Skip to content
2000
image of Enhancing Therapeutic Impact of Curcumins, through Development of Monocarbonyl Analogues of Curcumin for Improved Bioavailability and Activity in Healthcare

Abstract

Turmeric () is renowned for its therapeutic properties, such as antitumor, antioxidant, anticancer, and antiinflammatory effects. Despite its safety, the usefulness of curcumin, a prominent polyphenolic compound derived from the rhizome of is limited by factors such as low bioavailability, poor absorption, rapid metabolism, and quick systemic elimination. Despite these challenges, researchers continually explore therapeutic potential of curcumin’s through the development of novel delivery systems and chemical modifications such as monocarbonyl analogues of curcumin (MACs) which lack one carbonyl group present in the native structure. Recent studies on MACs have shown promising antiinflammatory, anticancer, and antidiabetic properties. In summary, the development of MACs and other chemical modifications of curcumin presents a promising avenue to improve the bioavailability and pharmacological activities of this natural compound. The objective of this review is to understand structure-activity relationships that will guide further investigations and applications of MACs in therapeutics and help in enhancing curcumin’s bioavailability and pharmacological activities.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155307922241022143752
2024-10-30
2025-06-20
Loading full text...

Full text loading...

References

  1. Butler M.S. The role of natural product chemistry in drug discovery. J. Nat. Prod. 2004 67 12 2141 2153 10.1021/np040106y 15620274
    [Google Scholar]
  2. Priyadarsini K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014 19 12 20091 20112 10.3390/molecules191220091 25470276
    [Google Scholar]
  3. Prasad S Aggarwal BB Turmeric, the golden spice. Herbal Medicine: Biomolecular and Clinical Aspects CRC Press/Taylor and Francis Boca Raton 2nd ed 2011 10.1201/b10787‑14
    [Google Scholar]
  4. Semsri S. Krig S.R. Kotelawala L. Sweeney C.A. Anuchapreeda S. Inhibitory mechanism of pure curcumin on Wilms’ tumor 1 ( WT1 ) gene expression through the PKCα signaling pathway in leukemic K562 cells. FEBS Lett. 2011 585 14 2235 2242 10.1016/j.febslet.2011.05.043 21658388
    [Google Scholar]
  5. Galano A. Álvarez-Diduk R. Ramírez-Silva M.T. Alarcón-Ángeles G. Rojas-Hernández A. Role of the reacting free radicals on the antioxidant mechanism of curcumin. Chem. Phys. 2009 363 1-3 13 23 10.1016/j.chemphys.2009.07.003
    [Google Scholar]
  6. Basile V. Ferrari E. Lazzari S. Belluti S. Pignedoli F. Imbriano C. Curcumin derivatives: Molecular basis of their anti-cancer activity. Biochem. Pharmacol. 2009 78 10 1305 1315 10.1016/j.bcp.2009.06.105 19580791
    [Google Scholar]
  7. Cooney J.M. Barnett M.P.G. Dommels Y.E.M. Brewster D. Butts C.A. McNabb W.C. Laing W.A. Roy N.C. A combined omics approach to evaluate the effects of dietary curcumin on colon inflammation in the Mdr1a−/− mouse model of inflammatory bowel disease. J. Nutr. Biochem. 2016 27 181 192 10.1016/j.jnutbio.2015.08.030 26437580
    [Google Scholar]
  8. Amalraj A. Pius A. Gopi S. Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J. Tradit. Complement. Med. 2017 7 2 205 233 10.1016/j.jtcme.2016.05.005 28417091
    [Google Scholar]
