Skip to content
2000
Volume 15, Issue 5
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Many common herbal medicines, including astragalus, ginseng, and bupleurum, contain saponins, which are surface-active glycosides found in nature. Saponins have recently been proven to have potent anti-inflammatory properties and to produce immunological homeostasis in patients with a wide range of illnesses. Inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), intestinal ischemia-reperfusion injury (IIRI), necrotizing enterocolitis (NEC), and radiation proctitis are all diseases of the digestive tract related to intestinal inflammation. Intestinal inflammation is another potential side effect of nonsteroidal anti-inflammatory medications. In addition to chronic diseases' emotional and physical burden on patients, they often exact a heavy financial burden on individual persons and the larger community. Because the causes of these diseases are so poorly known, there is a lack of information regarding the etiology of these conditions. On the other hand, saponins may help reduce this risk by lowering inflammation, enhancing the repair of the intestinal barrier, preserving the diversity of the intestinal flora, and maintaining the healthy and balanced state of the flora themselves. There is a correlation between inflammation of the intestines and an increased risk of colon cancer. In this article, we look at the most recent research regarding the effect that saponins have on diseases linked to inflammation of the gastrointestinal tract.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155305824240607050942
2024-06-20
2025-03-30
Loading full text...

Full text loading...

References

  1. MosesT. PapadopoulouK.K. OsbournA. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives.Crit. Rev. Biochem. Mol. Biol.201449643946210.3109/10409238.2014.95362825286183
    [Google Scholar]
  2. KregielD. BerlowskaJ. WitonskaI. AntolakH. ProestosC. BabicM. Saponin-based, biological-active surfactants from plants.Crit. Rev. Biochem. Mol. Biol.201761184205
    [Google Scholar]
  3. PorteS. JoshiV. ShahK. ChauhanN. Plants' steroidal saponins - A review on its pharmacology properties and analytical techniques.Crit. Rev. Biochem. Mol. Biol.202283350385
    [Google Scholar]
  4. DongJ. LiangW. WangT. SuiJ. WangJ. DengZ. ChenD. Saponins regulate intestinal inflammation in colon cancer and IBD.Pharmacol. Res.2019144667210.1016/j.phrs.2019.04.01030959159
    [Google Scholar]
  5. FangZ. LiJ. YangR. FangL. ZhangY. A review: The triterpenoid saponins and biological activities of lonicera linn. Molecules20202517377310.3390/molecules2517377332825106
    [Google Scholar]
  6. GuptaJ. AhujaA. GuptaR. Green approaches for cancers management: An effective tool for health care.Anticancer. Agents Med. Chem.202122110111410.2174/187152062166621011909182633463475
    [Google Scholar]
  7. MurtiY. AgrawalK.K.J.D.P. Anticancer potential of calotropisprocera.An Overview.20218293106
    [Google Scholar]
  8. XuD.P. LiY. MengX. ZhouT. ZhouY. ZhengJ. ZhangJ.J. LiH.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources.Int. J. Mol. Sci.20171819610.3390/ijms1801009628067795
    [Google Scholar]
  9. FerlayJ. ColombetM. SoerjomataramI. MathersC. ParkinD.M. PiñerosM. ZnaorA. BrayF. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.3193730350310
    [Google Scholar]
  10. El-Saber BatihaG. Magdy BeshbishyA. WasefG.L. ElewaY.H.A. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review.Nutrients2020123872
    [Google Scholar]
  11. JezekZ. MarennikovaS.S. MutumboM. NakanoJ.H. PalukuK.M. SzczeniowskiM. Human monkeypox: A study of 2,510 contacts of 214 patients.J. Infect. Dis.1986154455155510.1093/infdis/154.4.5513018091
    [Google Scholar]
  12. BeerE.M. RaoV.B. A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy.PLoS Negl. Trop. Dis.20191310e000779110.1371/journal.pntd.000779131618206
    [Google Scholar]
  13. JiaS. ShenM. ZhangF. XieJ. Recent advances in momordica charantia: Functional components and biological activities.Int. J. Mol. Sci.20171812255510.3390/ijms1812255529182587
