Skip to content
2000
Volume 15, Issue 5
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Tuberculosis (TB), which is caused primarily by , is the largest cause of death among all infectious diseases, accounting for more than two million fatalities each year. Marine natural products and some of their derivatives have been found to have potent anti-tubercular activity against TB, and some of them have been chosen as prototype molecules for the development of novel anti-tubercular drugs. Because of their strong medicinal qualities, a variety of marine natural products such as terpenoids, alkaloids, pyrones, sterols, and quinones derived from marine sources have piqued interest in recent decades. In this review study, we present current discoveries on the anti-tubercular action of marine natural products, emphasizing their medicinal potential for the treatment of tuberculosis. Based on the research from the last decade, this review provides a full grasp of marine natural products as anti-tubercular agents, as well as a plausible mechanism of action.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155289998240611102259
2024-06-18
2025-03-30
Loading full text...

Full text loading...

References

  1. DanielT.M. The history of tuberculosis.Respir. Med.2006100111862187010.1016/j.rmed.2006.08.00616949809
    [Google Scholar]
  2. KwanC.K. ErnstJ.D. HIV and tuberculosis: A deadly human syndemic.Clin. Microbiol. Rev.201124235137610.1128/CMR.00042‑1021482729
    [Google Scholar]
  3. CaveA.J.E. DemonstratorA. The evidence for the incidence of tuberculosis in ancient Egypt.British J Tuberculosis193933314215210.1016/S0366‑0850(39)80016‑3
    [Google Scholar]
  4. SurendraK. Multidrug-resistance tuberculosis.Chest2006130261272
    [Google Scholar]
  5. World Health OrganizationGlobal Tuberculosis report 2020.2020Available From: https://www.who.int/publications/i/item/9789240013131
  6. AzharG. DOTS for TB relapse in India: A systematic review.Lung India201229214715310.4103/0970‑2113.9532022628930
    [Google Scholar]
  7. World Health OrganizationGlobal Tuberculosis control report 2023.2023Available From: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/globaltuberculosis-report-2023
  8. GirlingD.J. The hepatic toxicity of antituberculosis regimens containing isoniazid, rifampicin and pyrazinamide.Tubercle1977591133210.1016/0041‑3879(77)90022‑8345572
    [Google Scholar]
  9. GawadJ. BondeC. Current affairs, future perspectives of tuberculosis and antitubercular agents.Indian J. Tuberc.2018651152210.1016/j.ijtb.2017.08.01129332642
    [Google Scholar]
  10. KelecomA. Chemistry of marine natural products: Yesterday, today and tomorrow.An. Acad. Bras. Cienc.199971249263
    [Google Scholar]
  11. KelecomA. Secondary metabolites from marine microorganisms.An. Acad. Bras. Cienc.200274115117010.1590/S0001‑37652002000100012
    [Google Scholar]
  12. BernanV.S. GreensteinM. MaieseW.M. Marine microorganisms as a source of new natural products.Adv. Appl. Microbiol.199743579010.1016/S0065‑2164(08)70223‑59097412
    [Google Scholar]
  13. BerquistP.R. WellsR.J. Chemotaxonomy of the Porifera: The development and current status of the field.Marine Natural Products: Chemicaland Biological Perspectives. ScheuerP.J. Cambridge, MassachusettsAcademic Press1983Vol. V172210.1016/B978‑0‑12‑624005‑4.50008‑2