  9. Lestari M.L.A.D. Indrayanto G. Profiles of drug substances, excipients and related methodology. Academic Press USA 2014 39 113 204
    [Google Scholar]
  10. Kulac M. Aktas C. Tulubas F. Uygur R. Kanter M. Erboga M. Ceber M. Topcu B. Ozen O.A. The effects of topical treatment with curcumin on burn wound healing in rats. J. Mol. Histol. 2013 44 1 83 90 10.1007/s10735‑012‑9452‑9 23054142
    [Google Scholar]
  11. Rodrigues FC Kumar NA Thakur G The potency of heterocyclic curcumin analogues: An evidence-based review. Pharmacol Res. 2021 166 105489
    [Google Scholar]
  12. Lopresti A.L. The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects? Adv. Nutr. 2018 9 1 41 50 10.1093/advances/nmx011 29438458
    [Google Scholar]
  13. Huma Z. Gupta A. Javed I. Das R. Hussain S.Z. Mumtaz S. Hussain I. Rotello V.M. Cationic silver nanoclusters as potent antimicrobials against multidrug-resistant bacteria. ACS Omega 2018 3 12 16721 16727 10.1021/acsomega.8b02438 30613808
    [Google Scholar]
  14. Afzal O Yusuf M Ahsan MJ Altamimi ASA Bakht MA Ali A Chemical modification of Curcumin into its semi-synthetic analogues bearing pyrimidinone moiety as anticancer agents. Plants 2022 11 20
    [Google Scholar]
  15. Lin L. Liu Y. Li H. Li P-K. Fuchs J. Shibata H. Iwabuchi Y. Lin J. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. Br. J. Cancer 2011 105 2 212 220 10.1038/bjc.2011.200 21694723
    [Google Scholar]
  16. Gupta S.C. Patchva S. Aggarwal B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013 15 1 195 218 10.1208/s12248‑012‑9432‑8 23143785
    [Google Scholar]
  17. Nelson K.M. Dahlin J.L. Bisson J. Graham J. Pauli G.F. Walters M.A. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017 60 5 1620 1637 10.1021/acs.jmedchem.6b00975 28074653
    [Google Scholar]
  18. Yu H. Geng W.C. Zheng Z. Gao J. Guo D.S. Wang Y. Facile fluorescence monitoring of gut microbial metabolite Trimethylamine N -oxide via molecular recognition of Guanidinium-Modified Calixarene. Theranostics 2019 9 16 4624 4632 10.7150/thno.33459 31367245
    [Google Scholar]
  19. Noureddin S.A. El-Shishtawy R.M. Al-Footy K.O. Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur. J. Med. Chem. 2019 182 111631 10.1016/j.ejmech.2019.111631 31479974
    [Google Scholar]
  20. Parikh A. Kathawala K. Tan C.C. Garg S. Zhou X.F. Development of a novel oral delivery system of edaravone for enhancing bioavailability. Int. J. Pharm. 2016 515 1-2 490 500 10.1016/j.ijpharm.2016.10.052 27789367
    [Google Scholar]
  21. Gao D. Liu H. Lin J.M. Wang Y. Jiang Y. Characterization of drug permeability in Caco-2 monolayers by mass spectrometry on a membrane-based microfluidic device. Lab Chip 2013 13 5 978 985 10.1039/c2lc41215b 23340920
    [Google Scholar]
  22. Shoba G. Joy D. Joseph T. Majeed M. Rajendran R. Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998 64 4 353 356 10.1055/s‑2006‑957450 9619120
    [Google Scholar]
  23. Tan S. Rupasinghe T.W.T. Tull D.L. Boughton B. Oliver C. McSweeny C. Gras S.L. Augustin M.A. Degradation of curcuminoids by in vitro pure culture fermentation. J. Agric. Food Chem. 2014 62 45 11005 11015 10.1021/jf5031168 25317751
    [Google Scholar]
  24. Hassaninasab A. Hashimoto Y. Tomita-Yokotani K. Kobayashi M. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proc. Natl. Acad. Sci. USA 2011 108 16 6615 6620 10.1073/pnas.1016217108 21467222
