Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Inflammation is a complex biological process that plays an important role in many clinical disorders. The natural plant and its secondary metabolites play an important role in the prevention and treatment of inflammation. Taraxerol is a pentacyclic triterpenoid found in medicinal plants, fruits, and vegetables, and is a potent anti-inflammatory agent. This review explains the molecular mechanism of the anti-inflammatory effects of taraxerol and its interactions with many molecular targets, including NF-κB, MAPKs, and COX. Furthermore, the effects of taraxerol on oxidative stress, cell function, and inflammatory cell signaling have been comprehensively described. This review addresses the limitations and obstacles in taraxerol research, as well as provides insights for future investigations. The findings highlight the need for additional research to completely understand the therapeutic potential and clinical applications of taraxerol in the treatment of inflammatory diseases.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155277711231204060922
2025-01-01
2025-02-17
Loading full text...

Full text loading...

References

  1. MedzhitovR. Inflammation 2010: New adventures of an old flame.Cell2010140677177610.1016/j.cell.2010.03.00620303867
    [Google Scholar]
  2. Ferrero-MilianiL. NielsenO.H. AndersenP.S. GirardinS.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation.Clin. Exp. Immunol.2007147222723510.1111/j.1365‑2249.2006.03261.x17223962
    [Google Scholar]
  3. NathanC. DingA. Nonresolving Inflammation.Cell2010140687188210.1016/j.cell.2010.02.02920303877
    [Google Scholar]
  4. FoudahA.I. DeviS. AlqarniM.H. AlamA. SalkiniM.A. KumarM. AlmalkiH.S. Quercetin Attenuates Nitroglycerin-Induced Migraine Headaches by Inhibiting Oxidative Stress and Inflammatory Mediators.Nutrients20221422487110.3390/nu1422487136432556
    [Google Scholar]
  5. AlharthyK. BalahaM. DeviS. AltharawiA. YusufogluH. AldossariR. AlamA. di GiacomoV. Ameliorative Effects of Isoeugenol and Eugenol against Impaired Nerve Function and Inflammatory and Oxidative Mediators in Diabetic Neuropathic Rats.Biomedicines2023114120310.3390/biomedicines1104120337189822
    [Google Scholar]
  6. MondaE. PalmieroG. RubinoM. VerrilloF. AmodioF. Di FraiaF. PacileoR. FimianiF. EspositoA. CirilloA. FuscoA. MoscarellaE. FrissoG. RussoM.G. PacileoG. CalabròP. ScudieroO. CaiazzaM. LimongelliG. Molecular basis of inflammation in the pathogenesis of cardiomyopathies.Int. J. Mol. Sci.20202118646210.3390/ijms2118646232899712
    [Google Scholar]
  7. BungauS.G. BehlT. SinghA. SehgalA. SinghS. ChigurupatiS. VijayabalanS. DasS. PalanimuthuV.R. Targeting probiotics in rheumatoid arthritis.Nutrients20211310337610.3390/nu1310337634684377
    [Google Scholar]
  8. SpragueA.H. KhalilR.A. Inflammatory cytokines in vascular dysfunction and vascular disease.Biochem. Pharmacol.200978653955210.1016/j.bcp.2009.04.02919413999
    [Google Scholar]
  9. AtanasovA.G. WaltenbergerB. Pferschy-WenzigE.M. LinderT. WawroschC. UhrinP. TemmlV. WangL. SchwaigerS. HeissE.H. RollingerJ.M. SchusterD. BreussJ.M. BochkovV. MihovilovicM.D. KoppB. BauerR. DirschV.M. StuppnerH. Discovery and resupply of pharmacologically active plant-derived natural products: A review.Biotechnol. Adv.20153381582161410.1016/j.biotechadv.2015.08.00126281720