    [Google Scholar]
  14. DavidsonB. New dimensions in natural products research: Cultured marine microorganisms.Curr. Opin. Biotechnol.19956328429110.1016/0958‑1669(95)80049‑2
    [Google Scholar]
  15. The American Society of Health-System PharmacistsCytarabine.2015
  16. Word PressBritish National Formulary (BNF) 692016Available From: https://rudiapt.wordpress.com/wp-content/uploads/2017/11/british-national-formulary-69.pdf
    [Google Scholar]
  17. National library og=f MedicineCytarabine.Treasure Island, FLStatPearls2023
    [Google Scholar]
  18. FieldH.J. De ClercqE. “Antiviral drugs-a short history of their discovery and development” (PDF).Microbiol. Today20043125861
    [Google Scholar]
  19. SneaderW. Drug discovery: A history.New YorkWiley200525810.1002/0470015535
    [Google Scholar]
  20. KijjoaA. SawangwongP. Drugs and cosmetics from the sea.Mar. Drugs200422738210.3390/md202073
    [Google Scholar]
  21. MayerA.M.S. HamannM.T. Marine pharmacology in 2001-2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action, Comp. Biochem. Physiol., Part C.Toxicol. Pharmacol.2005140c265286
    [Google Scholar]
  22. AbdelmohsenU.R. BalasubramanianS. OelschlaegerT.A. GrkovicT. PhamN.B. QuinnR.J. HentschelU. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections.Lancet Infect. Dis.2017172e30e4110.1016/S1473‑3099(16)30323‑127979695
    [Google Scholar]
  23. DoniaM. HamannM.T. Marine natural products and their potential applications as anti-infective agents.Lancet Infect. Dis.20033633834810.1016/S1473‑3099(03)00655‑812781505
    [Google Scholar]
  24. Bourguet-KondrackiM.L. KornprobstJ.M. Marine pharmacology: Potentialities in the treatment of infectious diseases, osteoporosis and Alzheimer’s disease.Adv. Biochem. Eng. Biotechnol.20059710513110.1007/b13582416261807
    [Google Scholar]
  25. OkunadeA. Elvin-LewisM.P.F. LewisW.H. Natural antimycobacterial metabolites: Current status.Phytochemistry20046581017103210.1016/j.phytochem.2004.02.01315110681
    [Google Scholar]
  26. CantrellC. FranzblauS. FischerN. Antimycobacterial plant terpenoids.Planta Med.200167868569410.1055/s‑2001‑1836511731906
    [Google Scholar]
  27. LuT. FischerN.H. Spectral data of chemical modification products of costunolide.Spectrosc. Lett.199629343744810.1080/00387019608006662
    [Google Scholar]
  28. RajabM. CantrellC. FranzblauS. FischerN. Antimycobacterial activity of (E)-phytol and derivatives: A preliminary structure-activity study.Planta Med.19986412410.1055/s‑2006‑9573549491760
    [Google Scholar]
  29. CantrellC.L. Antimycobacterial natural products from higher plants. Department of Chemistry.Baton Rouge, LALouisiana State University1998
    [Google Scholar]
  30. HamannM.T. ScheuerP.J. Kelly-BorgesM. Biogenetically diverse, bioactive constituents of a sponge, order Verongida: Bromotyramines and sesquiterpene-shikimate derived metabolites.J. Org. Chem.199358246565656910.1021/jo00076a012
    [Google Scholar]
  31. ZjawionyJ.K. BartyzelP. HamannM.T. Chemistry of puupehenone: 1,6-conjugate addition to its quinone-methide system.J. Nat. Prod.199861121502150810.1021/np98020629868151