    [Google Scholar]
  25. Ireson C. Orr S. Jones D.J. Verschoyle R. Lim C.K. Luo J.L. Howells L. Plummer S. Jukes R. Williams M. Steward W.P. Gescher A. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res. 2001 61 3 1058 1064 11221833
    [Google Scholar]
  26. Hoehle S.I. Pfeiffer E. Sólyom A.M. Metzler M. Metabolism of curcuminoids in tissue slices and subcellular fractions from rat liver. J. Agric. Food Chem. 2006 54 3 756 764 10.1021/jf058146a 16448179
    [Google Scholar]
  27. Ireson C.R. Jones D.J. Orr S. Coughtrie M.W. Boocock D.J. Williams M.L. Farmer P.B. Steward W.P. Gescher A.J. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol. Biomarkers Prev. 2002 11 1 105 111 11815407
    [Google Scholar]
  28. Pan M.H. Huang T.M. Lin J.K. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab. Dispos. 1999 27 4 486 494 10101144
    [Google Scholar]
  29. Aggarwal B. Deb L. Prasad S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules 2014 20 1 185 205 10.3390/molecules20010185 25547723
    [Google Scholar]
  30. Wu J.C. Tsai M.L. Lai C.S. Wang Y.J. Ho C.T. Pan M.H. Chemopreventative effects of tetrahydrocurcumin on human diseases. Food Funct. 2014 5 1 12 17 10.1039/C3FO60370A 24220621
    [Google Scholar]
  31. Griesser M. Pistis V. Suzuki T. Tejera N. Pratt D.A. Schneider C. Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. J. Biol. Chem. 2011 286 2 1114 1124 10.1074/jbc.M110.178806 21071447
    [Google Scholar]
  32. Wang Y.J. Pan M.H. Cheng A.L. Lin L.I. Ho Y.S. Hsieh C.Y. Lin J.K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 1997 15 12 1867 1876 10.1016/S0731‑7085(96)02024‑9 9278892
    [Google Scholar]
  33. Das R. Roy A. Dutta N. Majumder H.K. Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani. Apoptosis 2008 13 7 867 882 10.1007/s10495‑008‑0224‑7 18506627
    [Google Scholar]
  34. Hail N. Jr Mitochondrial reactive oxygen species affect sensitivity to curcumin-induced apoptosis. Free Radic. Biol. Med. 2008 44 7 1382 1393 10.1016/j.freeradbiomed.2007.12.034 18206126
    [Google Scholar]
  35. Choi H. Chun Y.S. Shin Y.J. Ye S.K. Kim M.S. Park J.W. Curcumin attenuates cytochrome P450 induction in response to 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin by ROS‐dependently degrading AhR and ARNT. Cancer Sci. 2008 99 12 2518 2524 10.1111/j.1349‑7006.2008.00984.x 19018768
    [Google Scholar]
  36. Wan R. Mo Y. Zhang X. Chien S. Tollerud D.J. Zhang Q. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation. Toxicol. Appl. Pharmacol. 2008 233 2 276 285 10.1016/j.taap.2008.08.022 18835569
    [Google Scholar]
  37. Khan M.A. Gahlot S. Majumdar S. Oxidative stress induced by curcumin promotes the death of cutaneous T-cell lymphoma (HuT-78) by disrupting the function of several molecular targets. Mol. Cancer Ther. 2012 11 9 1873 1883 10.1158/1535‑7163.MCT‑12‑0141 22653966
    [Google Scholar]
  38. Gordon O.N. Luis P.B. Ashley R.E. Osheroff N. Schneider C. Oxidative transformation of demethoxy-and bisdemethoxycurcumin: products, mechanism of formation, and poisoning of human topoisomerase IIα. Chem. Res. Toxicol. 2015 28 5 989 996 10.1021/acs.chemrestox.5b00009 25806475
    [Google Scholar]
  39. Gordon O.N. Schneider C. Vanillin and ferulic acid: Not the major degradation products of curcumin. Trends Mol. Med. 2012 18 7 361 363 10.1016/j.molmed.2012.04.011 22652257