    [Google Scholar]
  14. RatanZ.A. HaidereM.F. HongY.H. ParkS.H. LeeJ.O. LeeJ. ChoJ.Y. Pharmacological potential of ginseng and its major component ginsenosides.J. Ginseng Res.202145219921010.1016/j.jgr.2020.02.00433841000
    [Google Scholar]
  15. PangY. WuS. HeY. NianQ. LeiJ. YaoY. GuoJ. ZengJ. Plant-derived compounds as promising therapeutics for vitiligo.Front. Pharmacol.20211268511610.3389/fphar.2021.68511634858164
    [Google Scholar]
  16. ZhangW XuL YuanM Clinical studies of several well-known and valuable herbal medicines: A narrative review.LCM2022510.21037/lcm‑21‑56
    [Google Scholar]
  17. BabichO. LarinaV. IvanovaS. TarasovA. PovydyshM. OrlovaA. StrugarJ. SukhikhS. Phytotherapeutic approaches to the prevention of age-related changes and the extension of active longevity.Molecules2022277227610.3390/molecules2707227635408672
    [Google Scholar]
  18. ZhangX. ItoY. LiangJ. LiuJ. HeJ. SunW. Therapeutic effects of total steroid saponin extracts from the rhizome of Dioscorea zingiberensis C.H.Wright in Freund’s complete adjuvant induced arthritis in rats.Int. Immunopharmacol.201423240741610.1016/j.intimp.2014.07.01825066758
    [Google Scholar]
  19. de Cássia da Silveira e SáR. AndradeL. de SousaD. A review on anti-inflammatory activity of monoterpenes.Molecules20131811227125410.3390/molecules1801122723334570
    [Google Scholar]
  20. SahaL. Irritable bowel syndrome: Pathogenesis, diagnosis, treatment, and evidence-based medicine.World J. Gastroenterol.201420226759677310.3748/wjg.v20.i22.675924944467
    [Google Scholar]
  21. UllmanT.A. ItzkowitzS.H. Intestinal inflammation and cancer.Gastroenterology2011140618071816.e110.1053/j.gastro.2011.01.05721530747
    [Google Scholar]
  22. KuipersE.J. GradyW.M. LiebermanD. SeufferleinT. SungJ.J. BoelensP.G. van de VeldeC.J.H. WatanabeT. Colorectal cancer.Nat. Rev. Dis. Primers2015111506510.1038/nrdp.2015.6527189416
    [Google Scholar]
  23. ApallaZ. LallasA. SotiriouE. LazaridouE. IoannidesD. Epidemiological trends in skin cancer.Dermatol. Pract. Concept.2017721610.5826/dpc.0702a0128515985
    [Google Scholar]
  24. XiY. XuP. Global colorectal cancer burden in 2020 and projections to 2040.Transl. Oncol.2021141010117410.1016/j.tranon.2021.10117434243011
    [Google Scholar]
  25. ArmaghanyT. WilsonJ.D. ChuQ. MillsG. Genetic alterations in colorectal cancer.Gastrointest. Cancer Res.201251192722574233
    [Google Scholar]
  26. DeshmukhR. Bridging the gap of drug delivery in colon cancer: the role of chitosan and pectin based nanocarriers system.Curr. Drug Deliv.2020171091192410.2174/156720181766620071709062332679018
    [Google Scholar]
  27. BirgissonH. ÓlafsdóttirE.J. SverrisdóttirA. EinarssonS. SmáradóttirA. TryggvadóttirL. Screening for cancer of the colon and rectum A review on incidence, mortality, cost and benefit.Laeknabladid2021107939840510.17992/lbl.2021.09.6534673541
    [Google Scholar]
  28. De PalmaF. D’ArgenioV. PolJ. KroemerG. MaiuriM. SalvatoreF. The molecular hallmarks of the serrated pathway in colorectal cancer.Cancers2019117101710.3390/cancers1107101731330830
    [Google Scholar]
  29. NaH.K. LeeJ. Molecular basis of alcohol-related gastric and colon cancer.Int. J. Mol. Sci.2017186111610.3390/ijms1806111628538665
    [Google Scholar]
  30. DickinsonB.T. KisielJ. AhlquistD.A. GradyW.M. Molecular markers for colorectal cancer screening.Gut20156491485149410.1136/gutjnl‑2014‑30807525994221
    [Google Scholar]
  31. JuangY.P. LiangP.H. Biological and pharmacological effects of synthetic saponins.Molecules20202521497410.3390/molecules2521497433121124
    [Google Scholar]
  32. GauthierC. LegaultJ. Pichette AJM-RiOC. Recent progress in the synthesis of naturally occurring triterpenoid saponins.Crit. Rev. Biochem. Mol. Biol.200964321344
    [Google Scholar]
  33. LiuH. ChouG.X. WuT. GuoY.L. WangS.C. WangC.H. WangZ.T. Steroidal sapogenins and glycosides from the rhizomes of Dioscorea bulbifera.J. Nat. Prod.200972111964196810.1021/np900255h19842682