    [Google Scholar]
  32. NasuS.S. YeungB.K.S. HamannM.T. ScheuerP.J. Kelly-BorgesM. GoinsK. Puupehenone-related metabolites from two Hawaiian sponges, Hyrtios spp.J. Org. Chem.199560227290729210.1021/jo00127a039
    [Google Scholar]
  33. López-PérezB. PepperH.P. MaR. FawcettB.J. PehereA.D. WeiQ. JiZ. PolyakS.W. DaiH. SongF. AbellA.D. ZhangL. GeorgeJ.H. Biosynthetically guided structure–activity relationship studies of merochlorin A, an antibiotic marine natural product.ChemMedChem201712231969197610.1002/cmdc.20170045129168322
    [Google Scholar]
  34. KaysserL. BernhardtP. NamS.J. LoesgenS. RubyJ.G. Skewes-CoxP. JensenP.R. FenicalW. MooreB.S. Merochlorins A-D, cyclic meroterpenoid antibiotics biosynthesized in divergent pathways with vanadium-dependent chloroperoxidases.J. Am. Chem. Soc.201213429119881199110.1021/ja305665f22784372
    [Google Scholar]
  35. StewartP.S. William CostertonJ. Antibiotic resistance of bacteria in biofilms.Lancet2001358927613513810.1016/S0140‑6736(01)05321‑111463434
    [Google Scholar]
  36. AraiM. NiikawaH. KobayashiM. Marine-derived fungal sesterterpenes, ophiobolins, inhibit biofilm formation of Mycobacterium species.J. Nat. Med.201367227127510.1007/s11418‑012‑0676‑522684914
    [Google Scholar]
  37. KazlauskasR. MurphyP.T. QuinnR.J. WellsR.J. Heteronemin, a new scalarin type sesterterpenefrom the sponge Heteronemaerecta.Tetrahedron Lett.1976302631263410.1016/S0040‑4039(00)91753‑2
    [Google Scholar]
  38. SayedK.A.E. BartyzelP. ShenX.Y. PerryT.L. ZjawionyJ.K. HamannM.T. Marinenaturalproducts as anti-tuberculosis agents.Tetrahedron200056949953
    [Google Scholar]
  39. GüvenK.C. PercotA. SezikE. Alkaloids in marine algae.Mar. Drugs20108226928410.3390/md802026920390105
    [Google Scholar]
  40. PelletierS.W. Chemistry of the Alkaloids.New York, NY, USAVan Nostrand Reinhold19701
    [Google Scholar]
  41. TrierG. Die Alkaloide.Borntraeger, Berlin, GermanyVerlag von Gebrüder1931110
    [Google Scholar]
  42. SwanG.A. An Introduction to the Alkaloids.Oxford and Edinburgh, UKBlack Well Scientific19671
    [Google Scholar]
  43. BentleyK.W. The Alkaloids.New York, NY, USAInterscience19571
    [Google Scholar]
  44. NumataA. TakahashiC. ItoY. TakadaT. KawaiK. UsamiY. MatsumuraE. ImachiM. ItoT. HasegawaT. Communesins, cytotoxic metabolites of a fungus isolated from a marine alga.Tetrahedron Lett.199334142355235810.1016/S0040‑4039(00)77612‑X
    [Google Scholar]
  45. TakahashiC. TakaiY. KimuraY. NumataA. ShigematsuN. TanakaH. Cytotoxic metabolites from a fungal adherent of a marine alga.Phytochemistry199538115515810.1016/0031‑9422(94)00582‑E7766052
    [Google Scholar]
  46. GuvenK. C BoraA SunamG. Hordenine from the alga phyllophora nervosa.1970Available From: https://ui.adsabs.harvard.edu/abs/1970PChem...9.1893G/abstract
  47. GuvenK.C. BoraA. SunamG. Alkaloid content of marine algae. I. Hordenine from Phyllophoranervosa.Eczacılık Bul.196911177184
    [Google Scholar]
  48. MagnierE. LangloisY. Manzamine alkaloids, syntheses and synthetic approaches.Tetrahedron199854236201IN210.1016/S0040‑4020(98)00357‑3
    [Google Scholar]
  49. UrbanS. HickfordS.J.H. BluntJ.W. MunroM.H.G. Bioactive marine alkaloids.Curr. Org. Chem.2000476580710.2174/1385272003376085