    [Google Scholar]
  40. Gordon O.N. Luis P.B. Sintim H.O. Schneider C. Unraveling curcumin degradation: Autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione. J. Biol. Chem. 2015 290 8 4817 4828 10.1074/jbc.M114.618785 25564617
    [Google Scholar]
  41. Martín-Cordero C. López-Lázaro M. Gálvez M. Jesús Ayuso M. Curcumin as a DNA topoisomerase II poison. J. Enzyme Inhib. Med. Chem. 2003 18 6 505 509 10.1080/14756360310001613085 15008515
    [Google Scholar]
  42. López-Lázaro M. Willmore E. Jobson A. Gilroy K.L. Curtis H. Padget K. Austin C.A. Curcumin induces high levels of topoisomerase I- and II-DNA complexes in K562 leukemia cells. J. Nat. Prod. 2007 70 12 1884 1888 10.1021/np070332i 18076140
    [Google Scholar]
  43. Ketron A.C. Gordon O.N. Schneider C. Osheroff N. Oxidative metabolites of curcumin poison human type II topoisomerases. Biochemistry 2013 52 1 221 227 10.1021/bi3014455 23253398
    [Google Scholar]
  44. Litwinienko G. Ingold K.U. Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J. Org. Chem. 2004 69 18 5888 5896 10.1021/jo049254j 15373474
    [Google Scholar]
  45. Litwinienko G. Ingold K.U. Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc. Chem. Res. 2007 40 3 222 230 10.1021/ar0682029 17370994
    [Google Scholar]
  46. Kornblum N. DeLaMare H.E. The base catalyzed decomposition of a dialkyl peroxide. J. Am. Chem. Soc. 1951 73 2 880 881 10.1021/ja01146a542
    [Google Scholar]
  47. Hamberg M. Samuelsson B. Oxygenation of unsaturated fatty acids by the vesicular gland of sheep. J. Biol. Chem. 1967 242 22 5344 5354 10.1016/S0021‑9258(18)99434‑2 6070852
    [Google Scholar]
  48. Schneider C. Boeglin W.E. Yin H. Porter N.A. Brash A.R. Intermolecular peroxyl radical reactions during autoxidation of hydroxy and hydroperoxy arachidonic acids generate a novel series of epoxidized products. Chem. Res. Toxicol. 2008 21 4 895 903 10.1021/tx700357u 18324788
    [Google Scholar]
  49. Schneider C. Porter N.A. Brash A.R. Routes to 4-hydroxynonenal: Fundamental issues in the mechanisms of lipid peroxidation. J. Biol. Chem. 2008 283 23 15539 15543 10.1074/jbc.R800001200 18285327
    [Google Scholar]
  50. Prasad S. Tyagi A.K. Aggarwal B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res. Treat. 2014 46 1 2 18 10.4143/crt.2014.46.1.2 24520218
    [Google Scholar]
  51. Rodrigues F.C. Anil Kumar N.V. Thakur G. Developments in the anticancer activity of structurally modified curcumin: An up-to-date review. Eur. J. Med. Chem. 2019 177 76 104 10.1016/j.ejmech.2019.04.058 31129455
    [Google Scholar]
  52. Pandey A. Chaturvedi M. Mishra S. Kumar P. Somvanshi P. Chaturvedi R. Reductive metabolites of curcumin and their therapeutic effects. Heliyon 2020 6 11 e05469 10.1016/j.heliyon.2020.e05469 33241148
    [Google Scholar]
  53. Wiggers H.J. Zaioncz S. Cheleski J. Mainardes R.M. Khalil N.M. Curcumin, a multitarget phytochemical. Stud. Nat. Prod. Chem. 2017 53 243 276 10.1016/B978‑0‑444‑63930‑1.00007‑7
    [Google Scholar]
  54. Wang S. Peng X. Cui L. Li T. Yu B. Ma G. Ba X. Synthesis of water-soluble curcumin derivatives and their inhibition on lysozyme amyloid fibrillation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018 190 89 95 10.1016/j.saa.2017.09.010 28915469
    [Google Scholar]