    [Google Scholar]
  34. ElekofehintiOO IwaloyeO OlawaleF AriyoEO Saponins in cancer treatment: Current progress and future prospects.Pathophysiology2021282250272
    [Google Scholar]
  35. OtaT. MaedaM. OdashimaS. Mechanism of action of ginsenoside Rh2: Uptake and metabolism of ginsenoside Rh2 by cultured B16 melanoma cells.J. Pharm. Sci.199180121141114610.1002/jps.26008012101815072
    [Google Scholar]
  36. GrazianiV. EspositoA. ScognamiglioM. ChamberyA. RussoR. CiardielloF. TroianiT. PotenzaN. FiorentinoA. D’AbroscaB. Spectroscopic characterization and cytotoxicity assessment towards human colon cancer cell lines of acylated cycloartane glycosides from Astragalus boeticus L.Molecules2019249172510.3390/molecules2409172531058835
    [Google Scholar]
  37. ZhanZ. LiuZ. LaiJ. ZhangC. ChenY. HuangH. Anticancer effects and mechanisms of OSW-1 isolated From Ornithogalum saundersiae: A review.Front. Oncol.20211174771810.3389/fonc.2021.74771834631585
    [Google Scholar]
  38. HarwanshR.K. DeshmukhR. Breast cancer: An insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs.Crit. Rev. Oncol. Hematol.202015410307010.1016/j.critrevonc.2020.10307032871325
    [Google Scholar]
  39. El-SalhyM. Irritable bowel syndrome: Diagnosis and pathogenesis.World J. Gastroenterol.201218375151516310.3748/wjg.v18.i37.515123066308
    [Google Scholar]
  40. EnckP. AzizQ. BarbaraG. FarmerA.D. FukudoS. MayerE.A. NieslerB. QuigleyE.M.M. Rajilić-StojanovićM. SchemannM. Schwille-KiuntkeJ. SimrenM. ZipfelS. SpillerR.C. Irritable bowel syndrome.Nat. Rev. Dis. Primers2016211601410.1038/nrdp.2016.1427159638
    [Google Scholar]
  41. PandaS.P. PanigrahyU.P. PandaS. JenaB.R. Stem extract of Tabebuia chrysantha induces apoptosis by targeting sEGFR in Ehrlich Ascites Carcinoma.J. Ethnopharmacol.201923521922610.1016/j.jep.2019.02.02330769041
    [Google Scholar]
  42. LiG. WangS. FanZ. Oxidative stress in intestinal ischemia-reperfusion.Front. Med.2022875073110.3389/fmed.2021.75073135096858
    [Google Scholar]
  43. ZuG. GuoJ. CheN. ZhouT. ZhangX. WangG. JiA. TianX. Protective effects of ginsenoside Rg1 on intestinal ischemia/reperfusion injury-induced oxidative stress and apoptosis via activation of the Wnt/β-catenin pathway.Sci. Rep.2016613848010.1038/srep3848027910952
    [Google Scholar]
  44. HigginsP. StidhamR. Colorectal cancer in inflammatory bowel disease.Clin. Colon Rectal Surg.201831316817810.1055/s‑0037‑160223729720903
    [Google Scholar]
  45. ChenM. YeK. ZhangB. XinQ. LiP. KongA.N. WenX. YangJ. Paris Saponin II inhibits colorectal carcinogenesis by regulating mitochondrial fission and NF-κB pathway.Pharmacol. Res.201913927328510.1016/j.phrs.2018.11.02930471409
    [Google Scholar]
  46. OkadaF. IzutsuR. GotoK. OsakiM. Inflammation-related carcinogenesis: Lessons from animal models to clinical aspects.Cancers202113492110.3390/cancers1304092133671768
    [Google Scholar]
  47. LiY. SunY. FanL. ZhangF. MengJ. HanJ. GuoX. ZhangD. ZhangR. YueZ. MeiQ. Paris saponin VII inhibits growth of colorectal cancer cells through Ras signaling pathway.Biochem. Pharmacol.201488215015710.1016/j.bcp.2014.01.01824462916
    [Google Scholar]
  48. LiY. LiuC. XiaoD. HanJ. YueZ. SunY. FanL. ZhangF. MengJ. ZhangR. WangZ. MeiQ. WenA. Trillium tschonoskii steroidal saponins suppress the growth of colorectal Cancer cells in vitro and in vivo.J. Ethnopharmacol.201516813614510.1016/j.jep.2015.03.06325849732
    [Google Scholar]
  49. AtreyaI. AtreyaR. NeurathM.F. NF‐κB in inflammatory bowel disease.J. Intern. Med.2008263659159610.1111/j.1365‑2796.2008.01953.x18479258
    [Google Scholar]
  50. GuM. JiaQ. ZhangZ. BaiN. XuX. XuB. Soya-saponins induce intestinal inflammation and barrier dysfunction in juvenile turbot (Scophthalmus maximus).Fish Shellfish Immunol.20187726427210.1016/j.fsi.2018.04.00429625242
    [Google Scholar]
  51. MagneF. GottelandM. GauthierL. ZazuetaA. PesoaS. NavarreteP. BalamuruganR. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients?Nutrients2020125147410.3390/nu1205147432438689