    [Google Scholar]
  10. HamiltonA.C. Medicinal plants, conservation and livelihoods.Biodivers. Conserv.20041381477151710.1023/B:BIOC.0000021333.23413.42
    [Google Scholar]
  11. PatwardhanB. Traditional medicine: A novel approach for available, accessible and affordable health care.World Health Organization2005
    [Google Scholar]
  12. ChenS.L. YuH. LuoH.M. WuQ. LiC.F. SteinmetzA. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects.Chin. Med.20161113710.1186/s13020‑016‑0108‑727478496
    [Google Scholar]
  13. MushtaqS. AbbasiB.H. UzairB. AbbasiR. Natural products as reservoirs of novel therapeutic agents.EXCLI J.20181742045129805348
    [Google Scholar]
  14. FabricantD.S. FarnsworthN.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect.2001109Suppl 1)(Suppl. 1697510.1289/ehp.01109s16911250806
    [Google Scholar]
  15. IwalewaE.O. McGawL.J. NaidooV. EloffJ.N. Inflammation: The foundation of diseases and disorders. A review of phytomedicines of South African origin used to treat pain and inflammatory conditions.Afr. J. Biotechnol.2007625
    [Google Scholar]
  16. ZafarR. SharmaK. Occurrence of taraxerol and taraxasterol in medicinal plants.Pharmacogn. Rev.2015917192310.4103/0973‑7847.15631726009688
    [Google Scholar]
  17. Di NapoliA. ZucchettiP. A comprehensive review of the benefits of Taraxacum officinale on human health.Bull. Natl. Res. Cent.202145111010.1186/s42269‑021‑00567‑1
    [Google Scholar]
  18. AodahA.H. DeviS. AlkholifiF.K. YusufogluH.S. FoudahA.I. AlamA. Effects of Taraxerol on Oxidative and Inflammatory Mediators in Isoproterenol-Induced Cardiotoxicity in an Animal Model.Molecules20232810408910.3390/molecules2810408937241830
    [Google Scholar]
  19. YaoX. LiG. BaiQ. XuH. LüC. Taraxerol inhibits LPS-induced inflammatory responses through suppression of TAK1 and Akt activation.Int. Immunopharmacol.201315231632410.1016/j.intimp.2012.12.03223333629
    [Google Scholar]
  20. SwainS.S. RoutK.K. ChandP.K. Production of triterpenoid anti-cancer compound taraxerol in Agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.).Appl. Biochem. Biotechnol.2012168348750310.1007/s12010‑012‑9791‑822843061
    [Google Scholar]
  21. RanjithD ViswanathS In silico antidiabetic activity of bioactive compounds in Ipomoea mauritiana Jacq. The Pharma Innov J.20198100511
    [Google Scholar]
  22. SinghB. SahuP.M. SharmaM.K. Anti-inflammatory and antimicrobial activities of triterpenoids from Strobilanthes callosus Nees.Phytomedicine20029435535910.1078/0944‑7113‑0014312120818
    [Google Scholar]
  23. ChunhakantS. ChaicharoenpongC. Antityrosinase, antioxidant, and cytotoxic activities of phytochemical constituents from Manilkara zapota L.Molecules20192415279810.3390/molecules2415279831370334
    [Google Scholar]
  24. SharmaK. ZafarR. Optimization of methyl jasmonate and β-cyclodextrin for enhanced production of taraxerol and taraxasterol in (Taraxacum officinale Weber) cultures.Plant Physiol. Biochem.2016103243010.1016/j.plaphy.2016.02.02926950922
    [Google Scholar]
  25. BeatonJ.M. SpringF.S. StevensonR. StewartJ.L. Triterpenoids. Part XXXVII. The constitution of taraxerol.J.Chem. Soc.(Resumed)1955195521312137
    [Google Scholar]
