371 2382 10.2174/1389557522666220328161826 35345998
    [Google Scholar]
  40. Kjeldsen S.E. Hypertension and cardiovascular risk: General aspects. Pharmacol. Res. 2018 129 95 99 10.1016/j.phrs.2017.11.003 29127059
    [Google Scholar]
  41. Li D. Wang R. Huang J. Cai Q. Yang C.S. Wan X. Xie Z. Effects and mechanisms of tea regulating blood pressure: Evidences and promises. Nutrients 2019 11 5 1115 10.3390/nu11051115 31109113
    [Google Scholar]
  42. Ras R.T. Zock P.L. Draijer R. Tea consumption enhances endothelial-dependent vasodilation; a meta-analysis. PLoS One 2011 6 3 e16974 10.1371/journal.pone.0016974 21394199
    [Google Scholar]
  43. Woodward K.A. Hopkins N.D. Draijer R. de Graaf Y. Low D.A. Thijssen D.H.J. Acute black tea consumption improves cutaneous vascular function in healthy middle-aged humans. Clin. Nutr. 2018 37 1 242 249 10.1016/j.clnu.2016.12.013 28034564
    [Google Scholar]
  44. 9 Side effects of drinking too much tea. Available from https://www.healthline.com/nutrition/side-effects-of-tea
  45. Haley K.M. Platelet Disorders. Pediatr. Rev. 2020 41 5 224 235 10.1542/pir.2018‑0359 32358028
    [Google Scholar]
  46. Yang C.S. Landau J.M. Effects of tea consumption on nutrition and health. J. Nutr. 2000 130 10 2409 2412 10.1093/jn/130.10.2409 11015465
    [Google Scholar]
  47. Huang H.C. Lin J.K. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet. Food Funct. 2012 3 2 170 177 10.1039/C1FO10157A 22127373
    [Google Scholar]
  48. Zorov D.B. Juhaszova M. Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014 94 3 909 950 10.1152/physrev.00026.2013 24987008
    [Google Scholar]
  49. Yang C. Lambert J. Ju J. Lu G. Sang S. Tea and cancer prevention: Molecular mechanisms and human relevance. Toxicol. Appl. Pharmacol. 2007 224 3 265 273 10.1016/j.taap.2006.11.024 17234229
    [Google Scholar]
  50. Dai J. Mumper R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010 15 10 7313 7352 10.3390/molecules15107313 20966876
    [Google Scholar]
  51. Xu R. Yang K. Li S. Dai M. Chen G. Effect of green tea consumption on blood lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. J. 2020 19 1 48 10.1186/s12937‑020‑00557‑5 32434539
    [Google Scholar]
  52. Yu J. Li W. Xiao X. Huang Q. Yu J. Yang Y. Han T. Zhang D. Niu X. (−)-Epicatechin gallate blocks the development of atherosclerosis by regulating oxidative stress in vivo and in vitro. Food Funct. 2021 12 18 8715 8727 10.1039/D1FO00846C 34365492
    [Google Scholar]
  53. Ahmed S. Rahman A. Hasnain A. Lalonde M. Goldberg V.M. Haqqi T.M. Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1β-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radic. Biol. Med. 2002 33 8 1097 1105 10.1016/S0891‑5849(02)01004‑3 12374621
    [Google Scholar]
  54. Reddy A.T. Lakshmi S.P. Maruthi Prasad E. Varadacharyulu N.C. Kodidhela L.D. Epigallocatechin gallate suppresses inflammation in human coronary artery endothelial cells by inhibiting NF-κB. Life Sci. 2020 258 118136 10.1016/j.lfs.2020.118136 32726662
