Skip to content
2000
Volume 15, Issue 5
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

Cells generate reactive oxygen species (ROS), which cause oxidative stress. Such stress is counteracted by a complex antioxidant system, which includes molecules of the secondary metabolism of plants, mainly phenols. Several studies attribute the antioxidant activity of a species to these compounds, although, in other studies, this relationship is not clear.

Objective

The aim of this study was to determine whether the amount of total phenols is a good indicator of the antioxidant activity of a species.

Methods

The present study quantified the total phenols and antioxidant activity measured by DPPH and ABTS methods of 18 species of Mediterranean scrubs and established the correlation between these two parameters.

Results

The obtained results showed that there was a wide variability in the content of phenols among the analyzed species, with and presenting the largest and smallest amount of total phenols, respectively (0.043 and 0.004 gallic acid equivalent (mg/mg dw)). A cluster analysis differentiated these species into two groups with significantly different amounts of phenols. The species that constitute Group I presented an average amount of 0.029 gallic acid equivalent (mg/mg dw), and that of the species of Group II was 0.011±0.003 gallic acid equivalent (mg/mg dw). The relationship between the antioxidant activity quantified in each species and its content of total phenols showed a positive and significant correlation; however, when considering the two groups of species, the significant correlation between these parameters depends on the species group, the extract concentration used, and the method employed to quantify the antioxidant activity.

Conclusion

These results indicate that it would not be correct to generalize that there is a significant correlation between the amount of total phenols and the antioxidant activity. Therefore, total phenol content cannot be used as a single indicator of the antioxidant activity of a species.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155305002240415114257
2024-07-02
2025-03-30
Loading full text...

Full text loading...