  26. KaennakamS SichaemJ KhumkratokS SiripongP Tip-pyangS. A new taraxerol derivative from the roots of Microcos tomentosa. Nat Prod Commun, 20138101934578X130080100710.1177/1934578X1300801007
    [Google Scholar]
  27. SangeethaK.N. ShilpaK. Jyothi KumariP. LakshmiB.S. Reversal of dexamethasone induced insulin resistance in 3T3L1 adipocytes by 3β-taraxerol of Mangifera indica.Phytomedicine2013203-421322010.1016/j.phymed.2012.10.01123219340
    [Google Scholar]
  28. AhmedD. TariqS.A. In vitro study of antimicrobial and antioxidant activities of methanolic extracts of leaves, fruits and bark of Ficus glomerata.Int. J. Med. Aromat. Plants201223033
    [Google Scholar]
  29. YasukawaK. MatsubaraH. SanoY. Inhibitory effect of the flowers of artichoke (Cynara cardunculus) on TPA-induced inflammation and tumor promotion in two-stage carcinogenesis in mouse skin.J. Nat. Med.201064338839110.1007/s11418‑010‑0403‑z20225077
    [Google Scholar]
  30. LiP. XuG. LiS.P. WangY.T. FanT.P. ZhaoQ.S. ZhangQ.W. Optimizing ultraperformance liquid chromatographic analysis of 10 diterpenoid compounds in Salvia miltiorrhiza using central composite design.J. Agric. Food Chem.20085641164117110.1021/jf073020u18198831
    [Google Scholar]
  31. LiP. YinZ.Q. LiS.L. HuangX.J. YeW.C. ZhangQ.W. Simultaneous determination of eight flavonoids and pogostone in Pogostemoncablin by high performance liquid chromatography.J. Liq. Chromatogr. Relat. Technol.201437121771178410.1080/10826076.2013.809545
    [Google Scholar]
  32. ZhouY.Q. ZhangQ.W. LiS.L. YinZ.Q. ZhangX.Q. YeW.C. Quality evaluation of semen oroxyli through simultaneous quantification of 13 components by high performance liquid chromatography.Curr. Pharm. Anal.20128220621310.2174/1573412911208020206
    [Google Scholar]
  33. LinJ.Y. TangC.Y. Strawberry, loquat, mulberry, and bitter melon juices exhibit prophylactic effects on LPS-induced inflammation using murine peritoneal macrophages.Food Chem.200810741587159610.1016/j.foodchem.2007.10.025
    [Google Scholar]
  34. KimK. KwonY.G. ChungH.T. YunY.G. PaeH.O. HanJ.A. HaK.S. KimT.W. KimY.M. Methanol extract of Cordyceps pruinosa inhibits in vitro and in vivo inflammatory mediators by suppressing NF-κB activation.Toxicol. Appl. Pharmacol.200319011810.1016/S0041‑008X(03)00152‑212831777
    [Google Scholar]
  35. MuellerM. HobigerS. JungbauerA. Anti-inflammatory activity of extracts from fruits, herbs and spices.Food Chem.2010122498799610.1016/j.foodchem.2010.03.041
    [Google Scholar]
  36. KleinM.A. MöllerJ.C. JonesL.L. BluethmannH. KreutzbergG.W. RaivichG. Impaired neuroglial activation in interleukin-6 deficient mice.Glia199719322723310.1002/(SICI)1098‑1136(199703)19:3<227::AID‑GLIA5>3.0.CO;2‑W9063729
    [Google Scholar]
  37. El-ZayatS.R. SibaiiH. MannaaF.A. Toll-like receptors activation, signaling, and targeting: An overview.Bull. Natl. Res. Cent.201943118710.1186/s42269‑019‑0227‑2
    [Google Scholar]
  38. KawaiT. AkiraS. TLR signaling.Cell Death Differ.200613581682510.1038/sj.cdd.440185016410796
    [Google Scholar]
  39. OspeltC. GayS. TLRs and chronic inflammation.Int. J. Biochem. Cell Biol.201042449550510.1016/j.biocel.2009.10.01019840864
    [Google Scholar]
  40. KatsargyrisA. KlonarisC. AlexandrouA. GiakoustidisA.E. VasileiouI. TheocharisS. Toll like receptors in liver ischemia reperfusion injury: A novel target for therapeutic modulation?Expert Opin. Ther. Targets200913442744210.1517/1472822090279493919335065