    [Google Scholar]
  55. Hossen I. Kaiqi Z. Hua W. Junsong X. Mingquan H. Yanping C. Epigallocatechin gallate ( EGCG ) inhibits lipopolysaccharide‐induced inflammation in RAW 264.7 macrophage cells via modulating nuclear factor kappa‐light‐chain enhancer of activated B cells ( NF‐ κ B ) signaling pathway. Food Sci. Nutr. 2023 11 8 4634 4650 10.1002/fsn3.3427 37576060
    [Google Scholar]
  56. Tran P.L.C.H.B. Kim S.A. Choi H.S. Yoon J.H. Ahn S.G. Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo BMC Cancer 2010 10 1 276 10.1186/1471‑2407‑10‑276 20537126
    [Google Scholar]
  57. Kawai K. Tsuno N.H. Kitayama J. Okaji Y. Yazawa K. Asakage M. Hori N. Watanabe T. Takahashi K. Nagawa H. Epigallocatechin gallate attenuates adhesion and migration of CD8+ T cells by binding to CD11b. J. Allergy Clin. Immunol. 2004 113 6 1211 1217 10.1016/j.jaci.2004.02.044 15208607
    [Google Scholar]
  58. Giménez-Bastida J.A. González-Sarrías A. Laparra-Llopis J.M. Schneider C. Espín J.C. Targeting Mammalian 5-Lipoxygenase by dietary phenolics as an anti-inflammatory mechanism: A systematic review. Int. J. Mol. Sci. 2021 22 15 7937 10.3390/ijms22157937 34360703
    [Google Scholar]
  59. Lee M.H. Kwon B.J. Koo M.A. You K.E. Park J.C. Mitogenesis of vascular smooth muscle cell stimulated by platelet-derived growth factor-bb is inhibited by blocking of intracellular signaling by epigallocatechin-3-O-gallate. Oxid. Med. Cell. Longev. 2013 2013 1 10 10.1155/2013/827905 24307927
    [Google Scholar]
  60. Hwang K.C. Lee K.H. Jang Y. Yun Y.P. Chung K.H. Epigallocatechin-3-gallate inhibits basic fibroblast growth factor-induced intracellular signaling transduction pathway in rat aortic smooth muscle cells. J. Cardiovasc. Pharmacol. 2002 39 2 271 277 10.1097/00005344‑200202000‑00014 11791013
    [Google Scholar]
  61. Nuryana Isa Andriani Ade Juanssilfero Ario Fahrurrozi Fahrurrozi Catechin contents, antioxidant and antibacterial activities of different types of Indonesian Tea Annales. Bogorienses 2020 2 106 113
    [Google Scholar]
  62. Peluso I. Serafini M. Antioxidants from black and green tea: From dietary modulation of oxidative stress to pharmacological mechanisms. Br. J. Pharmacol. 2017 174 11 1195 1208 10.1111/bph.13649 27747873
    [Google Scholar]
  63. Csupor D. Boros K. Jedlinszki N. Theanine and Caffeine content of infusions prepared from commercial tea samples. Pharmacogn. Mag. 2016 12 45 75 79 10.4103/0973‑1296.176061 27019564
    [Google Scholar]
  64. Li J. Zeng L. Liao Y. Tang J. Yang Z. Evaluation of the contribution of trichomes to metabolite compositions of tea (Camellia sinensis) leaves and their products. Lebensm. Wiss. Technol. 2020 122 109023 10.1016/j.lwt.2020.109023
    [Google Scholar]
  65. Determination of tannin content by titrimetric method from different types of tea. J. Chem. Pharm. Res. 2015 7 238 241
    [Google Scholar]
  66. Dreosti I.E. Antioxidant polyphenols in tea, cocoa, and wine. Nutrition 2000 16 7-8 692 694 10.1016/S0899‑9007(00)00304‑X 10906600