  55. Hsieh M.T. Chang L.C. Hung H.Y. Lin H.Y. Shih M.H. Tsai C.H. Kuo S.C. Lee K.H. New bis(hydroxymethyl) alkanoate curcuminoid derivatives exhibit activity against triple-negative breast cancer in vitro and in vivo Eur. J. Med. Chem. 2017 131 141 151 10.1016/j.ejmech.2017.03.006 28319780
    [Google Scholar]
  56. Sribalan R. Kirubavathi M. Banuppriya G. Padmini V. Synthesis and biological evaluation of new symmetric curcumin derivatives. Bioorg. Med. Chem. Lett. 2015 25 19 4282 4286 10.1016/j.bmcl.2015.07.088 26264500
    [Google Scholar]
  57. Fang X. Fang L. Gou S. Cheng L. Design and synthesis of dimethylaminomethyl-substituted curcumin derivatives/analogues: Potent antitumor and antioxidant activity, improved stability and aqueous solubility compared with curcumin. Bioorg. Med. Chem. Lett. 2013 23 5 1297 1301 10.1016/j.bmcl.2012.12.098 23357628
    [Google Scholar]
  58. Qudjani E. Iman M. Davood A. Ramandi M.F. Shafiee A. Design and synthesis of curcumin-like diarylpentanoid analogues as potential anticancer agents. Recent Pat Anticancer Drug Discov. 2016 11 3 342 351 10.2174/1574892811666160420141613 27094172
    [Google Scholar]
  59. Mohd Aluwi M.F.F. Rullah K. Yamin B.M. Leong S.W. Abdul Bahari M.N. Lim S.J. Mohd Faudzi S.M. Jalil J. Abas F. Mohd Fauzi N. Ismail N.H. Jantan I. Lam K.W. Synthesis of unsymmetrical monocarbonyl curcumin analogues with potent inhibition on prostaglandin E2 production in LPS-induced murine and human macrophages cell lines. Bioorg. Med. Chem. Lett. 2016 26 10 2531 2538 10.1016/j.bmcl.2016.03.092 27040659
    [Google Scholar]
  60. Zhu H. Xu T. Qiu C. Wu B. Zhang Y. Chen L. Xia Q. Li C. Zhou B. Liu Z. Liang G. Synthesis and optimization of novel allylated mono-carbonyl analogs of curcumin (MACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI) in rats. Eur. J. Med. Chem. 2016 121 181 193 10.1016/j.ejmech.2016.05.041 27240273
    [Google Scholar]
  61. Zhang X. Chen M. Zou P. Kanchana K. Weng Q. Chen W. Zhong P. Ji J. Zhou H. He L. Liang G. Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells. BMC Cancer 2015 15 1 866 10.1186/s12885‑015‑1851‑3 26546056
    [Google Scholar]
  62. Emam DR Alhajoj AM Elattar KM Kheder NA Fadda AA Synthesis and evaluation of curcuminoid analogues as antioxidant and antibacterial agents. Molecules 2017 22 6 971 10.3390/molecules22060971
    [Google Scholar]
  63. Tu Z.S. Wang Q. Sun D.D. Dai F. Zhou B. Design, synthesis, and evaluation of curcumin derivatives as Nrf2 activators and cytoprotectors against oxidative death. Eur. J. Med. Chem. 2017 134 72 85 10.1016/j.ejmech.2017.04.008 28399452
    [Google Scholar]
  64. Kumar P. Kandi S.K. Manohar S. Mukhopadhyay K. Rawat D.S. Monocarbonyl Curcuminoids with improved stability as antibacterial agents against Staphylococcus aureus and their mechanistic studies. ACS Omega 2019 4 1 675 687 10.1021/acsomega.8b02625
    [Google Scholar]
  65. Yusuf A.S. Sada I. Hassan Y. Olomola T.O. Adeyemi C.M. Ajibade S.O. Synthesis, antimalarial activity, and docking studies of Monocarbonyl analogues of Curcumin. An. Univ. Ovidius Constanta Ser. Chim. 2018 29 2 92 96 10.2478/auoc‑2018‑0013
    [Google Scholar]
  66. Shetty D. Kim Y. Shim H. Snyder J. Eliminating the heart from the curcumin molecule: Monocarbonyl curcumin mimics (MACs). Molecules 2014 20 1 249 292 10.3390/molecules20010249 25547726
    [Google Scholar]