    [Google Scholar]
  41. RiderP. CarmiY. VoronovE. ApteRN. Interleukin-1α.Seminars. Immunol.2013256430438
    [Google Scholar]
  42. KhanraR. DewanjeeS. DuaT.K. BhattacharjeeN. Taraxerol, a pentacyclic triterpene from Abroma augusta leaf, attenuates acute inflammation via inhibition of NF-κB signaling.Biomed. Pharmacother.20178891892310.1016/j.biopha.2017.01.13228178622
    [Google Scholar]
  43. HongJ.F. SongYF. LiuZ. ZhengZC. ChenHJ. WangSS. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration retraction.Mol. Med. Rep.20161364541454810.3892/mmr.2016.5105
    [Google Scholar]
  44. LiuZ. DengP. LiuS. BianY. XuY. ZhangQ. WangH. PiJ. Is Nuclear Factor Erythroid 2-Related Factor 2 a Target for the Intervention of Cytokine Storms?Antioxidants202312117210.3390/antiox1201017236671034
    [Google Scholar]
  45. AhmedS.M.U. LuoL. NamaniA. WangX.J. TangX. Nrf2 signaling pathway: Pivotal roles in inflammation.Biochim. Biophys. Acta Mol. Basis Dis.20171863258559710.1016/j.bbadis.2016.11.00527825853
    [Google Scholar]
  46. SahaS. ButtariB. PanieriE. ProfumoE. SasoL. An overview of Nrf2 signaling pathway and its role in inflammation.Molecules20202522547410.3390/molecules2522547433238435
    [Google Scholar]
  47. ParkC.M. ChoC.W. SongY.S. TOP 1 and 2, polysaccharides from Taraxacum officinale, inhibit NFκB-mediated inflammation and accelerate Nrf2-induced antioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW 264.7 cells.Food Chem. Toxicol.201466566410.1016/j.fct.2014.01.01924447978
    [Google Scholar]
  48. DillonM. LopezA. LinE. SalesD. PeretsR. JainP. Progress on Ras/MAPK signaling research and targeting in blood and solid cancers.Cancers (Basel)20211320505910.3390/cancers1320505934680208
    [Google Scholar]
  49. KyriakisJ.M. AvruchJ. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation.Physiol. Rev.200181280786910.1152/physrev.2001.81.2.80711274345
    [Google Scholar]
  50. RaoK.M.K. MAP kinase activation in macrophages.J. Leukoc. Biol.200169131010.1189/jlb.69.1.311200064
    [Google Scholar]
  51. RincónM. DavisR.J. Regulation of the immune response by stress‐activated protein kinases.Immunol. Rev.2009228121222410.1111/j.1600‑065X.2008.00744.x19290930
    [Google Scholar]
  52. ZhangH.J. LiaoH.Y. BaiD.Y. WangZ.Q. XieX.W. MAPK/ERK signaling pathway: A potential target for the treatment of intervertebral disc degeneration.Biomed. Pharmacother.202114311217010.1016/j.biopha.2021.11217034536759
    [Google Scholar]
  53. GuoY.J. PanW.W. LiuS.B. ShenZ.F. XuY. HuL.L. ERK/MAPK signalling pathway and tumorigenesis.Exp. Ther. Med.20201931997200732104259
    [Google Scholar]
  54. FuD. HuZ. XuX. DaiX. LiuZ. Key signal transduction pathways and crosstalk in cancer: Biological and therapeutic opportunities.Transl. Oncol.20222610151010.1016/j.tranon.2022.10151036122506
    [Google Scholar]
  55. WangX. The Role of SHP2 in Regulating Fibroblast Senescence and HER2-positive Breast Cancer.CanadaUniversity of Toronto2018
    [Google Scholar]
  56. WiegertJ.S. BadingH. Activity-dependent calcium signaling and ERK-MAP kinases in neurons: A link to structural plasticity of the nucleus and gene transcription regulation.Cell Calcium201149529630510.1016/j.ceca.2010.11.00921163523