    [Google Scholar]
  67. Chen D. Ding Y. Chen G. Sun Y. Zeng X. Ye H. Components identification and nutritional value exploration of tea (Camellia sinensis L.) flower extract: Evidence for functional food. Food Res. Int. 2020 132 109100 10.1016/j.foodres.2020.109100 32331644
    [Google Scholar]
  68. Xu C. Liang L. Li Y. Yang T. Fan Y. Mao X. Wang Y. Studies of quality development and major chemical composition of green tea processed from tea with different shoot maturity. Lebensm. Wiss. Technol. 2021 142 111055 10.1016/j.lwt.2021.111055
    [Google Scholar]
  69. Locher R. Emmanuele L. Suter P.M. Vetter W. Barton M. Green tea polyphenols inhibit human vascular smooth muscle cell proliferation stimulated by native low-density lipoprotein. Eur. J. Pharmacol. 2002 434 1-2 1 7 10.1016/S0014‑2999(01)01535‑7 11755158
    [Google Scholar]
  70. Kim D.W. Park Y.S. Kim Y.G. Piao H. Kwon J.S. Hwang K.K. Youn T.J. Park J.B. Yun Y.P. Sachinidis A. Kim C.H. Cho M.C. Ahn H.Y. Local delivery of green tea catechins inhibits neointimal formation in the rat carotid artery injury model. Heart Vessels 2004 19 5 242 247 10.1007/s00380‑004‑0768‑6 15372300
    [Google Scholar]
  71. Won S.M. Park Y.H. Kim H.J. Park K.M. Lee W.J. Catechins inhibit angiotensin II-induced vascular smooth muscle cell proliferation via mitogen-activated protein kinase pathway. Exp. Mol. Med. 2006 38 5 525 534 10.1038/emm.2006.62 17079869
    [Google Scholar]
  72. Maeda K. Kuzuya M. Cheng X.W. Asai T. Kanda S. Tamaya-Mori N. Sasaki T. Shibata T. Iguchi A. Green tea catechins inhibit the cultured smooth muscle cell invasion through the basement barrier. Atherosclerosis 2003 166 1 23 30 10.1016/S0021‑9150(02)00302‑7 12482547
    [Google Scholar]
  73. Yang T.T.C. Koo M.W.L. Hypocholesterolemic effects of Chinese tea. Pharmacol. Res. 1997 35 6 505 512 10.1006/phrs.1997.0176 9356199
    [Google Scholar]
  74. Yang T.T.C. Koo M.W.L. Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion. Life Sci. 1999 66 5 411 423 10.1016/S0024‑3205(99)00607‑4 10670829
    [Google Scholar]
  75. Löest H.B. Noh S.K. Koo S.I. Green tea extract inhibits the lymphatic absorption of cholesterol and α-tocopherol in ovariectomized rats. J. Nutr. 2002 132 6 1282 1288 10.1093/jn/132.6.1282 12042447
    [Google Scholar]
  76. Chan P.T. Fong W.P. Cheung Y.L. Huang Y. Ho W.K.K. Chen Z.Y. Jasmine green tea epicatechins are hypolipidemic in hamsters (Mesocricetus auratus) fed a high fat diet. J. Nutr. 1999 129 6 1094 1101 10.1093/jn/129.6.1094 10356071
    [Google Scholar]
  77. Hasegawa N. Yamda N. Mori M. Powdered green tea has antilipogenic effect on Zucker rats fed a high‐fat diet. Phytother. Res. 2003 17 5 477 480 10.1002/ptr.1177 12748982
    [Google Scholar]
  78. Ouyang P. Peng W. Lai W. Xu A. J. First Mil. Med. Univ. 2004 24 975 979 [Green tea polyphenols inhibit low-density lipoprotein-induced proliferation of rat vascular smooth muscle cells].