    [Google Scholar]
  52. SalemF. KindtN. MarchesiJ.R. NetterP. LopezA. KoktenT. DaneseS. JouzeauJ.Y. Peyrin-BirouletL. MoulinD. Gut microbiome in chronic rheumatic and inflammatory bowel diseases: Similarities and differences.United European Gastroenterol. J.2019781008103210.1177/205064061986755531662859
    [Google Scholar]
  53. ChenL. BrarM.S. LeungF.C.C. HsiaoW.L.W. Triterpenoid herbal saponins enhance beneficial bacteria, decrease sulfate-reducing bacteria, modulate inflammatory intestinal microenvironment and exert cancer preventive effects in ApcMin/+ mice.Oncotarget2016721312263124210.18632/oncotarget.888627121311
    [Google Scholar]
  54. PastorelliL. De SalvoC. MercadoJ.R. VecchiM. PizarroT.T. Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: Lessons learned from animal models and human genetics.Front. Immunol.2013428010.3389/fimmu.2013.0028024062746
    [Google Scholar]
  55. ChichlowskiM. HaleL.P. Bacterial-mucosal interactions in inflammatory bowel disease—an alliance gone bad.Am. J. Physiol. Gastrointest. Liver Physiol.20082956G1139G114910.1152/ajpgi.90516.200818927210
    [Google Scholar]
  56. Navarro del HierroJ. HerreraT. FornariT. RegleroG. MartinD. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities.J. Funct. Foods20184048449710.1016/j.jff.2017.11.032
    [Google Scholar]
  57. KangZ. ZhongaY. WuT. HuangJ. ZhaoH. LiuD. Ginsenoside from ginseng: A promising treatment for inflammatory bowel disease.Pharmacol. Rep.202173370071110.1007/s43440‑020‑00213‑z33462754
    [Google Scholar]
  58. KrogdahlÅ. GajardoK. KortnerT.M. PennM. GuM. BergeG.M. BakkeA.M. Soya saponins induce enteritis in atlantic salmon (salmo salar L.).J. Agric. Food Chem.201563153887390210.1021/jf506242t25798699
    [Google Scholar]
  59. SolisCJ HamiltonMK CaruffoM Garcia-LopezJP NavarreteP GuilleminK Intestinal inflammation induced by soybean meal ingestion increases intestinal permeability and neutrophil turnover independently of microbiota in zebrafish.Front Immunol202011133010.3389/fimmu.2020.01330
    [Google Scholar]
  60. LiuM.J. WangZ. JuY. WongR.N.S. WuQ.Y. Diosgenin induces cell cycle arrest and apoptosis in human leukemia K562 cells with the disruption of Ca2+ homeostasis.Cancer Chemother. Pharmacol.2005551799010.1007/s00280‑004‑0849‑315372201
    [Google Scholar]
  61. BhuvanalakshmiG. Basappa RangappaK.S. DharmarajanA. SethiG. KumarA.P. WarrierS. Breast cancer stem-like cells are inhibited by diosgenin, a steroidal saponin, by the attenuation of the wnt β-catenin signaling via the Wnt antagonist secreted frizzled related protein-4.Front. Pharmacol.2017812410.3389/fphar.2017.0012428373842
    [Google Scholar]
  62. SiL. ZhengL. XuL. YinL. HanX. QiY. XuY. WangC. PengJ. Dioscin suppresses human laryngeal cancer cells growth via induction of cell-cycle arrest and MAPK-mediated mitochondrial-derived apoptosis and inhibition of tumor invasion.Eur. J. Pharmacol.201677410511710.1016/j.ejphar.2016.02.00926849940
    [Google Scholar]
  63. ZhaoX. TaoX. XuL. YinL. QiY. XuY. HanX. PengJ. Dioscin induces apoptosis in human cervical carcinoma HeLa and SiHa Cells through ROS-mediated DNA damage and the mitochondrial signaling pathway.Molecules201621673010.3390/molecules2106073027271587
    [Google Scholar]
  64. KimEA JangJH LeeYH SungEG SongIH KimJY Dioscin induces caspase-independent apoptosis through activation of apoptosis-inducing factor in breast cancer cells.Apoptosis20141971165117510.1007/s10495‑014‑0994‑z
    [Google Scholar]
  65. WatanabeS. SuzukiT. HaraF. YasuiT. UgaN. NaoeA. Polyphyllin D, a steroidal saponin in Paris polyphylla, induces apoptosis and necroptosis cell death of neuroblastoma cells.Pediatr. Surg. Int.201733671371910.1007/s00383‑017‑4069‑428260192
    [Google Scholar]
  66. YangC. CaiH. MengX. Polyphyllin D induces apoptosis and differentiation in K562 human leukemia cells.Int. Immunopharmacol.201636172210.1016/j.intimp.2016.04.01127104314
    [Google Scholar]
