Skip to content
2000
Volume 15, Issue 5
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Introduction

Harnessing the bioactive compounds from seaweed for inflammatory diseases holds great promise for developing new and effective treatments that are natural, sustainable, and potentially free from the side effects commonly associated with synthetic drugs.

Methods

The objective of this study was to examine the phytochemical levels, as well as the antioxidant and anti-inflammatory properties of the edible red seaweed . The methanol extract of the seaweed showed potent radical scavenging activity. Analysis using GC-MS techniques identified two distinct phytochemical compounds in extract, namely 1,1-dipropylhydrazine and 4-chlorobuten-3-yne.

Results

When tested on copper-induced zebrafish embryos, the extract reversed the upregulation of MMP9 and NFκBp65, as evidenced by western blotting and zymography methods.

Conclusion

These findings suggest that the bioactive compounds found in extract could be utilized for the development of natural sources for antiradicals, food supplements, nutraceuticals, and various functional foods with therapeutic applications.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155294834240607054701
2024-06-04
2025-03-30
Loading full text...

Full text loading...

References

  1. de AlmeidaC.L. FalcãoH.S. LimaG.R. MontenegroC.A. LiraN.S. de Athayde-FilhoP.F. RodriguesL.C. de SouzaM.F. Barbosa-FilhoJ.M. BatistaL.M. Bioactivities from marine algae of the genus Gracilaria.Int. J. Mol. Sci.20111274550457310.3390/ijms1207455021845096
    [Google Scholar]
  2. GunathilakaTL. SamarakoonKW. RanasingheP. PeirisLDC. In-vitro antioxidant, hypoglycemic activity, and identification of bioactive compounds in phenol-rich extract from the marine red algae Gracilaria edulis (Gmelin) Silva.Molecules201924203708
    [Google Scholar]
  3. LeszekJ. BarretoG.E. GąsiorowskiK. KoutsourakiE. Ávila-RodriguesM. AlievG. Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: Role of brain innate immune system.CNS Neurol. Disord. Drug Targets201615332933610.2174/187152731566616020212591426831258
    [Google Scholar]
  4. BineshA. DevarajS.N. HalagowderD. Atherogenic diet induced lipid accumulation induced NFκB level in heart, liver and brain of Wistar rat and diosgenin as an anti-inflammatory agent.Life Sci.2018196196283710.1016/j.lfs.2018.01.01229339101
    [Google Scholar]
  5. BineshA. Decades‐long involvement of signalling pathways in cardiovascular research using zebrafish model and its global trends.Rev. Aquacult.202113155656610.1111/raq.12486
    [Google Scholar]
  6. PrietoP. PinedaM. AguilarM. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E.Anal Biochem1999269233734110.1006/abio.1999.4019
    [Google Scholar]
  7. SingletonV.L. RossiJ.A.Jr Colorimetry of total phenolics with phospho molybdic phosphotungstic acid reagents.Am. J. Enol. Vitic.196516314415810.5344/ajev.1965.16.3.144
    [Google Scholar]
  8. BenzieI.F.F. StrainJ.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay.Anal. Biochem.19962391707610.1006/abio.1996.02928660627
    [Google Scholar]
  9. YenG.C. ChenH.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity.J. Agric. Food Chem.1995431273210.1021/jf00049a007
    [Google Scholar]
  10. KaliyamurthiV. BineshA. Power of Portieria hornemannii : Influence on zebrafish antioxidant system-inflammatory cascade by combatting copper-induced inflammation.Nat. Prod. Res.2023111510.1080/14786419.2023.228016637950668
    [Google Scholar]
  11. MoshageH. KokB. HuizengaJR. JansenPL. Nitrite and nitrate determinations in plasma: A critical evaluation.Clin Chem199541689289610.1093/clinchem/41.6.892
    [Google Scholar]
  12. Vargas-MayaN.I. Padilla-VacaF. Romero-GonzálezO.E. Rosales-CastilloE.A.S. Rangel-SerranoÁ. Arias-NegreteS. FrancoB. Refinement of the Griess method for measuring nitrite in biological samples.J. Microbiol. Methods202118710626010.1016/j.mimet.2021.10626034090997
    [Google Scholar]
  13. WilliamsS.Y. RenquistB.J. High throughput Danio rerio energy expenditure assay.J. Vis. Exp.201627107e5329726863590
    [Google Scholar]
  14. MisraH.P. FridovichI. The generation of superoxide radical during the autoxidation of hemoglobin.J. Biol. Chem.1972247216960696210.1016/S0021‑9258(19)44679‑64673289
    [Google Scholar]
  15. SinhaA.K. Colorimetric assay of catalase.Anal. Biochem.197247238939410.1016/0003‑2697(72)90132‑74556490
    [Google Scholar]
  16. RotruckJ.T. PopeA.L. GantherH.E. SwansonA.B. HafemanD.G. HoekstraW.G. Selenium: Biochemical role as a component of glutathione peroxidase.Science1973179407358859010.1126/science.179.4073.5884686466