    [Google Scholar]
  79. Hofmann C.S. Sonenshein G.E. Green tea polyphenol epigallocatechin‐3 gallate induces apoptosis of proliferating vascular smooth muscle cells via activation of p53. FASEB J. 2003 17 6 702 704 10.1096/fj.02‑0665fje 12586742
    [Google Scholar]
  80. Miura Y. Chiba T. Miura S. Tomita I. Koizumi H. Umegaki K. Hara Y. Ikeda M. Tomita T. Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice. J. Nutr. 2001 131 1 27 32 10.1093/jn/131.1.27 11208934
    [Google Scholar]
  81. Ercisli S. Orhan E. Ozdemir O. Sengul M. Gungor N. Seasonal variation of total phenolic, antioxidant activity, plant nutritional nlms, and fatty acids in tea leaves ( Camellia sinensis var. sinensis clone Derepazari 7) grown in Turkey. Pharm. Biol. 2008 46 10-11 683 687 10.1080/13880200802215818
    [Google Scholar]
  82. Zhuang Z. Mi Z. Kong L. Wang Q. Schweiger A.H. Wan Y. Li H. Accumulation of potentially toxic nlms in Chinese tea (Camellia sinensis): Towards source apportionment and health risk assessment. Sci. Total Environ. 2022 851 Pt 1 158018 10.1016/j.scitotenv.2022.158018 35987241
    [Google Scholar]
  83. Tsai Y-J. Chen B-H. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3. Int. J. Nanomedicine 2016 11 1907 1926 27226712
    [Google Scholar]
  84. Fakae L.B. Stevenson C.W. Zhu X.Q. Elsheikha H.M. In vitro activity of Camellia sinensis (green tea) against trophozoites and cysts of Acanthamoeba castellanii. Int. J. Parasitol. Drugs Drug Resist. 2020 13 59 72 10.1016/j.ijpddr.2020.05.001 32512260
    [Google Scholar]
  85. Liu M. Xie F. Cao R. Qi X. Chen X. Effect of different cover cultivations in later summer on aroma constituents of Autumn Tea (Camellia sinensis L.). J. Agric. Chem. Environ. 2014 3 4 1 6 10.4236/jacen.2014.34B001
    [Google Scholar]
  86. Chen Y.L. Duan J. Jiang Y.M. Shi J. Peng L. Xue S. Kakuda Y. Production, quality, and biological effects of Oolong Tea ( Camellia sinensis ). Food Rev. Int. 2010 27 1 1 15 10.1080/87559129.2010.518294
    [Google Scholar]
  87. Bornhoeft J. Castaneda D. Nemoseck T. Wang P. Henning S.M. Hong M.Y. The protective effects of green tea polyphenols: lipid profile, inflammation, and antioxidant capacity in rats fed an atherogenic diet and dextran sodium sulfate. J. Med. Food 2012 15 8 726 732 10.1089/jmf.2011.0258 22846079
    [Google Scholar]
  88. Suzuki T. The participation of S ‐adenosylmethionine in the biosynthesis of caffeine in the tea plant. FEBS Lett. 1972 24 1 18 20 10.1016/0014‑5793(72)80815‑9
    [Google Scholar]
  89. Koshiishi C. Kato A. Yama S. Crozier A. Ashihara H. A new caffeine biosynthetic pathway in tea leaves: Utilisation of adenosine released from the S ‐adenosyl‐ L ‐methionine cycle. FEBS Lett. 2001 499 1-2 50 54 10.1016/S0014‑5793(01)02512‑1 11418110
    [Google Scholar]
  90. Muhlemann J.K. Klempien A. Dudareva N. Floral volatiles: From biosynthesis to function. Plant Cell Environ. 2014 37 8 1936 1949 10.1111/pce.12314 24588567
    [Google Scholar]
  91. Dudareva N. Andersson S. Orlova I. Gatto N. Reichelt M. Rhodes D. Boland W. Gershenzon J. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc. Natl. Acad. Sci. USA 2005 102 3 933 938 10.1073/pnas.0407360102 15630092
    [Google Scholar]
  92. Karunanithi P.S. Zerbe P. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. Front. Plant Sci. 2019 10 1166 10.3389/fpls.2019.01166 31632418
    [Google Scholar]
/content/journals/npj/10.2174/0122103155341103241025054033
Loading
/content/journals/npj/10.2174/0122103155341103241025054033
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cardiovascular system ; Tea ; atherosclerosis ; beverage ; antioxidants
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test