  67. GaoM. CheungK.L. LauI.P. YuW.S. FungK.P. YuB. LooJ.F. KongS.K. Polyphyllin D induces apoptosis in human erythrocytes through Ca2+ rise and membrane permeabilization.Arch. Toxicol.201286574175210.1007/s00204‑012‑0808‑422349056
    [Google Scholar]
  68. LeeM.S. ChanJ.Y-W. KongS.K. YuB. Eng-ChoonV.O. Nai-ChingH.W. Mak Chung-WaiT. FungK.P. Effects of polyphyllin D, a steroidal saponin in Paris Polyphylla, in growth inhibition of human breast cancer cells and in xenograft.Cancer Biol. Ther.20054111248125410.4161/cbt.4.11.213616258257
    [Google Scholar]
  69. KanwalN RasulA HussainG AnwarH ShahMA SarfrazI Oleandrin: A bioactive phytochemical and potential cancer killer via multiple cellular signaling pathways.Food Chem Toxicol202014311157010.1016/j.fct.2020.111570
    [Google Scholar]
  70. XuX.H. LiT. FongC. ChenX. ChenX.J. WangY.T. HuangM.Q. LuJ.J. Saponins from chinese medicines as anticancer agents.Molecules20162110132610.3390/molecules2110132627782048
    [Google Scholar]
  71. YuanB. YangR. MaY. ZhouS. ZhangX. LiuY. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications.Pharm. Biol.201755162063510.1080/13880209.2016.126243327951737
    [Google Scholar]
  72. WangBF WangXJ KangHF BaiMH GuanHT WangZW Saikosaponin-D enhances radiosensitivity of hepatoma cells under hypoxic conditions by inhibiting hypoxia-inducible factor-1α.Cell. Physiol. Biochem20143313751
    [Google Scholar]
  73. SiuF.M. MaD.L. CheungY.W. LokC.N. YanK. YangZ. YangM. XuS. KoB.C.B. HeQ.Y. CheC.M. Proteomic and transcriptomic study on the action of a cytotoxic saponin (Polyphyllin D): Induction of endoplasmic reticulum stress and mitochondria‐mediated apoptotic pathways.Proteomics20088153105311710.1002/pmic.20070082918615425
    [Google Scholar]
  74. PanH.J. NieX.Q. LiuD. BianK. Effects of four kinds of Chinese medicine monomer on growth of PANC-1 xenograft tumor and studying of molecular mechanism.Zhongguo Zhongyao Zazhi201338224524823672050
    [Google Scholar]
  75. NhoK.J. ChunJ.M. KimH.K. Induction of mitochondria-dependent apoptosis in HepG2 human hepatocellular carcinoma cells by timosaponin A-III.Environ. Toxicol. Pharmacol.20164529530110.1016/j.etap.2016.06.01227344126
    [Google Scholar]
  76. TsaiCH YangCW WangJY TsaiYF TsengLM KingKL Timosaponin AIII suppresses hepatocyte growth factor-induced invasive activity through sustained ERK activation in breast Cancer MDA-MB-231 cells.Evid. Based Complementary Altern. Med20132013421051
    [Google Scholar]
  77. ZhangY. FangF. FanK. ZhangY. ZhangJ. GuoH. YuP. MaJ. Effective cytotoxic activity of OSW-1 on colon cancer by inducing apoptosis in vitro and in vivo.Oncol. Rep.20173763509351910.3892/or.2017.558228440433
    [Google Scholar]
  78. MalabedR. HanashimaS. MurataM. SakuraiK. Interactions of OSW-1 with lipid bilayers in comparison with digitonin and soyasaponin.Langmuir202036133600361010.1021/acs.langmuir.9b0395732160747
    [Google Scholar]
  79. KimuraM. SasakiK. FukutaniY. YoshidaH. OhsawaI. YohdaM. SakuraiK. Anticancer saponin OSW-1 is a novel class of selective Golgi stress inducer.Bioorg. Med. Chem. Lett.201929141732173610.1016/j.bmcl.2019.05.02231126855
    [Google Scholar]
  80. ThoppilR.J. BishayeeA. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer.World J. Hepatol.20113922824910.4254/wjh.v3.i9.22821969877
    [Google Scholar]
  81. TaitS.W.G. IchimG. GreenD.R. Die another way – non-apoptotic mechanisms of cell death.J. Cell Sci.2014127102135214410.1242/jcs.09357524833670
    [Google Scholar]
  82. MeeranSM KatiyarSK Cell cycle control as a basis for cancer chemoprevention through dietary agents.Front Biosci2008132191220210.2741/2834
    [Google Scholar]
  83. WangY. RenN. RankinG.O. LiB. RojanasakulY. TuY. ChenY.C. Anti-proliferative effect and cell cycle arrest induced by saponins extracted from tea (Camellia sinensis) flower in human ovarian cancer cells.J. Funct. Foods20173731032110.1016/j.jff.2017.08.00132719725
    [Google Scholar]