References

  1. LiguoriI. RussoG. CurcioF. BulliG. AranL. Della-MorteD. GargiuloG. TestaG. CacciatoreF. BonaduceD. AbeteP. Oxidative stress, aging, and diseases.Clin. Interv. Aging20181375777210.2147/CIA.S15851329731617
    [Google Scholar]
  2. KhanF.A. MaalikA. MurtazaG. Inhibitory mechanism against oxidative stress of caffeic acid.J. Food Drug Anal.201624469570210.1016/j.jfda.2016.05.00328911606
    [Google Scholar]
  3. CroteauR. KutchanT.M. LewisN.G. Natural products (secondary metabolites).Biochemistry and molecular biology of plants. BuchananB. GruissemW. JonesR. USAAmerican Society of Plant Physiologist200012501318
    [Google Scholar]
  4. PangY. AhmedS. XuY. BetaT. ZhuZ. ShaoY. BaoJ. Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice.Food Chem.201824021222110.1016/j.foodchem.2017.07.09528946264
    [Google Scholar]
  5. LattanzioV. Phenolic compounds.Natural Products. RamawatK.G. MerillonM.J. Springer-Verlag Berlin Heidelberg201310.1007/978‑3‑642‑22144‑6_57
    [Google Scholar]
  6. MiliauskasG. VenskutonisP.R. van BeekT.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts.Food Chem.200485223123710.1016/j.foodchem.2003.05.007
    [Google Scholar]
  7. GouthamchandraK. MahmoodR. ManjunathaH. Free radical scavenging, antioxidant enzymes and wound healing activities of leaves extracts from Clerodendrum infortunatum L.Environ. Toxicol. Pharmacol.2010301111810.1016/j.etap.2010.03.00521787623
    [Google Scholar]
  8. Khorasani EsmaeiliA. Mat TahaR. MohajerS. BanisalamB. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover).BioMed Res. Int.2015201511110.1155/2015/64328526064936
    [Google Scholar]
  9. P SinghD. VermaS. PrabhaR. Investigations on antioxidant potential of phenolic acids and flavonoids: the common phytochemical ingredients in plants.J. Plant Biochem. Physiol.20186321922310.4172/2329‑9029.1000219
    [Google Scholar]
  10. SoobratteeM.A. NeergheenV.S. Luximon-RammaA. AruomaO.I. BahorunT. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions.Mutat. Res.20055791-220021310.1016/j.mrfmmm.2005.03.02316126236
    [Google Scholar]
  11. KaramanŞ. TütemE. Sözgen BaşkanK. ApakR. Comparison of total antioxidant capacity and phenolic composition of some apple juices with combined HPLC–CUPRAC assay.Food Chem.201012041201120910.1016/j.foodchem.2009.11.065
    [Google Scholar]
  12. Gülçi˙nI˙. Beydemi˙rŞ. TopalF. GaguaN. BakuridzeA. BayramR. GepdiremenA. Apoptotic, antioxidant and antiradical effects of majdine and isomajdine from Vinca herbacea Waldst. and kit.J. Enzyme Inhib. Med. Chem.201227458759410.3109/14756366.2011.60431821883037
    [Google Scholar]
  13. WangS.Y. LinH.S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage.J. Agric. Food Chem.200048214014610.1021/jf990834510691606
    [Google Scholar]
  14. KimH.B. LeeS. HwangE.S. MaengS. ParkJ.H. p-Coumaric acid enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments.Biochem. Biophys. Res. Commun.2017492349349910.1016/j.bbrc.2017.08.06828830814
    [Google Scholar]
  15. NewmanD.J. CraggG.M. Natural Products as Sources of New Drugs from 1981 to 2014.J. Nat. Prod.201679362966110.1021/acs.jnatprod.5b0105526852623
    [Google Scholar]
  16. SpagnuoloC. NapolitanoM. TedescoI. MocciaS. MilitoA. Luigi RussoG. Neuroprotective role of natural polyphenols.Curr. Top. Med. Chem.201616171943195010.2174/156802661666616020412244926845551
    [Google Scholar]
  17. KimH.K. JeongT.S. LeeM.K. ParkY.B. ChoiM.S. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats.Clin. Chim. Acta20033271-212913710.1016/S0009‑8981(02)00344‑312482628
    [Google Scholar]
  18. Rioux BilanA. FreyssinA. PageG. FauconneauB. Natural polyphenols effects on protein aggregates in Alzheimer’s and Parkinson’s prion-like diseases.Neural Regen. Res.201813695596110.4103/1673‑5374.23343229926816
    [Google Scholar]
  19. SumczynskiD. KotáskováE. DružbíkováH. MlčekJ. Determination of contents and antioxidant activity of free and bound phenolics compounds and in vitro digestibility of commercial black and red rice (Oryza sativa L.) varieties.Food Chem.201621133934610.1016/j.foodchem.2016.05.08127283641
    [Google Scholar]
  20. FuL. XuB.T. XuX.R. QinX.S. GanR.Y. LiH.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China.Molecules201015128602861710.3390/molecules1512860221116229
    [Google Scholar]
  21. RababahT.M. EreifejK.I. EsohR.B. Al-u’dattM.H. AlrababahM.A. YangW. Antioxidant activities, total phenolics and HPLC analyses of the phenolic compounds of extracts from common Mediterranean plants.Nat. Prod. Res.201125659660510.1080/14786419.2010.48823221409721