    [Google Scholar]
  57. RoyP.K. RashidF. BraggJ. IbdahJ.A. HepatologyD.G. MedicineU.M.S. Columbia; Missouri; States, U. Role of the JNK signal transduction pathway in inflammatory bowel disease.World J. Gastroenterol.200814220020210.3748/wjg.14.20018186555
    [Google Scholar]
  58. BarrR.K. BogoyevitchM.A. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs).Int. J. Biochem. Cell Biol.200133111047106310.1016/S1357‑2725(01)00093‑011551821
    [Google Scholar]
  59. SonY. CheongYK. KimNH. ChungHT. KangDG. PaeHO. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways.J. Signal Transduct.20112011792639
    [Google Scholar]
  60. YamasakiT. KawasakiH. NishinaH. Diverse Roles of JNK and MKK Pathways in the Brain.J. Signal Transduct.2012201245926510.1155/2012/459265
    [Google Scholar]
  61. LiW. YangG.L. ZhuQ. ZhongX.H. NieY.C. LiX.H. WangY. TLR4 promotes liver inflammation by activating the JNK pathway.Eur. Rev. Med. Pharmacol. Sci.201923177655766231539158
    [Google Scholar]
  62. GuanZ. BuckmanS.Y. PentlandA.P. TempletonD.J. MorrisonA.R. Induction of cyclooxygenase-2 by the activated MEKK1 --> SEK1/MKK4 --> p38 mitogen-activated protein kinase pathway.J. Biol. Chem.199827321129011290810.1074/jbc.273.21.129019582321
    [Google Scholar]
  63. BadgerA.M. CookM.N. LarkM.W. Newman-TarrT.M. SwiftB.A. NelsonA.H. BaroneF.C. KumarS. SB 203580 inhibits p38 mitogen-activated protein kinase, nitric oxide production, and inducible nitric oxide synthase in bovine cartilage-derived chondrocytes.J. Immunol.1998161146747310.4049/jimmunol.161.1.4679647257
    [Google Scholar]
  64. WagnerE.F. NebredaÁ.R. Signal integration by JNK and p38 MAPK pathways in cancer development.Nat. Rev. Cancer20099853754910.1038/nrc269419629069
    [Google Scholar]
  65. CuendaA. RousseauS. p38 MAP-Kinases pathway regulation, function and role in human diseases.Biochim. Biophys. Acta Mol. Cell Res.2007177381358137510.1016/j.bbamcr.2007.03.01017481747
    [Google Scholar]
  66. SaklatvalaJ. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease.Curr. Opin. Pharmacol.20044437237710.1016/j.coph.2004.03.00915251131
    [Google Scholar]
  67. EngelmanJ.A. LuoJ. CantleyL.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism.Nat. Rev. Genet.20067860661910.1038/nrg187916847462
    [Google Scholar]
  68. TangF. WangY. HemmingsBA. RüeggC. XueG. PKB/Akt-dependent regulation of inflammation in cancer.Seminars. Cancer Biol.2018486269
    [Google Scholar]
  69. VanhaesebroeckB. Guillermet-GuibertJ. GrauperaM. BilangesB. The emerging mechanisms of isoform-specific PI3K signalling.Nat. Rev. Mol. Cell Biol.201011532934110.1038/nrm288220379207
    [Google Scholar]
  70. GuoH. GermanP. BaiS. BarnesS. GuoW. QiX. LouH. LiangJ. JonaschE. MillsG.B. DingZ. The PI3K/AKT pathway and renal cell carcinoma.J. Genet. Genomics201542734335310.1016/j.jgg.2015.03.00326233890
    [Google Scholar]
  71. CraveroJ.D. CarlsonC.S. ImH.J. YammaniR.R. LongD. LoeserR.F. Increased expression of the Akt/PKB inhibitor TRB3 in osteoarthritic chondrocytes inhibits insulin‐like growth factor 1–mediated cell survival and proteoglycan synthesis.Arthritis Rheum.200960249250010.1002/art.2422519180501
    [Google Scholar]
