Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Cornsilk has been a natural remedy for centuries to treat various medical conditions. Recent research shows the anti-inflammatory activities of cornsilk extract, which can help relieve pain. Certain biopeptides are involved in the induction of anti-inflammatory action in the administration of cornsilk extract. The analgesic activity of cornsilk is due to the presence of tannins and polyphenolic constituents in . Besides maysin, many other factors, such as steroids, flavonoids, volatile oils, and various phenolic compounds, make cornsilk extract a modern anti-inflammatory and analgesic drug with minor side effects. In diverse cultures and folk medicines, cornsilk is used for its diuretic properties, reduction in melanin production properties, and antioxidant, anti-inflammatory, and analgesic properties. Silver nanoparticles using a combined extract of cornsilk, parsley, and Arabic gum extract have been reported to reduce inflammation. These effects have been observed 
. This formulation has anti-microbial as well as antioxidant properties. This review article focuses on the newer aspects of the medicinal value of cornsilk.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155272229240305111959
2025-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. KumarB. Maize biology: An introduction, directorate of maize, research.Indian Council of Agricultural Research2012
    [Google Scholar]
  2. ParleM. DhamijaI. Zea maize: A modern craze.Int Res J Pharm201346943
    [Google Scholar]
  3. VijithaT.P. Corn Silk- A medicinal boon, international journal of chemtech research. CODEN (USA).IJCRGG201710129137
    [Google Scholar]
  4. AbendrothL.J. ElmoreR.W. BoyerM.J. MarlayS.K. Corn Growth and Development.Iowa State Univ. Extension Publication2011
    [Google Scholar]
  5. GuoJ. LiuT. HanL. LiuY. The effects of corn silk on glycaemic metabolism.Nutr. Metab. 2009614710.1186/1743‑7075‑6‑4719930631
    [Google Scholar]
  6. HasanudinK. HashimP. MustafaS. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review.Molecules2012178679715
    [Google Scholar]
  7. MorandiA. SartoriG. TostoC. Ayurveda-LaMedicina tradizionale Indiana. In: Le Medicine Non Convenzionali in Italia – Storia, Problemi e Prospettive di Integrazione. GiarrelliG. di SarsinaP.R. BilvestriniB. Milan, ItalyFranco Angeli2007291309
    [Google Scholar]
  8. DattaH.S. MitraS.K. PatwardhanB. Wound healing activity of topical application forms based on ayurveda.Evid. Based Complement. Alternat. Med.2011201111010.1093/ecam/nep01519252191
    [Google Scholar]
  9. SaperR.B. PhillipsR.S. SehgalA. KhouriN. DavisR.B. PaquinJ. ThuppilV. KalesS.N. Lead, mercury, and arsenic in US- and Indian-manufactured Ayurvedic medicines sold via the Internet.JAMA2008300891592310.1001/jama.300.8.91518728265
    [Google Scholar]
  10. WangB. XiaoT. RuanJ. LiuW. Beneficial effects of corn silk on metabolic syndrome.Curr. Pharm. Des.201723345097510328950827
    [Google Scholar]
  11. YeşiladaE. HondaG. SezikE. TabataM. FujitaT. TanakaT. TakedaY. TakaishiY. Traditional medicine in Turkey. V. Folk medicine in the inner Taurus Mountains.J. Ethnopharmacol.199546313315210.1016/0378‑8741(95)01241‑57564412
    [Google Scholar]
  12. CáceresA. GirónL.M. MartínezA.M. Diuretic activity of plants used for the treatment of urinary ailments in guatemala.J. Ethnopharmacol.198719323324510.1016/0378‑8741(87)90001‑83669686
    [Google Scholar]
  13. WangG.Q. XuT. BuX.M. LiuB.Y. Anti-inflammation effects of corn silk in a rat model of carrageenin-induced pleurisy.Inflammation201235382282710.1007/s10753‑011‑9382‑921898269
    [Google Scholar]