  67. Zheng D. Huang C. Huang H. Zhao Y. Khan M.R.U. Zhao H. Huang L. Antibacterial mechanism of Curcumin: A review. Chem. Biodivers. 2020 17 8 e2000171 10.1002/cbdv.202000171 32533635
    [Google Scholar]
  68. Kumar N. Khan S.I. Beena Rajalakshmi G. Kumaradhas P. Rawat D.S. Synthesis, antimalarial activity and cytotoxicity of substituted 3,6-diphenyl-[1,2,4,5]tetraoxanes. Bioorg. Med. Chem. 2009 17 15 5632 5638 10.1016/j.bmc.2009.06.020 19574054
    [Google Scholar]
  69. Polaquini C.R. Marques B.C. Ayusso G.M. Morão L.G. Sardi J.C.O. Campos D.L. Silva I.C. Cavalca L.B. Scheffers D.J. Rosalen P.L. Pavan F.R. Ferreira H. Regasini L.O. Antibacterial activity of a new monocarbonyl analog of curcumin MAC 4 is associated with divisome disruption. Bioorg. Chem. 2021 109 104668 10.1016/j.bioorg.2021.104668 33601139
    [Google Scholar]
  70. Nagargoje A.A. Akolkar S.V. Siddiqui M.M. Subhedar D.D. Sangshetti J.N. Khedkar V.M. Shingate B.B. Quinoline based monocarbonyl curcumin analogs as potential antifungal and antioxidant agents: Synthesis, bioevaluation and molecular docking study. Chem. Biodivers. 2020 17 2 e1900624 10.1002/cbdv.201900624 31863703
    [Google Scholar]
  71. Jamil S.N.H. Ali A.H. Feroz S.R. Lam S.D. Agustar H.K. Mohd Abd Razak M.R. Latip J. Curcumin and its derivatives as potential antimalarial and anti-inflammatory agents: A review on structure–activity relationship and mechanism of action. Pharmaceuticals 2023 16 4 609 10.3390/ph16040609 37111366
    [Google Scholar]
  72. Anti-inflammatory diet 101: How to reduce inflammation naturally 2022 Available from https://www.healthline.com/nutrition/anti-inflammatory-diet-101#what-it-is
  73. Liang G. Li X. Chen L. Yang S. Wu X. Studer E. Gurley E. Hylemon P.B. Ye F. Li Y. Zhou H. Synthesis and anti-inflammatory activities of mono-carbonyl analogues of curcumin. Bioorg. Med. Chem. Lett. 2008 18 4 1525 1529 10.1016/j.bmcl.2007.12.068 18234497
    [Google Scholar]
  74. Sandur S.K. Pandey M.K. Sung B. Ahn K.S. Murakami A. Sethi G. Limtrakul P. Badmaev V. Aggarwal B.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 2007 28 8 1765 1773 10.1093/carcin/bgm123 17522064
    [Google Scholar]
  75. Dohutia C. Chetia D. Gogoi K. Bhattacharyya D.R. Sarma K. Molecular docking, synthesis and in vitro antimalarial evaluation of certain novel curcumin analogues. Braz. J. Pharm. Sci. 2018 53 4 10.1590/s2175‑97902017000400084
    [Google Scholar]
  76. Liang G. Yang S. Zhou H. Shao L. Huang K. Xiao J. Huang Z. Li X. Synthesis, crystal structure and anti-inflammatory properties of curcumin analogues. Eur. J. Med. Chem. 2009 44 2 915 919 10.1016/j.ejmech.2008.01.031 18336957
    [Google Scholar]
  77. Pan Y. Wang Y. Cai L. Cai Y. Hu J. Yu C. Li J. Feng Z. Yang S. Li X. Liang G. Inhibition of high glucose‐induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats. Br. J. Pharmacol. 2012 166 3 1169 1182 10.1111/j.1476‑5381.2012.01854.x 22242942
    [Google Scholar]
  78. Liang G Zhou H Wang Y Gurley EC Feng B Chen L Inhibition of LPS-induced production of inflammatory factors in the macrophages by mono-carbonyl analogues of curcumin J Cell Mol Med 2009 13 9B 3370
    [Google Scholar]
  79. Zhao C. Cai Y. He X. Li J. Zhang L. Wu J. Zhao Y. Yang S. Li X. Li W. Liang G. Synthesis and anti-inflammatory evaluation of novel mono-carbonyl analogues of curcumin in LPS-stimulated RAW 264.7 macrophages. Eur. J. Med. Chem. 2010 45 12 5773 5780 10.1016/j.ejmech.2010.09.037 20934787