  84. ThomasL.R. JohnsonR.L. ReedJ.C. ThorburnA. The C-terminal tails of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas receptors have opposing functions in Fas-associated death domain (FADD) recruitment and can regulate agonist-specific mechanisms of receptor activation.J. Biol. Chem.200427950524795248610.1074/jbc.M40957820015452120
    [Google Scholar]
  85. PisaniC. RamellaM. BoldoriniR. LoiG. BilliaM. BoccafoschiF. VolpeA. KrengliM. Apoptotic and predictive factors by Bax, Caspases 3/9, Bcl-2, p53 and Ki-67 in prostate cancer after 12 Gy single-dose.Sci. Rep.2020101705010.1038/s41598‑020‑64062‑932341393
    [Google Scholar]
  86. ChangH.Y. YangX. Proteases for cell suicide: Functions and regulation of caspases.Microbiol. Mol. Biol. Rev.200064482184610.1128/MMBR.64.4.821‑846.200011104820
    [Google Scholar]
  87. IvanovaD. ZhelevZ. AokiI. BakalovaR. HigashiT. Overproduction of reactive oxygen species – obligatory or not for induction of apoptosis by anticancer drugs.Chin. J. Cancer Res.201628438339610.21147/j.issn.1000‑9604.2016.04.0127647966
    [Google Scholar]
  88. ZitvogelL. KroemerG. Interferon-γ induces cancer cell ferroptosis.Cell Res.201929969269310.1038/s41422‑019‑0186‑z31160718
    [Google Scholar]
  89. LinL. BaehreckeE.H. Autophagy, cell death, and cancer.Mol. Cell. Oncol.201523e98591310.4161/23723556.2014.98591327308466
    [Google Scholar]
  90. AlersS. LöfflerA.S. WesselborgS. StorkB. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks.Mol. Cell. Biol.201232121110.1128/MCB.06159‑1122025673
    [Google Scholar]
  91. WangY. XiaC. ChenL. ChenY.C. TuY. Saponins extracted from tea (Camellia sinensis) flowers induces autophagy in ovarian cancer cells.Molecules20202522525410.3390/molecules2522525433187244
    [Google Scholar]
  92. SeyfriedT.N. HuysentruytL.C. On the origin of cancer metastasis.Crit. Rev. Oncog.2013181 - 2437310.1615/CritRevOncog.v18.i1‑2.4023237552
    [Google Scholar]
  93. HongS.J. WanJ.B. ZhangY. HuG. LinH.C. SetoS.W. KwanY.W. LinZ.X. WangY.T. LeeS.M.Y. Angiogenic effect of saponin extract from Panax notoginseng on HUVECs in vitro and zebrafish in vivo.Phytother. Res.200923567768610.1002/ptr.270519107746
    [Google Scholar]
  94. KangJ.H. HanI.H. SungM.K. YooH. KimY.G. KimJ.S. KawadaT. YuR. Soybean saponin inhibits tumor cell metastasis by modulating expressions of MMP-2, MMP-9 and TIMP- 2.Cancer Lett.20082611849210.1016/j.canlet.2007.11.00618086515
    [Google Scholar]
  95. HuT. LiZ. GaoC.Y. ChoC.H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies.World J. Gastroenterol.201622306876688910.3748/wjg.v22.i30.687627570424
    [Google Scholar]
  96. SymondsE.L. KonczakI. FenechM. The Australian fruit Illawarra plum ( Podocarpus elatus Endl., Podocarpaceae) inhibits telomerase, increases histone deacetylase activity and decreases proliferation of colon cancer cells.Br. J. Nutr.2013109122117212510.1017/S000711451200433323069328
    [Google Scholar]
  97. OlejnikA. KaczmarekM. OlkowiczM. KowalskaK. JuzwaW. ROS-modulating anticancer effects of gastrointestinally digested Ribes nigrum L fruit extract in human colon cancer cells.Crit. Rev. Biochem. Mol. Biol.201842224236
    [Google Scholar]
  98. HuX. IslamS. AmeenF. AlarfajA.A. MurtazaG. In vitro screening of berberis lycium root extract on HCT-116 and MCF-7 cell lines.Crit. Rev. Biochem. Mol. Biol.2020825357
    [Google Scholar]
  99. SubbarayanP.R. SarkarM. ImpellizzeriS. RaymoF. LokeshwarB.L. KumarP. AgarwalR.P. ArdalanB. Anti-proliferative and anti-cancer properties of Achyranthes aspera: Specific inhibitory activity against pancreatic cancer cells.J. Ethnopharmacol.20101311788210.1016/j.jep.2010.06.00220541002
    [Google Scholar]
  100. HeX. WangX. FangJ. ChangY. NingN. GuoH. HuangL. HuangX. The genus Achyranthes : A review on traditional uses, phytochemistry, and pharmacological activities.J. Ethnopharmacol.201720326027810.1016/j.jep.2017.03.03528347832
    [Google Scholar]
  101. AroraS. TandonS. Achyranthes aspera root extracts induce human colon cancer cell (COLO-205) death by triggering the mitochondrial apoptosis pathway and S phase cell cycle arrest.ScientificWorldJournal2014201411510.1155/2014/12969725401123