    [Google Scholar]
  50. NakagawaM. TorisawaY. UchidaH. NishidaA. New approaches to total synthesis of manzamineA, ircinal A and related compounds.J. Synth. Org. Chem. Jpn.199957111004101510.5059/yukigoseikyokaishi.57.1004
    [Google Scholar]
  51. StockingE.M. WilliamsR.M. Chemistry and biology of biosynthetic Diels-Alder reactions.Angew. Chem. Int. Ed.200342273078311510.1002/anie.20020053412866094
    [Google Scholar]
  52. DuvalR. PouponE. Biomimetic synthesis of manzamine alkaloids.Biomimetic Organic Synthesis PouponE. NayB. WeinheimWiley-VCH Verlag GmbH & Co. KGaA.201118122410.1002/9783527634606.ch6
    [Google Scholar]
  53. MiharaY. MatsumuraT. TerauchiY. AkibaM. AraiS. NishidaA. Asymmetric synthesis of hydroisoquinoline derivatives, a key intermediate for manzamine synthesis,by Diels-Alder reaction using 4-amino-2-siloxybutadiene.Bull. Chem. Soc. Jpn.200982121520152710.1246/bcsj.82.1520
    [Google Scholar]
  54. SayedK.A.E. KhalilA.A. YousafM. LabadieG. KumarG.M. FranzblauS.G. MayerA.M.S. AveryM.A. HamannM.T. Semisynthetic studies on the manzamine alkaloids.J. Nat. Prod.200871330030810.1021/np070370218198837
    [Google Scholar]
  55. NishidaA. NagataT. NakagawaM. Strategies for the synthesis of manzamine alkaloids.Top. Heterocycl. Chem.2006525528010.1007/7081_033
    [Google Scholar]
  56. BaldwinJ.E. WhiteheadR.C. Biosynthesis of manzamines.Tetrahedron Lett.199233152059206210.1016/0040‑4039(92)88141‑Q
    [Google Scholar]
  57. AraiM. SobouM. VilchézeC. BaughnA. HashizumeH. PruksakornP. IshidaS. MatsumotoM. JacobsW.R.Jr KobayashiM. Halicyclamine A, a marine spongean alkaloid as a lead for anti-tuberculosis agent.Bioorg. Med. Chem.200816146732673610.1016/j.bmc.2008.05.06118556206
    [Google Scholar]
  58. JasparsM. PasupathyV. CrewsP. A tetracyclic diamine alkaloid, halicyclamine A, from the marine sponge Haliclona sp.J. Org. Chem.199459123253325510.1021/jo00091a005
    [Google Scholar]
  59. RodríguezA.D. RamírezC. RodríguezI.I. GonzálezE. Novel antimycobacterial benzoxazole alkaloids, from the west Indian Sea whip Pseudopterogorgia elisabethae.Org. Lett.19991352753010.1021/ol990711610822593
    [Google Scholar]
  60. DavidsonJ.P. CoreyE.J. First enantiospecific total synthesis of the antitubercular marine natural product pseudopteroxazole. Revision of assigned stereochemistry.J. Am. Chem. Soc.200312544134861348910.1021/ja037891614583045
    [Google Scholar]
  61. YuX. SuF. LiuC. YuanH. ZhaoS. ZhouZ. QuanT. LuoT. Enantioselective total syntheses of various amphilectane and serrulatanediterpenoids via cope rearrangements.J. Am. Chem. Soc.2016138196261627010.1021/jacs.6b0262427115064
    [Google Scholar]
  62. HarmataM. HongX. Benzothiazines in synthesis. A total synthesis of pseudopteroxazole.Org. Lett.20057163581358310.1021/ol051541216048347
    [Google Scholar]
  63. YangM. YangX. SunH. LiA. Total synthesis of ileabethoxazole, pseudopteroxazole and seco-pseudopteroxazole.Angew. Chem. Int. Ed.20165582851285510.1002/anie.20151056826799824
    [Google Scholar]
  64. BakkestuenA.K. GundersenL.L. PetersenD. UtenovaB.T. VikA. Synthesis and antimycobacterial activity of agelasine E and analogs.Org. Biomol. Chem.2005361025103310.1039/b417471b15750645