    [Google Scholar]
  22. SurveswaranS. CaiY. CorkeH. SunM. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants.Food Chem.2007102393895310.1016/j.foodchem.2006.06.033
    [Google Scholar]
  23. ŠolaI. StipaničevM. VujčićV. MitićB. HuđekA. RusakG. Comparative analysis of native Crocus taxa as a great source of flavonoids with high antioxidant activity.Plant Foods Hum. Nutr.201873318919510.1007/s11130‑018‑0674‑129860648
    [Google Scholar]
  24. PiluzzaG. BullittaS. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area.Pharm. Biol.201149324024710.3109/13880209.2010.50108321323476
    [Google Scholar]
  25. AmensourM. SendraE. AbriniJ. Pérez-AlvarezJ.A. Fernández-LópezJ. Antioxidant activity and total phenolic compounds of myrtle extracts Actividad antioxidante y contenido de compuestos fenólicos totales en extractos de myrtus.CYTA J. Food2010829510110.1080/19476330903161335
    [Google Scholar]
  26. Ulewicz-MagulskaB. WesolowskiM. Total phenolic contents and antioxidant potential of herbs used for medical and culinary purposes.Plant Foods Hum. Nutr.2019741616710.1007/s11130‑018‑0699‑530374852
    [Google Scholar]
  27. NourV. StamparF. VebericR. JakopicJ. Anthocyanins profile, total phenolics and antioxidant activity of black currant ethanolic extracts as influenced by genotype and ethanol concentration.Food Chem.2013141296196610.1016/j.foodchem.2013.03.10523790874
    [Google Scholar]
  28. ZargooshZ. GhavamM. BacchettaG. TaviliA. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss.Sci. Rep.2019911602110.1038/s41598‑019‑52605‑831690810
    [Google Scholar]
  29. FidriannyI. SuhendyH. InsanuM. Correlation of phytochemical content with antioxidant potential of various sweet potato (Ipomoea batatas) in West Java, Indonesia.Asian Pac. J. Trop. Biomed.201881253010.4103/2221‑1691.221131
    [Google Scholar]
  30. SerreliG. JerkovićI. GilK.A. MarijanovićZ. PaciniV. TuberosoC.I.G. Phenolic compounds, volatiles and antioxidant capacity of white myrtle berry liqueurs.Plant Foods Hum. Nutr.201772220521010.1007/s11130‑017‑0611‑828447255
    [Google Scholar]
  31. ChavesN. SantiagoA. AlíasJ.C. Quantification of the antioxidant activity of plant extracts: analysis of sensitivity and hierarchization based on the method used.Antioxidants2020917610.3390/antiox901007631952329
    [Google Scholar]
  32. OlszowyM. DawidowiczA.L. Jóźwik-DolębaM. Are mutual interactions between antioxidants the only factors responsible for antagonistic antioxidant effect of their mixtures? Additive and antagonistic antioxidant effects in mixtures of gallic, ferulic and caffeic acids.Eur. Food Res. Technol.201924571473148510.1007/s00217‑019‑03255‑7
    [Google Scholar]
  33. HuangD. OuB. PriorR.L. The chemistry behind antioxidant capacity assays.J. Agric. Food Chem.20055361841185610.1021/jf030723c15769103
    [Google Scholar]
  34. SchaichK.M. TianX. XieJ. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays.J. Funct. Foods20151411112510.1016/j.jff.2015.01.043
    [Google Scholar]
  35. BurriS.C.M. EkholmA. HåkanssonÅ. TornbergE. RumpunenK. Antioxidant capacity and major phenol compounds of horticultural plant materials not usually used.J. Funct. Foods201738Pt A11912710.1016/j.jff.2017.09.00329129982
    [Google Scholar]
  36. ScognamiglioM. GrazianiV. TsafantakisN. EspositoA. FiorentinoA. D’AbroscaB. NMR‐based metabolomics and bioassays to study phytotoxic extracts and putative phytotoxins from Mediterranean plant species.Phytochem. Anal.201930551252310.1002/pca.284231222865
    [Google Scholar]
  37. PapaefthimiouD. PapanikolaouA. FalaraV. GivanoudiS. KostasS. KanellisA.K. Genus Cistus: a model for exploring labdane-type diterpenes’ biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties.Front Chem.201423510.3389/fchem.2014.0003524967222
    [Google Scholar]
  38. VogtT. ProkschP. GülzP.G. Epicuticular flavonoid aglycones in the genus Cistus, Cistaceae.J. Plant Physiol.19871311-2253610.1016/S0176‑1617(87)80264‑X
    [Google Scholar]
  39. ChavesN. EscuderoJ.C. Gutiérrez-MerinoC. Quantitative variation of flavonoids among individuals of a Cistus ladanifer population.Biochem. Syst. Ecol.199725542943510.1016/S0305‑1978(97)00019‑7
    [Google Scholar]
  40. González-BurgosE. Gómez-SerranillosM.P. Terpene compounds in nature: a review of their potential antioxidant activity.Curr. Med. Chem.201219315319534110.2174/09298671280383333522963623
    [Google Scholar]