  14. MehraR. MakhijaR. VyasN. A clinical study on the role of Ksara Vasti and Triphala Guggulu in Raktarsha (Bleeding piles).Ayu201132219219510.4103/0974‑8520.9257222408301
    [Google Scholar]
  15. SahibA. MohammedI. HamdanS. Use of aqueous extract of corn silk in the treatment of urinary tract infection.J. Intercult. Ethnopharmacol.2012129310.5455/jice.20120525123150
    [Google Scholar]
  16. GrasesF. MarchJ.G. RamisM. Costa-BauzáA. The influence of Zea mays on urinary risk factors for kidney stones in rats.Phytother. Res.19937214614910.1002/ptr.2650070210
    [Google Scholar]
  17. OkokonJE. Edem, UA Antiulcerogenic activity of Cornsilk extract of Zea mays.World Journal. Pharm. Research.202092117126
    [Google Scholar]
  18. GuoH. GuanH. YangW. LiuH. HouH. ChenX. LiuZ. ZangC. LiuY. LiuJ. Pro-apoptotic and anti-proliferative effects of corn silk extract on human colon cancer cell lines.Oncol. Lett.201713297397810.3892/ol.2016.546028356987
    [Google Scholar]
  19. ShiS. LiS. LiW. XuH. Corn silk tea for hypertension: A systematic review and meta-analysis of randomized controlled trials.Evid. Based Complement. Alternat. Med.201920191710.1155/2019/291549830792743
    [Google Scholar]
  20. LiuJ. LinS. WangZ. WangC. WangE. ZhangY. LiuJ. Supercritical fluid extraction of flavonoids from Maydis stigma and its nitrite-scavenging ability.Food Bioprod. Process.201189433333910.1016/j.fbp.2010.08.004
    [Google Scholar]
  21. SnookM.E. WidstromN.W. WisemanB.R. ByrneP.F. HarwoodJ.S. CostelloC.E. New C-4”-hyroxy derivatives of maysin and 3′-methoxymaysin isolated from corn silks (Zea mays).J. Agric. Food Chem.199543102740274510.1021/jf00058a036
    [Google Scholar]
  22. ElligerC.A. ChanB.G. WaissA.C.Jr LundinR.E. HaddonW.F. C-Glycosylflavones from Zea mays that inhibit insect development.Phytochemistry198019229329710.1016/S0031‑9422(00)81977‑9
    [Google Scholar]
  23. LimmatvapiratC. NateesathittarnC. DechasathianK. MoohummadT. ChinajitphanP. LimmatvapiratS. Phytochemical analysis of baby corn silk extracts.J. Ayurveda Integr. Med.202011334435110.1016/j.jaim.2019.10.00532165017
    [Google Scholar]
  24. SnookM.E. WidstromN.W. WisemanB.R. ByrneP.F. HarwoodJ.S. CostelloC.E. New C-4′'-hydroxy derivatives of maysin and 3′-methoxymaysin isolated from corn silks (Zea mays).J. Agric. Food Chem.199543102740274510.1021/jf00058a036
    [Google Scholar]
  25. RenS.C. LiuS.L. DingX.L. Isolation and identification of two novel flavone glycosides from corn silk (Stigma maydis).J. Med. Plants Res.20093210091015
    [Google Scholar]
  26. LapčíkL. ŘepkaD. LapčíkováB. SumczynskiD. GautamS. LiP. ValentaT. A physicochemical study of the antioxidant activity of corn silk extracts.Foods20231211215910.3390/foods1211215937297404
    [Google Scholar]
  27. TianShuangqi. SunYue. Chen, Zhicheng Extraction of flavonoids from corn silk and biological activities in vitro.J. Food Quality.20212021910.1155/2021/7390425
    [Google Scholar]
  28. El-GhorabA. El-MassryK.F. ShibamotoT. Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.).J. Agric. Food Chem.200755229124912710.1021/jf071646e17914872
    [Google Scholar]
  29. SinghJ. RasaneP. NandaV. KaurS. Bioactive compounds of corn silk and their role in management of glycaemic response.J. Food Sci. Technol.20236061695171010.1007/s13197‑022‑05442‑z37187994
    [Google Scholar]
  30. IngleK.P. DeshmukhA.G. PadoleD.A. DudhareM.S. MoharilM.P. KhelurkarV.C. Phytochemicals: Extraction methods, identification, and detection of bioactive compounds from plant extracts.J. Pharmacogn. Phytochem.201763236
    [Google Scholar]