    [Google Scholar]
  102. PatelA.J.B.C. Isolation, characterization and production of a new recombinant lectin protein from leguminous plants.Crit. Rev. Biochem. Mol. Biol.201422
    [Google Scholar]
  103. CichelloS.A. YaoQ. DowellA. LeuryB. HeX.Q. Proliferative and inhibitory activity of siberian ginseng (eleutherococcus senticosus) extract on cancer cell lines; A-549, XWLC-05, HCT-116, CNE and Beas-2b.APJCP201516114781478626107240
    [Google Scholar]
  104. AkterS. NetzelM.E. FletcherM.T. TinggiU. SultanbawaY. Chemical and nutritional composition of terminalia ferdinandiana (kakadu plum) kernels: A novel nutrition source.Foods20187460
    [Google Scholar]
  105. CockI.E. MohantyS. The chemotherapeutic potential of Terminalia ferdinandiana: Phytochemistry and bioactivity.Pharmacogn. Rev.2012611293610.4103/0973‑7847.9585522654402
    [Google Scholar]
  106. WilliamsD.J. EdwardsD. PunS. ChalihaM. BurrenB. TinggiU. SultanbawaY. Organic acids in Kakadu plum (Terminalia ferdinandiana): The good (ellagic), the bad (oxalic) and the uncertain (ascorbic).Food Res. Int.201689Pt 123724410.1016/j.foodres.2016.08.00428460910
    [Google Scholar]
  107. KonczakI. MaillotF. DalarA. Phytochemical divergence in 45 accessions of terminalia ferdinandiana (Kakadu plum).Food Chem.201415124825610.1016/j.foodchem.2013.11.04924423529
    [Google Scholar]
  108. SinghN. BhallaM. De JagerP. GilcaM. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda.Afr. J. Tradit. Complement. Altern. Med.201185SSuppl.20821310.4314/ajtcam.v8i5S.922754076
    [Google Scholar]
  109. SumantranV.N. BoddulS. KoppikarS.J. DalviM. WeleA. GaireV. WaghU.V. Differential growth inhibitory effects of W. somnifera root and E. officinalis fruits on CHO cells.Phytother. Res.200721549649910.1002/ptr.212017357174
    [Google Scholar]
  110. PalliyaguruD.L. SinghS.V. KenslerT.W. Withania somnifera: From prevention to treatment of cancer.Mol. Nutr. Food Res.20166061342135310.1002/mnfr.20150075626718910
    [Google Scholar]
  111. HajiaghaalipourF. KanthimathiM.S. SanusiJ. RajarajeswaranJ. White tea (Camellia sinensis) inhibits proliferation of the colon cancer cell line, HT-29, activates caspases and protects DNA of normal cells against oxidative damage.Food Chem.201516940141010.1016/j.foodchem.2014.07.00525236244
    [Google Scholar]
  112. ImranA. ButtM.S. XiaoH. ImranM. RaufA. MubarakM.S. RamadanM.F. Inhibitory effect of black tea ( Camellia sinensis ) theaflavins and thearubigins against HCT 116 colon cancer cells and HT 460 lung cancer cells.J. Food Biochem.2019435e1282210.1111/jfbc.1282231353529
    [Google Scholar]
  113. ParkI.J. LeeY.K. HwangJ.T. KwonD.Y. HaJ. ParkO.J. Green tea catechin controls apoptosis in colon cancer cells by attenuation of H2O2-stimulated COX-2 expression via the AMPK signaling pathway at low-dose H2O2.Ann. N. Y. Acad. Sci.20091171153854410.1111/j.1749‑6632.2009.04698.x19723101
    [Google Scholar]
  114. VaddeR. RadhakrishnanS. KurunduH.E.K. ReddivariL. Vanamala JKJJoFF. Indian gooseberry (Emblica officinalis Gaertn.) suppresses cell proliferation and induces apoptosis in human colon cancer stem cells independent of p53 status via suppression of c-Myc and cyclin D1.Crit. Rev. Biochem. Mol. Biol.201625267278
    [Google Scholar]
  115. FallahS KarimiA PanahiG Gerayesh NejadS FadaeiR SeifiM. Human colon cancer HT-29 cell death responses to doxorubicin and Morus alba leaves flavonoid extract.Mol. Cell. Biol20166237277
    [Google Scholar]
  116. Zorofchian MoghadamtousiS. KarimianH. RouhollahiE. PaydarM. FadaeinasabM. Abdul KadirH. Annona muricata leaves induce G1 cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells.J. Ethnopharmacol.201415627728910.1016/j.jep.2014.08.01125195082
    [Google Scholar]
  117. WangL. XuM.L. HuJ.H. RasmussenS.K. WangM.H. Codonopsis lanceolata extract induces G0/G1 arrest and apoptosis in human colon tumor HT-29 cells--involvement of ROS generation and polyamine depletion. Food and chemical toxicology: An international journal published for the British Industrial Biological Research Association.Crit. Rev. Biochem. Mol. Biol.2011491149154