    [Google Scholar]
  65. UtenovaB.T. GundersenL.L. Synthesis of (+)-agelasine D from (+)-manool.Tetrahedron Lett.200445224233423510.1016/j.tetlet.2004.04.030
    [Google Scholar]
  66. VikA. HednerE. CharnockC. SamuelsenØ. LarssonR. GundersenL.L. BohlinL. (+)-agelasine D: Improved synthesis and evaluation of antibacterial and cytotoxic activities.J. Nat. Prod.200669338138610.1021/np050424c16562840
    [Google Scholar]
  67. ChayC. CansinoR. PinzónC. Torres-OchoaR. MartínezR. Synthesis and anti-tuberculosis activity of the marine natural product caulerpin and its analogues.Mar. Drugs20141241757177210.3390/md1204175724681629
    [Google Scholar]
  68. Aguilar-SantosG. Caulerpin, a new red pigment from green algae of the genus Caulerpa.J. Chem. Soc., Perkin Trans. 1197068428435461799
    [Google Scholar]
  69. MaitiB.C. ThomsonR.H. MahendranM. The structure of caulerpin, a pigment from Caulerpaalgae. J. Chem. Res.Synopses19789126127
    [Google Scholar]
  70. CavalieriL.F. The chemistry of the monocyclic α-and γ-pyrones.Chem. Rev.194741352558410.1021/cr60130a00418895521
    [Google Scholar]
  71. EllisG.P. 2.23-pyrans and fused pyrans: (II) reactivity.Comprehensive Heterocyclic Chemistry. ReesA.R.K.W. Oxford, UKPergamon198464773610.1016/B978‑008096519‑2.00045‑X
    [Google Scholar]
  72. LeeJ. Recent advances in the synthesis of 2-pyrones.Mar. Drugs20151331581162010.3390/md1303158125806468
    [Google Scholar]
  73. NagaiK. KamigiriK. MatsumotoH. KawanoY. YamaokaM. ShimoiH. WatanabeM. SuzukiK. YM-202204, a new antifungal antibiotic produced by marine fungus Phoma sp.J. Antibiot. (Tokyo)200255121036104110.7164/antibiotics.55.103612617512
    [Google Scholar]
  74. McGlackenG.P. FairlambI.J.S. 2-Pyrone natural products and mimetics: Isolation, characterisation and biological activity.Nat. Prod. Rep.200522336938510.1039/b416651p16010346
    [Google Scholar]
  75. BhatZ.S. RatherM.A. SyedK.Y. AhmadZ. α-pyrones and their hydroxylated analogs as promising scaffolds against Mycobacterium tuberculosis.Future Med. Chem.20179172053206710.4155/fmc‑2017‑011629076769
    [Google Scholar]
  76. GiddensA.C. NielsenL. BoshoffH.I. TasdemirD. PerozzoR. KaiserM. WangF. SacchettiniJ.C. CoppB.R. Natural product inhibitors of fatty acid biosynthesis: Synthesis of the marine microbial metabolites pseudopyronines A and B and evaluation of their anti-infective activities.Tetrahedron20086471242124910.1016/j.tet.2007.11.075
    [Google Scholar]
  77. ZhangY. LingS. FangY. ZhuT. GuQ. ZhuW.M. Isolation, structure elucidation, and antimycobacterial properties of dimeric naphtho-γ-pyrones from the marine-derived fungus Aspergillus carbonarius.Chem. Biodivers.2008519310010.1002/cbdv.20089001718205129
    [Google Scholar]
  78. KoyamaK. NatoriS. Chaetochromins B, C and D, bis(naphtho-.GAMMA.-pyrone) derivatives from Chaetomium gracile.Chem. Pharm. Bull. (Tokyo)198735257858410.1248/cpb.35.5783594673
    [Google Scholar]
  79. PriestapH.A. New naphthopyrones from aspergillus fonsecaeus.Tetrahedron198440193617362410.1016/S0040‑4020(01)88792‑5
    [Google Scholar]