  31. PandeyA. TripathiS. Concept of standardization, extraction, and pre-phytochemical screening strategies for herbal drug.J. Pharmacogn. Phytochem.20142115119
    [Google Scholar]
  32. Harborne JB Phytochemical methods: A guide to modern techniques of plant analysis. In: UKThomson Science; New York, NY: London1998219
    [Google Scholar]
  33. AzwanidaN.N. A review on the extraction methods use in medicinal plants, principle, strength, and limitation.Med. Aromat. Plants20154196
    [Google Scholar]
  34. AltemimiA. LakhssassiN. BaharloueiA. WatsonD. LightfootD. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts.Plants2017644210.3390/plants604004228937585
    [Google Scholar]
  35. NurraihanaH. Wan RosliW.I. SabreenaS. Norfarizan-HanoonN.A. Optimisation extraction procedure and identification of phenolic compounds from fractional extract of corn silk (Zea mays hair) using LC-TOF/MS system.J. Food Meas. Charact.20181231852186210.1007/s11694‑018‑9799‑z
    [Google Scholar]
  36. HabtemariamS. Extract of corn silk (stigma of Zea mays) inhibits the tumour necrosis factor-α- and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression.Planta Med.199864431431810.1055/s‑2006‑9574419619111
    [Google Scholar]
  37. KimS.R. HaA.W. ChoiH.J. KimS.L. KangH.J. KimM.H. KimW.K. Corn silk extract improves benign prostatic hyperplasia in experimental rat model.Nutr. Res. Pract.201711537338010.4162/nrp.2017.11.5.37328989573
    [Google Scholar]
  38. HuQ.L. ZhangL.J. LiY.N. DingY.J. LiF.L. Purification and anti-fatigue activity of flavonoids from corn silk.Int. J. Phys. Sci.20105321326
    [Google Scholar]
  39. EbrahimzadehM.A. MahmoudiM. AhangarN. EhteshamiS. AnsaroudiF. NabaviS.F. NabaviS.M. Anti-depressant activity of corn silk.Pharmacologyonline20093647652
    [Google Scholar]
  40. VelazquezD.V.O. XavierH.S. BatistaJ.E.M. de Castro-ChavesC. Zea mays L. extracts modify glomerular function and potassium urinary excretion in conscious rats.Phytomedicine200512536336910.1016/j.phymed.2003.12.01015957371
    [Google Scholar]
  41. Qing lan, H.; Zhi hong, D. Protective effects of flavonoids from corn silk on oxidative stress induced by exhaustive exercise in mice.Afr. J. Biotechnol.201110163163316710.5897/AJB10.2671
    [Google Scholar]
  42. LiC.C. LeeY.C. LoH.Y. HuangY.W. HsiangC.Y. HoT.Y. Antihypertensive effects of corn silk extract and its novel bioactive constituent in spontaneously hypertensive rats: The involvement of angiotensin-converting enzyme inhibition.Molecules20192410188610.3390/molecules2410188631100914
    [Google Scholar]
  43. HashimP. Centella asiatica in food and beverage applications and its potential antioxidant and neuroprotective effect.J. Int. Food Res.20111822172222
    [Google Scholar]
  44. LiuJ. WangC. WangZ. ZhangC. LuS. LiuJ. The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides.Food Chem.2011126126126910.1016/j.foodchem.2010.11.014
    [Google Scholar]
  45. NandiA. YanL.J. JanaC.K. DasN. Role of catalase in oxidative stress- and age-associated degenerative diseases.Oxid. Med. Cell. Longev.2019201911910.1155/2019/961309031827713
    [Google Scholar]
  46. MartínezM.C. AndriantsitohainaR. Reactive nitrogen species: Molecular mechanisms and potential significance in health and disease.Antioxid. Redox Signal.200911366970210.1089/ars.2007.199319014277
    [Google Scholar]
  47. MaksimovićZ. MalenčićĐ. KovačevićN. Polyphenol contents and antioxidant activity of Maydis stigma extracts.Bioresour. Technol.200596887387710.1016/j.biortech.2004.09.00615627557
    [Google Scholar]
  48. FougèreL. ZubrzyckiS. ElfakirC. DestandauE. Characterization of corn silk extract using HPLC/HRMS/MS analyses and bioinformatic data processing.Plants202312472110.3390/plants1204072136840069