  72. OjaniemiM. GlumoffV. HarjuK. LiljeroosM. VuoriK. HallmanM. Phosphatidylinositol 3‐kinase is involved in Toll‐like receptor 4‐mediated cytokine expression in mouse macrophages.Eur. J. Immunol.200333359760510.1002/eji.20032337612616480
    [Google Scholar]
  73. ChoiM.C. JoJ. ParkJ. KangH.K. ParkY. NF-κB signaling pathways in osteoarthritic cartilage destruction.Cells20198773410.3390/cells807073431319599
    [Google Scholar]
  74. HuZ.C. GongL.F. LiX.B. FuX. XuanJ.W. FengZ.H. NiW.F. Inhibition of PI3K/Akt/NF‐κB signaling with leonurine for ameliorating the progression of osteoarthritis: In vitro and in vivo studies.J. Cell. Physiol.201923456940695010.1002/jcp.2743730417459
    [Google Scholar]
  75. XueJ.F. ShiZ.M. ZouJ. LiX.L. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis.Biomed. Pharmacother.2017891252126110.1016/j.biopha.2017.01.13028320092
    [Google Scholar]
  76. CantleyL.C. The phosphoinositide 3-kinase pathway.Science200229655731655165710.1126/science.296.5573.165512040186
    [Google Scholar]
  77. DarnellJ.E.Jr KerrM. StarkG.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins.Science199426451641415142110.1126/science.81974558197455
    [Google Scholar]
  78. DarnellJ.E. Jr STATs and gene regulation.Science199727753321630163510.1126/science.277.5332.16309287210
    [Google Scholar]
  79. LevyD.E. DarnellJ.E. Jr STATs: Transcriptional control and biological impact.Nat. Rev. Mol. Cell Biol.20023965166210.1038/nrm90912209125
    [Google Scholar]
  80. StarkG.R. KerrI.M. WilliamsB.R.G. SilvermanR.H. SchreiberR.D. How cells respond to interferons.Annu. Rev. Biochem.199867122726410.1146/annurev.biochem.67.1.2279759489
    [Google Scholar]
  81. ShuaiK. HorvathC.M. HuangL.H.T. QureshiS.A. CowburnD. DarnellJ.E. Jr Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions.Cell199476582182810.1016/0092‑8674(94)90357‑37510216
    [Google Scholar]
  82. IgazP. TóthS. FalusA. Biological and clinical significance of the JAK-STAT pathway; lessons from knockout mice.Inflamm. Res.200150943544110.1007/PL0000026711603847
    [Google Scholar]
  83. JohnsonD.E. O’KeefeR.A. GrandisJ.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer.Nat. Rev. Clin. Oncol.201815423424810.1038/nrclinonc.2018.829405201
    [Google Scholar]
  84. O’SheaJJ. SchwartzDM. VillarinoAV. GadinaM. McInnesIB. LaurenceA. SchwartzDM. VillarinoA.V. GadinaM. McInnesI.B. LaurenceA. The JAK-STAT pathway: Impact on human disease and therapeutic intervention.Annu. Rev. Med.201566131132810.1146/annurev‑med‑051113‑024537
    [Google Scholar]
  85. MalemudC. PearlmanE. Targeting JAK/STAT signaling pathway in inflammatory diseases.Curr. Signal Transduct. Ther.20094320122110.2174/157436209789057467
    [Google Scholar]
  86. OeckinghausA. GhoshS. The NF-kappaB family of transcription factors and its regulation.Cold Spring Harb. Perspect. Biol.200914a00003410.1101/cshperspect.a00003420066092
    [Google Scholar]
  87. SunS.C. Non-canonical NF-κB signaling pathway.Cell Res.2011211718510.1038/cr.2010.17721173796
    [Google Scholar]
  88. UlrichC.M. BiglerJ. PotterJ.D. Non-steroidal anti-inflammatory drugs for cancer prevention: Promise, perils and pharmacogenetics.Nat. Rev. Cancer20066213014010.1038/nrc180116491072
    [Google Scholar]
  89. RehmanU.U. ShahJ. KhanM.A. ShahM.R. Ishtiaq; Khan, I. Molecular docking of taraxerol acetate as a new COX inhibitor.Bangladesh J. Pharmacol.20138219419710.3329/bjp.v8i2.14167