  41. GuerreiroO. AlvesS.P. DuarteM.F. BessaR.J.B. JerónimoE. Cistus ladanifer L. Shrub is rich in saturated and branched chain fatty acids and their concentration increases in the mediterranean dry season.Lipids201550549350110.1007/s11745‑015‑4001‑425716335
    [Google Scholar]
  42. PeñuelasJ. CastellsE. JoffreR. TognettiR. Carbon‐based secondary and structural compounds in Mediterranean shrubs growing near a natural CO 2 spring.Glob. Change Biol.20028328128810.1046/j.1365‑2486.2002.00466.x
    [Google Scholar]
  43. AmmarH. LópezS. GonzálezJ.S. Assessment of the digestibility of some Mediterranean shrubs by in vitro techniques.Anim. Feed Sci. Technol.20051193-432333110.1016/j.anifeedsci.2004.12.013
    [Google Scholar]
  44. RomaniA. PinelliP. GalardiC. MulinacciN. TattiniM. Identification and quantification of galloyl derivatives, flavonoid glycosides and anthocyanins in leaves of Pistacia lentiscus L.Phytochem. Anal.2002132798610.1002/pca.62712018027
    [Google Scholar]
  45. LehmannJ. Große-StoltenbergA. RömerM. OldelandJ. Field spectroscopy in the vnir-swir region to discriminate between mediterranean native plants and exotic-invasive shrubs based on leaf tannin content.Remote Sens.2015721225124110.3390/rs70201225
    [Google Scholar]
  46. Carovic ́-StankoK. PetekM. GrdišaM. PintarJ. BedekovicD. HerakC ́usticM. SatovicZ. Medicinal plants of the family Lamiaceae as functional foods—A review.Czech J. Food Sci.20163437739010.17221/504/2015‑CJFS
    [Google Scholar]
  47. LawrenceB.M. Chemical components of Labiatae oils and their exploitation.Advances in Labiate Science HarleyR.M. ReynoldsT. Royal Botanic Gardens, KewRichmond, UK1992399436
    [Google Scholar]
  48. ÖzkanM. Glandular and eglandular hairs of Salvia recognita Fisch. & Mey. (Lamiaceae) in Turkey.Bangladesh J. Bot.1970371939510.3329/bjb.v37i1.1571
    [Google Scholar]
  49. al-SereitiM.R. Abu-AmerK.M. SenP. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials.Indian J. Exp. Biol.199937212413010641130
    [Google Scholar]
  50. ParejoI. ViladomatF. BastidaJ. Rosas-RomeroA. FlerlageN. BurilloJ. CodinaC. Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants.J. Agric. Food Chem.200250236882689010.1021/jf020540a12405792
    [Google Scholar]
  51. BoixY.F. VictórioC.P. DefaveriA.C.A. ArrudaR.D.C.D.O. SatoA. LageC.L.S. Glandular trichomes of Rosmarinus officinalis L.: Anatomical and phytochemical analyses of leaf volatiles.Plant Biosyst.2011145484885610.1080/11263504.2011.584075
    [Google Scholar]
  52. DjabouN. LorenziV. GuinoiseauE. AndreaniS. GiulianiM.C. DesjobertJ.M. BollaJ-M. CostaJ. BertiL. LucianiA. MuselliA. Phytochemical composition of Corsican Teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens.Food Control201330135436310.1016/j.foodcont.2012.06.025
    [Google Scholar]
  53. RomaniA. BaldiA. MulinacciN. VincieriF.F. TattiniM. Extraction and identification procedures of polyphenolic compounds and carbohydrates in phillyrea (Phillyrea angustifolia L.) leaves.Chromatographia1996429-1057157710.1007/BF02290294
    [Google Scholar]
  54. ChaabaneF. BoubakerJ. LoussaifA. NeffatiA. Kilani-JaziriS. GhediraK. Chekir-GhediraL. Antioxidant, genotoxic and antigenotoxic activities of daphne gnidium leaf extracts.BMC Complement. Altern. Med.201212115310.1186/1472‑6882‑12‑15322974481
    [Google Scholar]
  55. SingletonV.L. RossiJ.A.Jr Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent.Am. J. Enol. Vitic.196516314415810.5344/ajev.1965.16.3.144
    [Google Scholar]
  56. KatalinicV. MilosM. KulisicT. JukicM. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols.Food Chem.200694455055710.1016/j.foodchem.2004.12.004
    [Google Scholar]
  57. StratilP. KlejdusB. KubáňV. Determination of total content of phenolic compounds and their antioxidant activity in vegetables--evaluation of spectrophotometric methods.J. Agric. Food Chem.200654360761610.1021/jf052334j16448157
    [Google Scholar]
  58. BaruaC.C. SenS. DasA.S. TalukdarA. Jyoti HazarikaN. BaruaA. BaruaI. A comparative study of the in vitro antioxidant property of different extracts of Acorus calamus Linn. J.Nat. Prod. Plant Resour20144818
    [Google Scholar]
  59. NićiforovićN. MihailovićV. MaškovićP. SolujićS. StojkovićA. MuratspahićD.P. Antioxidant activity of selected plant species; potential new sources of natural antioxidants.Food Chem. Toxicol.201048113125313010.1016/j.fct.2010.08.00720728497
    [Google Scholar]
  60. DuthieG.G. DuthieS.J. KyleJ.A.M. Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants.Nutr. Res. Rev.20001317910610.1079/09544220010872901619087434
    [Google Scholar]