  80. CardellinaJ.H.II MooreR.E. ArnoldE.V. ClardyJ. Structure and absolute configuration of malyngolide, an antibiotic from the marine blue-green alga Lyngbya majuscula Gomont.J. Org. Chem.197944234039404210.1021/jo01337a003
    [Google Scholar]
  81. WeiX. RodríguezA.D. WangY. FranzblauS.G. Novel ring B abeo-sterols as growth inhibitors of Mycobacterium tuberculosis isolated from a Caribbean Sea sponge, Svenzea zeai.Tetrahedron Lett.200748508851885410.1016/j.tetlet.2007.10.070
    [Google Scholar]
  82. WeiX. RodríguezA.D. WangY. FranzblauS.G. Synthesis and in vitro biological evaluation of ring B abeo-sterols as novel inhibitors of Mycobacterium tuberculosis.Bioorg. Med. Chem. Lett.200818205448545010.1016/j.bmcl.2008.09.02918818073
    [Google Scholar]
  83. NodaT. TakeT. OtaniM. MiyauchiK. WatanabeT. AbeJ. Structure of bostrycin.Tetrahedron Lett.19689586087609010.1016/S0040‑4039(00)70801‑X5750419
    [Google Scholar]
  84. ChenD. ChenH. SheZ. LuY. Identification of bostrycin derivatives as potential inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase (MptpB).Med. Chem.201612329630210.2174/157340641166615100510585726434800
    [Google Scholar]
  85. ChenH. ZhongL. LongY. LiJ. WuJ. LiuL. ChenS. LinY. LiM. ZhuX. SheZ. Studies on the synthesis of derivatives of marine-derived bostrycin and their structure-activity relationship against tumor cells.Mar. Drugs2012101293295210.3390/md1004093222690152
    [Google Scholar]
  86. RiedlingerJ. ReickeA. ZähnerH. KrismerB. BullA.T. MaldonadoL.A. WardA.C. GoodfellowM. BisterB. BischoffD. SüssmuthR.D. FiedlerH.P. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032.J. Antibiot. (Tokyo)200457427127910.7164/antibiotics.57.27115217192
    [Google Scholar]
  87. ZapfC.W. HarrisonB.A. DrahlC. SorensenE.J. A Diels-Alder macrocyclization enables an efficient asymmetric synthesis of the antibacterial natural product abyssomicin C.Angew. Chem. Int. Ed.200544406533653710.1002/anie.20050211916163781
    [Google Scholar]
  88. NicolaouK.C. HarrisonS.T. Total synthesis of abyssomicin C and atrop-abyssomicin C.Angew. Chem. Int. Ed.200645203256326010.1002/anie.20060111616634106
    [Google Scholar]
  89. FreundlichJ.S. LalgondarM. WeiJ.R. SwansonS. SorensenE.J. RubinE.J. SacchettiniJ.C. The Abyssomicin C family as in vitro inhibitors of Mycobacterium tuberculosis.Tuberculosis (Edinb.)201090529830010.1016/j.tube.2010.08.00220739223
    [Google Scholar]
  90. WalburgerA. KoulA. FerrariG. NguyenL. Prescianotto-BaschongC. HuygenK. KleblB. ThompsonC. BacherG. PietersJ. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages.Science200430456781800180410.1126/science.109938415155913
    [Google Scholar]
  91. XiaoB.H. SheZ.G. LeiX.L. ChenB. HuangC.H. XuJ. [Secondary metabolites of seaweed endophytic fungi ZJ27 in the South China Sea coast].Zhong Yao Cai201134454454621809538
    [Google Scholar]
  92. ChenD. MaS. HeL. YuanP. SheZ. LuY. Sclerotiorin inhibits protein kinase G from Mycobacterium tuberculosis and impairs mycobacterial growth in macrophages.Tuberculosis (Edinb.)2017103374310.1016/j.tube.2017.01.00128237032
    [Google Scholar]
/content/journals/npj/10.2174/0122103155289998240611102259
Loading
/content/journals/npj/10.2174/0122103155289998240611102259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test