    [Google Scholar]
  118. GiannoniE. ParriM. ChiarugiP. EMT and oxidative stress: A bidirectional interplay affecting tumor malignancy.Antioxid. Redox Signal.201216111248126310.1089/ars.2011.428021929373
    [Google Scholar]
  119. EdgarA.D. LevinR. ConstantinouC.E. DenisL. A critical review of the pharmacology of the plant extract of Pygeum africanum in the treatment of LUTS.Neurourol. Urodyn.200726445846310.1002/nau.2013617397059
    [Google Scholar]
  120. Al-AsmariA.K. AlbalawiS.M. AtharM.T. KhanA.Q. Al-ShahraniH. IslamM. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines.PLoS One2015108e013581410.1371/journal.pone.013581426288313
    [Google Scholar]
  121. LiuM. ZhaoG. ZhangD. AnW. LaiH. LiX. CaoS. LinX. Active fraction of clove induces apoptosis via PI3K/Akt/mTOR-mediated autophagy in human colorectal cancer HCT-116 cells.Int. J. Oncol.20185331363137310.3892/ijo.2018.446530015913
    [Google Scholar]
  122. YanM. LiG. PetiwalaS.M. HouseholterE. Johnson JJJjoff. Standardized rosemary (Rosmarinus officinalis) extract induces Nrf2/sestrin-2 pathway in colon cancer cells.Crit. Rev. Biochem. Mol. Biol.201513137147
    [Google Scholar]
  123. SasikumarK. DubeyV. Oleanolic acid from black raisins, Vitis vinifera with antioxidant and antiproliferative potentials on HCT 116 colon cancer cell line.Crit. Rev. Biochem. Mol. Biol.202056
    [Google Scholar]
  124. CraggG.M. NewmanD.J. Natural products: A continuing source of novel drug leads.Biochim. Biophys. Acta, Gen. Subj.2013183063670369510.1016/j.bbagen.2013.02.00823428572
    [Google Scholar]
  125. SasidharanS. ChenY. SaravananD. SundramK.M. Yoga LathaL. Extraction, isolation and characterization of bioactive compounds from plants’ extracts.Afr. J. Tradit. Complement. Altern. Med.20118111022238476
    [Google Scholar]
  126. JainP. SatapathyT. PandeyR.K. A mini review of methods to control ticks population infesting cattle in Chhattisgarh with special emphasis on herbal acaricides.Indian J. Nat. Prod. Resour.20201112217223
    [Google Scholar]
  127. RathoreP. RaoS.P. RoyA. SatapathyT. SinghV. JainP. Hepatoprotective activity of isolated herbal compounds.Res. J. Pharm. Technol.201472
    [Google Scholar]
  128. JainP. SatapathyT. PandeyR.K. Acaricidal activity and clinical safety of arecoline hydrobromide on calves infested with cattle tick Rhipicephalus microplus (Acari: Ixodidae).Vet. Parasitol.202129810949010.1016/j.vetpar.2021.10949034271319
    [Google Scholar]
  129. IslamM. HuangY. JainP. FanB. TongL. WangF. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property.Biocatal. Agric. Biotechnol.20235010270010.1016/j.bcab.2023.102700
    [Google Scholar]
  130. JainP. SatapathyT. PandeyR.K. Acaricidal activity and biochemical analysis of Citrus limetta seed oil for controlling Ixodid Tick Rhipicephalus microplus infesting cattle.Syst. Appl. Acarol.20212610.11158/saa.26.7.13
    [Google Scholar]
  131. PatelR. KuwarU. DhoteN. AlexanderA. NakhateK. JainP. Ajazuddin, Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/156720182066623011217003536644864
    [Google Scholar]
  132. JainP. SatapathyT. PandeyR.K. First report on efficacy of Citrus limetta seed oil in controlling cattle tick Rhipicephalus microplus in red Sahiwal calves.Vet. Parasitol.202129610950810.1016/j.vetpar.2021.10950834218174
    [Google Scholar]
  133. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑735043370
    [Google Scholar]
  134. JainP SuranaA PandeyR ShuklaSS Epilepsy: A neurological cramp.Res. J. Pahrmacol. Pharmacodyn.20135115
    [Google Scholar]
/content/journals/npj/10.2174/0122103155305824240607050942
Loading
/content/journals/npj/10.2174/0122103155305824240607050942
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; colon cancer; herbal medicine; inflammation; phytoconstituents; Saponins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test