    [Google Scholar]
  80. Rampogu S. Balasubramaniyam T. Lee J.H. Curcumin Chalcone derivatives database (CCDD): A python framework for natural compound derivatives database. PeerJ 2023 11 e15885 10.7717/peerj.15885 37605747
    [Google Scholar]
  81. Wang Z.S. Chen L.Z. Zhou H.P. Liu X.H. Chen F.H. Diarylpentadienone derivatives (curcumin analogues): Synthesis and anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2017 27 8 1803 1807 10.1016/j.bmcl.2017.02.056 28284806
    [Google Scholar]
  82. Mohd Aluwi M.F.F. Rullah K. Haque M.A. Yamin B.M. Ahmad W. Amjad M.W. Leong S.W. Fahmizar N.A. Jalil J. Abas F. Ismail N.H. Jantan I. Lam K.W. Suppression of PGE2 production via disruption of MAPK phosphorylation by unsymmetrical dicarbonyl curcumin derivatives. Med. Chem. Res. 2017 26 12 3323 3335 10.1007/s00044‑017‑2025‑4
    [Google Scholar]
  83. Leong S. Faudzi S. Abas F. Aluwi M. Rullah K. Wai L. Bahari M. Ahmad S. Tham C. Shaari K. Lajis N. Synthesis and sar study of diarylpentanoid analogues as new anti-inflammatory agents. Molecules 2014 19 10 16058 16081 10.3390/molecules191016058 25302700
    [Google Scholar]
  84. Diabetes 2022 Available from https://www.who.int/news-room/fact-sheets/detail/diabetes
  85. Zhang DW Fu M Gao SH Liu JL Curcumin and diabetes: A systematic review. eCAM 2013 16 10.1155/2013/636053
    [Google Scholar]
  86. Das K.K. Razzaghi-Asl N. Tikare S.N. Di Santo R. Costi R. Messore A. Pescatori L. Crucitti G.C. Jargar J.G. Dhundasi S.A. Saso L. Hypoglycemic activity of curcumin synthetic analogues in alloxan-induced diabetic rats. J. Enzyme Inhib. Med. Chem. 2016 31 1 99 105 10.3109/14756366.2015.1004061 25683079
    [Google Scholar]
  87. Mardianis Y Anwar C Haryadi W Synthesis of curcumin analogues monoketone from cinnamaldehyde and their inhibition assay against alpha-glucosidase enzyme. Mater. Sci. Forum 2017 901 110 117 10.4028/www.scientific.net/MSF.901.110
    [Google Scholar]
  88. Tsalamandris S. Antonopoulos A.S. Oikonomou E. Papamikroulis G.A. Vogiatzi G. Papaioannou S. Deftereos S. Tousoulis D. The role of inflammation in diabetes: Current concepts and future perspectives. Eur. Cardiol. 2019 14 1 50 59 10.15420/ecr.2018.33.1 31131037
    [Google Scholar]
  89. Pan Y. Zhu G. Wang Y. Cai L. Cai Y. Hu J. Li Y. Yan Y. Wang Z. Li X. Wei T. Liang G. Attenuation of high-glucose-induced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart. J. Nutr. Biochem. 2013 24 1 146 155 10.1016/j.jnutbio.2012.03.012 22819547
    [Google Scholar]
  90. Cancer 2022 Available from https://www.who.int/news-room/fact-sheets/detail/cancer
  91. Liang Z. Wu R. Xie W. Zhu M. Xie C. Li X. Zhu J. Zhu W. Wu J. Geng S. Xu W. Zhong C. Han H. Curcumin reverses tobacco smoke‑induced epithelial‑mesenchymal transition by suppressing the MAPK pathway in the lungs of mice. Mol. Med. Rep. 2018 17 1 2019 2025 29138815
    [Google Scholar]
  92. Giordano A. Tommonaro G. Curcumin and Cancer. Nutrients 2019 11 10 2376 10.3390/nu11102376 31590362
    [Google Scholar]
  93. Ali N.M. Yeap S.K. Abu N. Lim K.L. Ky H. Pauzi A.Z.M. Ho W.Y. Tan S.W. Alan-Ong H.K. Zareen S. Alitheen N.B. Akhtar M.N. Synthetic curcumin derivative DK1 possessed G2/M arrest and induced apoptosis through accumulation of intracellular ROS in MCF-7 breast cancer cells. Cancer Cell Int. 2017 17 1 30 10.1186/s12935‑017‑0400‑3 28239299