  61. Rice-EvansC. MillerN. PagangaG. Antioxidant properties of phenolic compounds.Trends Plant Sci.19972415215910.1016/S1360‑1385(97)01018‑2
    [Google Scholar]
  62. CömertE.D. GökmenV. Antioxidants bound to an insoluble food matrix: their analysis, regeneration behavior, and physiological importance.Compr. Rev. Food Sci. Food Saf.201716338239910.1111/1541‑4337.1226333371552
    [Google Scholar]
  63. UpadrastaL. MukhopadhyayM. BanerjeeR. Tannins: Chemistry, biological properties and biodegradation.Chemistry and Biotechnology of Polyphenols. SabuA. RoussosS. AguilarC.N. Thiruvananthapuram, IndiaCibet Publishers2011532
    [Google Scholar]
  64. ZlatićN. JakovljevićD. StankovićM. Temporal, plant part, and interpopulation variability of secondary metabolites and antioxidant activity of Inula helenium L.Plants20198617910.3390/plants806017931213017
    [Google Scholar]
  65. Amessis-OuchemoukhN. MadaniK. FaléP.L.V. SerralheiroM.L. AraújoM.E.M. Antioxidant capacity and phenolic contents of some Mediterranean medicinal plants and their potential role in the inhibition of cyclooxygenase-1 and acetylcholinesterase activities.Ind. Crops Prod.20145361510.1016/j.indcrop.2013.12.008
    [Google Scholar]
  66. NaczkM. ShahidiF. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis.J. Pharm. Biomed. Anal.20064151523154210.1016/j.jpba.2006.04.00216753277
    [Google Scholar]
  67. ShahidiF. AmbigaipalanP. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review.J. Funct. Foods20151882089710.1016/j.jff.2015.06.018
    [Google Scholar]
  68. FawoleO.A. NdhlalaA.R. AmooS.O. FinnieJ.F. Van StadenJ. Anti-inflammatory and phytochemical properties of twelve medicinal plants used for treating gastro-intestinal ailments in South Africa.J. Ethnopharmacol.2009123223724310.1016/j.jep.2009.03.01219429367
    [Google Scholar]
  69. KurutasE.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state.Nutr. J.20151517110.1186/s12937‑016‑0186‑527456681
    [Google Scholar]
  70. AryalS. BaniyaM.K. DanekhuK. KunwarP. GurungR. KoiralaN. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal.Plants2019849610.3390/plants804009630978964
    [Google Scholar]
  71. RajurkarN. HandeS.M. Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants.Indian J. Pharm. Sci.201173214615110.4103/0250‑474X.9157422303056
    [Google Scholar]
  72. GeX. JingL. ZhaoK. SuC. ZhangB. ZhangQ. HanL. YuX. LiW. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color.Food Chem.202133512765510.1016/j.foodchem.2020.12765532731125
    [Google Scholar]
  73. López-MartínezL.M. Santacruz-OrtegaH. NavarroR.E. Sotelo-MundoR.R. González-AguilarG.A. 1H NMR Investigation of the interaction between phenolic acids found in mango (Manguifera indica cv Ataulfo) and papaya (Carica papaya cv Maradol) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals.PLoS One20151011e014024210.1371/journal.pone.014024226559189
    [Google Scholar]
  74. ThaipongK. BoonprakobU. CrosbyK. Cisneros-ZevallosL. Hawkins ByrneD. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts.J. Food Compos. Anal.2006196-766967510.1016/j.jfca.2006.01.003
    [Google Scholar]
  75. WojdyloA. OszmianskiJ. CzemerysR. Antioxidant activity and phenolic compounds in 32 selected herbs.Food Chem.2007105394094910.1016/j.foodchem.2007.04.038
    [Google Scholar]
  76. SouriE. AminG. FarsamH. Barazandeh TehraniM. Screening of antioxidant activity and phenolic content of 24 medicinal plant extracts.Daru2008168387
    [Google Scholar]
  77. FreemanB.L. EggettD.L. ParkerT.L. Synergistic and antagonistic interactions of phenolic compounds found in navel oranges.J. Food Sci.2010756C570C57610.1111/j.1750‑3841.2010.01717.x20722912
    [Google Scholar]
  78. Palafox-CarlosH. Gil-ChávezJ. Sotelo-MundoR. NamiesnikJ. GorinsteinS. González-AguilarG. Antioxidant interactions between major phenolic compounds found in ‘Ataulfo’ mango pulp: chlorogenic, gallic, protocatechuic and vanillic acids.Molecules20121711126571266410.3390/molecules17111265723103532
    [Google Scholar]
  79. StankovićM. Teucrium Species: Biology and Applications.Springer NatureSwitzerland AG202010.1007/978‑3‑030‑52159‑2
    [Google Scholar]
  80. AmeniD. BaghianiA. BoumerfegS. DahamnaS. KhennoufS. ZargaM.H.A. ArrarL. Phytochemical profiles, antioxidant capacity and protective effect against aaph-induced mouse erythrocyte damage by Daphne gnidium L. Shoots extracts.Int. J. Pharm. Pharm. Sci.201511148156
    [Google Scholar]
/content/journals/npj/10.2174/0122103155305002240415114257
Loading
/content/journals/npj/10.2174/0122103155305002240415114257
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test