    [Google Scholar]
  49. BahorunT. SoobratteeM.A. Luximon-RammaV. AruomaO.I. Free radicals and antioxidants in cardiovascular health and disease.Internet Journal of Medical Update.20061117
    [Google Scholar]
  50. HalliwellB. Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment.Drugs Aging200118968571610.2165/00002512‑200118090‑0000411599635
    [Google Scholar]
  51. WillcoxJ.K. AshS.L. CatignaniG.L. Antioxidants and prevention of chronic disease.Crit. Rev. Food Sci. Nutr.200444427529510.1080/1040869049046848915462130
    [Google Scholar]
  52. ValkoM. IzakovicM. MazurM. RhodesC.J. TelserJ. Role of oxygen radicals in DNA damage and cancer incidence.Mol. Cell. Biochem.20042661/2375610.1023/B:MCBI.0000049134.69131.8915646026
    [Google Scholar]
  53. MacNeeW. Oxidative stress and lung inflammation in airways disease.Eur. J. Pharmacol.20014291-319520710.1016/S0014‑2999(01)01320‑611698041
    [Google Scholar]
  54. GalleJ. Oxidative stress in chronic renal failure.Nephrol. Dial. Transplant.200116112135213710.1093/ndt/16.11.213511682656
    [Google Scholar]
  55. MahajanA. TandonV.R. Antioxidants and rheumatoid arthritis.Journal of Indian Rheumatology Association.200412139142
    [Google Scholar]
  56. SamuelJ.B. StanleyJ.A. PrincessR.A. ShanthiP. SebastianM.S. Gestational cadmium exposure-induced ovotoxicity delays puberty through oxidative stress and impaired steroid hormone levels.J. Med. Toxicol.20117319520410.1007/s13181‑011‑0143‑921373971
    [Google Scholar]
  57. BeckmanK.B. AmesB.N. The free radical theory of aging matures.Physiol. Rev.199878254758110.1152/physrev.1998.78.2.5479562038
    [Google Scholar]
  58. PoleA. DimriM. DimriG. Oxidative stress, cellular senescence and ageing.AIMS Mol. Sci.20163330032410.3934/molsci.2016.3.300
    [Google Scholar]
  59. KhansariN. ShakibaY. MahmoudiM. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer.Recent Pat. Inflamm. Allergy Drug Discov.200931738010.2174/18722130978715837119149749
    [Google Scholar]
  60. AbeyrathneE.D.N.S. NamK. HuangX. AhnD.U. Plant- and animal-based antioxidants’ structure, efficacy, mechanisms, and applications: A review.Antioxidants2022115102510.3390/antiox1105102535624889
    [Google Scholar]
  61. PadayattyS.J. KatzA. WangY. EckP. KwonO. LeeJ.H. ChenS. CorpeC. DuttaA. DuttaS.K. LevineM. Vitamin C as an antioxidant: Evaluation of its role in disease prevention.J. Am. Coll. Nutr.2003221183510.1080/07315724.2003.1071927212569111
    [Google Scholar]
  62. FrankelE.N. The antioxidant and nutritional effects of tocopherols, ascorbic acid and beta-carotene in relation to processing of edible oils.Bibl. Nutr. Dieta1989432973122658965
    [Google Scholar]
  63. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  64. ZebA. Concept, mechanism, and applications of phenolic antioxidants in foods.J. Food Biochem.2020449e1339410.1111/jfbc.1339432691460
    [Google Scholar]
  65. CarlsenM.H. HalvorsenB.L. HolteK. BøhnS.K. DraglandS. SampsonL. WilleyC. SenooH. UmezonoY. SanadaC. BarikmoI. BerheN. WillettW.C. PhillipsK.M. JacobsD.R.Jr BlomhoffR. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide.Nutr. J.201091310.1186/1475‑2891‑9‑320096093
    [Google Scholar]
  66. WilliamsG.M. IatropoulosM.J. WhysnerJ. Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives.Food Chem. Toxicol.1999379-101027103810.1016/S0278‑6915(99)00085‑X10541460
    [Google Scholar]
  67. EbrahimzadehM.A. PourmoradF. HafeS. Anti-oxidant activities of iranian corn silk.Turk. J. Biol.2008324349
    [Google Scholar]
  68. WangK. ZhaoJ. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomedicine & Pharmacotherapy.2019110510517