    [Google Scholar]
  94. Liang B. Liu Z. Cao Y. Zhu C. Zuo Y. Huang L. Wen G. Shang N. Chen Y. Yue X. Du J. Li B. Zhou B. Bu X. MC37, a new mono-carbonyl curcumin analog, induces G2/M cell cycle arrest and mitochondria-mediated apoptosis in human colorectal cancer cells. Eur. J. Pharmacol. 2017 796 796 139 148 10.1016/j.ejphar.2016.12.030 28024945
    [Google Scholar]
  95. Li Q. Chen J. Luo S. Xu J. Huang Q. Liu T. Synthesis and assessment of the antioxidant and antitumor properties of asymmetric curcumin analogues. Eur. J. Med. Chem. 2015 93 461 469 10.1016/j.ejmech.2015.02.005 25728027
    [Google Scholar]
  96. Alibeiki F Jafari N Karimi M Peeri Dogaheh H. Potent anti-cancer effects of less polar Curcumin analogues on gastric adenocarcinoma and esophageal squamous cell carcinoma cells. Sci Rep 2017 7 1 1 9 10.1038/s41598‑017‑02666‑4
    [Google Scholar]
  97. Weng Q. Fu L. Chen G. Hui J. Song J. Feng J. Shi D. Cai Y. Ji J. Liang G. Design, synthesis, and anticancer evaluation of long-chain alkoxylated mono-carbonyl analogues of curcumin. Eur. J. Med. Chem. 2015 103 44 55 10.1016/j.ejmech.2015.08.036 26318057
    [Google Scholar]
  98. Adams B.K. Ferstl E.M. Davis M.C. Herold M. Kurtkaya S. Camalier R.F. Hollingshead M.G. Kaur G. Sausville E.A. Rickles F.R. Snyder J.P. Liotta D.C. Shoji M. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. Med. Chem. 2004 12 14 3871 3883 10.1016/j.bmc.2004.05.006 15210154
    [Google Scholar]
  99. Das U. Alcorn J. Shrivastav A. Sharma R.K. De Clercq E. Balzarini J. Dimmock J.R. Design, synthesis and cytotoxic properties of novel 1-[4-(2-alkylaminoethoxy)phenylcarbonyl]-3,5-bis(arylidene)-4-piperidones and related compounds. Eur. J. Med. Chem. 2007 42 1 71 80 10.1016/j.ejmech.2006.08.002 16996657
    [Google Scholar]
  100. Pati H.N. Das U. Das S. Bandy B. De Clercq E. Balzarini J. Kawase M. Sakagami H. Quail J.W. Stables J.P. Dimmock J.R. The cytotoxic properties and preferential toxicity to tumour cells displayed by some 2,4-bis(benzylidene)-8-methyl-8-azabicyclo[3.2.1] octan-3-ones and 3,5-bis(benzylidene)-1-methyl-4-piperidones. Eur. J. Med. Chem. 2009 44 1 54 62 10.1016/j.ejmech.2008.03.015 18468733
    [Google Scholar]
  101. Karthikeyan N.S. Sathiyanarayanan K.I. Aravindan P.G. Giridharan P. Synthesis, crystal structure, and anticancer properties of cyclic monocarbonyl analogs of curcumin. Med. Chem. Res. 2011 20 1 81 87 10.1007/s00044‑009‑9284‑7
    [Google Scholar]
  102. Al-Hujaily E.M. Mohamed A.G. Al-Sharif I. Youssef K.M. Manogaran P.S. Al-Otaibi B. Al-Haza’a A. Al-Jammaz I. Al-Hussein K. Aboussekhra A. PAC, a novel curcumin analogue, has anti-breast cancer properties with higher efficiency on ER-negative cells. Breast Cancer Res. Treat. 2011 128 1 97 107 10.1007/s10549‑010‑1089‑3 20680677
    [Google Scholar]
  103. Stojchevski R Hadzi-Petrushev N Mladenov M Bogdanov J Velichkovikj S Poretsky L Effects of two experimental monocarbonyl analogues of Curcumin (MACs) on breast cancer growth, migration, and epithelial-to-mesenchymal transition (EMT). J Endocr Soc. 2023 7 1
    [Google Scholar]
/content/journals/npj/10.2174/0122103155307922241022143752
Loading
/content/journals/npj/10.2174/0122103155307922241022143752
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test