    [Google Scholar]
  17. HabigW.H. JakobyW.B. Assays for differentiation of glutathione S-Transferases.Methods in enzymology.Academic press198177398405
    [Google Scholar]
  18. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3942051
    [Google Scholar]
  19. TajhyaR.B. PatelR.S. BeetonC. Detection of matrix metalloproteinases by zymography.Methods Mol. Biol.2017157923124410.1007/978‑1‑4939‑6863‑3_1228299740
    [Google Scholar]
  20. YiZ. Yin-shanC. Hai-shengL. Screening for antibacterial and antifungal activities in some marine algae from the Fujian coast of China with three different solvents.Chin. J. Oceanology Limnol.200119432733110.1007/BF02850736
    [Google Scholar]
  21. ChanP.T. MatanjunP. YasirS.M. TanT.S. Antioxidant activities and polyphenolics of various solvent extracts of red seaweed, Gracilaria changii. J. Appl. Phycol.20152762377238610.1007/s10811‑014‑0493‑1
    [Google Scholar]
  22. BalaganesanM. KaliyamurthiV. BineshA. Medicinal plants or plant derived compounds used in aquaculture. Recent Advances in Aquaculture Microbial Technology.Academis press2023153207
    [Google Scholar]
  23. SakthivelR. Pandima DeviK. Evaluation of physicochemical properties, proximate and nutritional composition of Gracilaria edulis collected from Palk Bay.Food Chem.2015174174687410.1016/j.foodchem.2014.10.14225529653
    [Google Scholar]
  24. KianmehrE. BakhtiaryA. ZhuC. Isoquinoline-catalyzed addition of 2-bromo-1-aryl-1-ethanone to dialkyl azodicarboxylate: synthesis of trialkyl 2-[(1E)-N-(alkoxycarbonyl)-2-aryl-2-oxoethanehydrazonoyl]hydrazine-1,1,2-tricarboxylate.Monatsh. Chem.2012143225526210.1007/s00706‑011‑0643‑y
    [Google Scholar]
  25. TayadeK. YeomG.S. SahooS.K. PuschmannH. NimseS.B. KuwarA. Exploration of molecular structure, dft calculations, and antioxidant activity of a hydrazone derivative.Antioxidants20221111213810.3390/antiox1111213836358512
    [Google Scholar]
  26. BourhiaM. MessaoudiM. BakrimH. MothanaR.A. SddiquiN.A. AlmarfadiO.M. El MzibriM. GmouhS. LaglaouiA. BenbacerL. Citrullus colocynthis (L.) Schrad: Chemical characterization, scavenging and cytotoxic activities.Open Chem.202018198699410.1515/chem‑2020‑0124
    [Google Scholar]
  27. GanesanP. KumarC.S. BhaskarN. Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds.Bioresour. Technol.20089982717272310.1016/j.biortech.2007.07.00517706415
    [Google Scholar]
  28. SharmaJ.N. Al-OmranA. ParvathyS.S. Role of nitric oxide in inflammatory diseases.Inflammopharmacology200715625225910.1007/s10787‑007‑0013‑x18236016
    [Google Scholar]
  29. NguyenTH. LeHD. KimTNT. TheHP. NguyenTM. CornetV. LambertJ. KestemontP. Anti-inflammatory and antioxidant properties of the ethanol extract of Clerodendrum Cyrtophyllum Turcz in copper sulfate-induced inflammation in zebrafish.Antioxidants 202093192
    [Google Scholar]
  30. GongL. YuL. Exploration of anti-inflammatory mechanism of forsythiaside A and forsythiaside B in CuSO4-induced inflammation in zebrafish by metabolomic and proteomic analyses.J Neuroinflammation.2020171173
    [Google Scholar]
  31. YuanX. HuangL. LeiJ. LongY. LiC. Study on anti-inflammatory effect and major anti-inflammatory components of PSORI-CM02 by zebrafish model.Evid. Based Complement. Alternat. Med.2020202011010.1155/2020/560465432595728
    [Google Scholar]
  32. BineshA. DevarajS.N. DevarajH. Expression of chemokines in macrophage polarization and downregulation of NFκB in aorta allow macrophage polarization by diosgenin in atherosclerosis.J. Biochem. Mol. Toxicol.2020342e2242210.1002/jbt.2242231729780
    [Google Scholar]
  33. EsteveM. Mechanisms underlying biological effects of cruciferous glucosinolate-derived isothiocyanates/indoles: A focus on metabolic syndrome.Front. Nutr.20207711110.3389/fnut.2020.0011132984393
    [Google Scholar]
  34. LatronicoT. LaroccaM. MilellaS. FasanoA. RossanoR. LiuzziG.M. Neuroprotective potential of isothiocyanates in an in vitro model of neuroinflammation.Inflammopharmacology202129256157110.1007/s10787‑020‑00772‑w33196947
    [Google Scholar]
  35. GuarneriC. BevelacquaV. PoleselJ. FalzoneL. CannavòP.S. SpandidosD.A. MalaponteG. LibraM. NF-κB inhibition is associated with OPN/MMP-9 downregulation in cutaneous melanoma.Oncol. Rep.201737273774610.3892/or.2017.536228075446
    [Google Scholar]
/content/journals/npj/10.2174/0122103155294834240607054701
Loading
/content/journals/npj/10.2174/0122103155294834240607054701
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CuSO4 induction; Gracilaria edulis; Inflammation; MMP 9; NFκB; Zebrafish embryos
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test