    [Google Scholar]
  69. RabiO.O. OmobaO.S. Aderonke IbidunniO. In vitro antioxidants and antihypertensive properties of corn silk–lemon infusion.Bull. Natl. Res. Cent.20224614610.1186/s42269‑022‑00728‑w
    [Google Scholar]
  70. AlamE.A. Evaluation of antioxidant and antibacterial activities of Egyptian Maydis stigma (Zea mays hairs) rich in some bioactive constituents.J. Am. Sci.20117726729
    [Google Scholar]
  71. KaramiMohammad An experimental model for study of the renal protective activity of corn silk against dosage induced By MDMA using in situ rat renal system. Iranian J. Toxicology20138
    [Google Scholar]
  72. NguyenT. SherrattP.J. PickettC.B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element.Annu. Rev. Pharmacol. Toxicol.200343123326010.1146/annurev.pharmtox.43.100901.14022912359864
    [Google Scholar]
  73. NguemfoE.L. DimoT. AzebazeA.G.B. AsongalemE.A. AlaouiK. DongmoA.B. CherrahY. KamtchouingP. Anti-inflammatory and anti-nociceptive activities of the stem bark extracts from Allanblackia monticola STANER L.C. (Guttiferae).J. Ethnopharmacol.2007114341742410.1016/j.jep.2007.08.02217913418
    [Google Scholar]
  74. SørnesE.Ø. RisalA. ManandharK. ThomasH. SteinerT.J. LindeM. Use of medicinal plants for headache, and their potential implication in medication-overuse headache: Evidence from a population-based study in Nepal.Cephalalgia202141556158110.1177/033310242097090433435708
    [Google Scholar]
  75. ZhangH. JiangH. ZhaoM. XuY. LiangJ. YeY. ChenH. Treatment of gout with TCM using turmeric and corn silk: A concise review article and pharmacology network analysis.Evid. Based Complement. Alternat. Med.2022202211810.1155/2022/314373336276864
    [Google Scholar]
  76. AdedapoA.A. BabarinsaO.S. OgunsheA.A.O. OyagbemiA.A. OmobowaleT.O. AdedapoA.D. Evaluation of some biological activities of the extracts of corn silk and leaves.Trop Vet (Ib)20133141232
    [Google Scholar]
  77. NambaT. XuH. KadotaS. HattoriM. TakahashiT. KojimaY. Inhibition of IgE formation in mice by glycoproteins from corn silk.Phytother. Res.19937322723010.1002/ptr.2650070303
    [Google Scholar]
  78. PinheiroA.C.S. PaisA.A. TardivoA.C.B. Alves MJQF Effect of aqueous extract of corn silks (Zea mays L.) on the renal excretion of water and electrolytes and arterial pressure in anesthetized wistar rats.Rev. Bras. Plantas Med.20111337538110.1590/S1516‑05722011000400001
    [Google Scholar]
  79. RamasamyR. VannucciS.J. YanS.S.D. HeroldK. YanS.F. SchmidtA.M. Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation.Glycobiology200515716R28R10.1093/glycob/cwi05315764591
    [Google Scholar]
  80. FarsiD.A. HarrisC.S. ReidL. BennettS.A.L. HaddadP.S. MartineauL.C. ArnasonJ.T. Inhibition of non‐enzymatic glycation by silk extracts from a Mexican land race and modern inbred lines of maize (Zea mays).Phytother. Res.200822110811210.1002/ptr.227517724765
    [Google Scholar]
  81. ChanC.C. ZhangH.W. ChanK. LinZ.X. Xiaoke Pill () and anti-diabetic drugs: A review on clinical evidence of possible herb-drug interactions.Chin. J. Integr. Med.201610.1007/s11655‑015‑2106‑526825080
    [Google Scholar]
  82. EythE. BasitH. SwiftC.J. Glucose Tolerance Test; StatPearls Publishing: In: StatPearls [Internet]. Treasure Island 2023
    [Google Scholar]
  83. SchreinerG.E. Toxic nephropathy.JAMA19651911084985010.1001/jama.1965.0308010006701514250075
    [Google Scholar]
  84. SepehriG. DerakhshanfarA. Yazdi ZadehF. Protective effects of corn silk extract administration on gentamicin-induced nephrotoxicity in rat.Comp. Clin. Pathol.2011201899410.1007/s00580‑009‑0943‑3
    [Google Scholar]