    [Google Scholar]
  90. ZhangX. ZhouW. NiuY. ZhuS. ZhangY. LiX. YuC. Lysyl oxidase promotes renal fibrosis via accelerating collagen cross‐link driving by β‐arrestin/ERK/STAT3 pathway.FASEB J.2022368e2242710.1096/fj.202200573R35792886
    [Google Scholar]
  91. HuangL. ZhaoA. WongF. AyalaJ.M. StruthersM. UjjainwallaF. WrightS.D. SpringerM.S. EvansJ. CuiJ. Leukotriene B4 strongly increases monocyte chemoattractant protein-1 in human monocytes.Arterioscler. Thromb. Vasc. Biol.200424101783178810.1161/01.ATV.0000140063.06341.0915271789
    [Google Scholar]
  92. MawaS. HusainK. JantanI. Triterpenes with 5-Lipoxigenase (5-LOX) and Xanthine Oxidase (XOD) inhibitory activity from the stem of Ficus Aurantiaca Griff.Open Conf. Proc. J.20134173
    [Google Scholar]
  93. PrachiS. PradeepT. 13α-methyl-27-norolean-14-en-3β-ol, a Triterpene oid isolated from the Stem of Euphorbia Hirta (Linn) Possess an Anti-asthmatic Properties.Res J Chem Sci.20142231606
    [Google Scholar]
  94. BhartiA.C. DonatoN. SinghS. AggarwalB.B. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor–κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis.Blood200310131053106210.1182/blood‑2002‑05‑132012393461
    [Google Scholar]
  95. KhanS. ShehzadO. JinH.G. WooE.R. KangS.S. BaekS.W. KimJ. KimY.S. Anti-inflammatory mechanism of 15,16-epoxy-3α-hydroxylabda-8,13(16),14-trien-7-one via inhibition of LPS-induced multicellular signaling pathways.J. Nat. Prod.2012751677110.1021/np200666t22233348
    [Google Scholar]
  96. LiY. FengL. LiG. AnJ. ZhangS. LiJ. LiuJ. RenJ. YangL. QiZ. Resveratrol prevents ISO-induced myocardial remodeling associated with regulating polarization of macrophages through VEGF-B/AMPK/NF-kB pathway.Int. Immunopharmacol.20208410650810.1016/j.intimp.2020.10650832339921
    [Google Scholar]
  97. CalderP.C. Omega-3 fatty acids and inflammatory processes.Nutrients20102335537410.3390/nu203035522254027
    [Google Scholar]
  98. ZarghiA. ArfaeiS. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iranian journal of pharmaceutical research.Iran. J. Pharm. Res.201110465568324250402
    [Google Scholar]
  99. MusA.A. GohL.P.W. MarbawiH. GansauJ.A. The Biosynthesis and Medicinal Properties of Taraxerol.Biomedicines202210480710.3390/biomedicines1004080735453556
    [Google Scholar]
  100. LiuZ. KumarM. DeviS. KabraA. Corrigendum: The Mechanisms of Cucurbitacin E as a Neuroprotective and Memory-Enhancing Agent in a Cerebral Hypoperfusion Rat Model: Attenuation of Oxidative Stress, Inflammation, and Excitotoxicity.Front. Pharmacol.20221284446410.3389/fphar.2021.84446435126156
    [Google Scholar]
  101. ChopraH. DeyP.S. DasD. BhattacharyaT. ShahM. MubinS. MaishuS.P. AkterR. RahmanM.H. KarthikaC. MuradW. QustyN. QustiS. AlshammariE.M. BatihaG.E.S. AltalbawyF.M.A. AlbooqM.I.M. AlamriB.M. Curcumin nanoparticles as promising therapeutic agents for drug targets.Molecules20212616499810.3390/molecules2616499834443593
    [Google Scholar]
/content/journals/npj/10.2174/0122103155277711231204060922
Loading
/content/journals/npj/10.2174/0122103155277711231204060922
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): COX; inflammation; JAK/STAT; LOX pathway; MAPK; Nrf2/ARE; PI3K/AKT; proinflammatory mediator; Taraxerol
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test