  85. KaupS.R. ArunkumarN. BernhardtL.K. VasaviR.G. ShettyS.S. PaiS.R. ArunkumarB. Antihyperlipedemic activity of Cynodon dactylon extract in high-cholesterol diet fed Wistar rats.Genomic Medicine, Biomarkers, and Health Sciences201133-49810210.1016/j.gmbhs.2011.11.001
    [Google Scholar]
  86. KanA. OrhanI. CoksariG. SenerB. In-vitro neuroprotective properties of the Maydis stigma extracts from four corn varieties.Int. J. Food Sci. Nutr.20126311410.3109/09637486.2011.59079721696302
    [Google Scholar]
  87. ShengL. ChenQ. DiL. LiN. Evaluation of anti-diabetic potential of corn silk in high-fat diet/streptozotocin-induced type 2 diabetes mice model.Endocr. Metab. Immune Disord. Drug Targets202121113113810.2174/187153032066620060622470832504506
    [Google Scholar]
  88. ZhaoW. YinY. YuZ. LiuJ. ChenF. Comparison of anti-diabetic effects of polysaccharides from corn silk on normal and hyperglycemia rats.Int. J. Biol. Macromol.20125041133113710.1016/j.ijbiomac.2012.02.00422353397
    [Google Scholar]
  89. BaliyanS. MukherjeeR. PriyadarshiniA. Determination of antioxidants by dpph radical scavenging activity and quantitative phytochemical analysis of ficus religiosa.Molecules20222741326
    [Google Scholar]
  90. YadavA.S. BhatnagarD. Free radical scavenging activity, metal chelation and antioxidant power of some of the Indian spices.Biofactors2007313-421922710.1002/biof.552031030918997285
    [Google Scholar]
  91. EliopoulosA.G. DumitruC.D. WangC-C. ChoJ. TsichlisP.N. Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals.EMBO J.200221184831484010.1093/emboj/cdf47812234923
    [Google Scholar]
  92. KimK.A. ShinH.H. ChoiS.K. ChoiH.S. Corn silk induced cyclooxygenase-2 in murine macrophages.Biosci. Biotechnol. Biochem.200569101848185310.1271/bbb.69.184816244433
    [Google Scholar]
  93. WangC. ZhangT. LiuJ. LuS. ZhangC. WangE. WangZ. ZhangY. LiuJ. Subchronic toxicity study of corn silk with rats.J. Ethnopharmacol.20111371364310.1016/j.jep.2011.03.02121397679
    [Google Scholar]
  94. HaA.W. KangH.J. KimS.L. KimM.H. KimW.K. Acute and subacute toxicity evaluation of corn silk extract.Prev. Nutr. Food Sci.2018231707610.3746/pnf.2018.23.1.7029662850
    [Google Scholar]
  95. SarmukaddamS. ChopraA. TilluG. Efficacy and safety of Ayurvedic medicines: Recommending equivalence trial design and proposing safety index.Int. J. Ayurveda Res.20101317518010.4103/0974‑7788.7249121170211
    [Google Scholar]
  96. PatraJ.K. BaekK.H. Biosynthesis of silver nanoparticles using aqueous extract of silky hairs of corn and investigation of its antibacterial and anticandidal synergistic activity and antioxidant potential.IET Nanobiotechnol.201610532633310.1049/iet‑nbt.2015.010227676382
    [Google Scholar]
  97. ZhangY. LiuJ. GuanL. FanD. XiaF. WangA. BaoY. XuY. By‐Products of Zea mays L.: A promising source of medicinal properties with phytochemistry and pharmacological activities: A comprehensive review.Chem. Biodivers.2023203e20220094010.1002/cbdv.20220094036721262
    [Google Scholar]
  98. StoecklinG. LuM. RattenbacherB. MoroniC. A constitutive decay element promotes tumor necrosis factor alpha mRNA degradation via an AU-rich element-independent pathway.Mol. Cell. Biol.200323103506351510.1128/MCB.23.10.3506‑3515.200312724409
    [Google Scholar]
  99. PiettaP.G. Flavonoids as antioxidants.J. Nat. Prod.20006371035104210.1021/np990450910924197
    [Google Scholar]
/content/journals/npj/10.2174/0122103155272229240305111959
Loading
/content/journals/npj/10.2174/0122103155272229240305111959
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Analgesic; anti-inflammatory; cornsilk; maysin; nanomedicine; Zea mays
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test