Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

2-(Arylidene)benzo[]thiophen-3(2)one 1,1-dioxides are oxidized form of thioaurones. Various methods have been reported for their synthesis, , ) condensation of benzo[]thiophen-3(2)one 1,1-dioxides with aryl aldehydes under acidic or basic conditions, ) oxidation of thioaurones with hydrogen peroxide or sodium perborate tetrahydrate, ) from the catalytic reaction of iodonium ylides with (bis(trifluoroacetoxy)iodo) benzene in presence copper(II)acetoacetonate, d)by ring contraction of 1-thioflavones in the presence of ceric ammonium nitrate. The reports have shown addition reactions with p-thiocresol in the absence of any catalyst, conjugated addition product without hetero ring opening with Grignard reagent, forms corresponding oxime and hydrazone with hydroxyl amine and phenyl hydrazine, respectively, produces polycyclic compounds with enamines, shows contrasting behavior with NBS and gives addition products with organophosphorus compounds in both hydroxylic and non-hydroxylic solvents which depends on reaction medium. In the present mini-review, we have discussed the various synthetic strategies and reactions of 2-(arylidene)benzo[]thiophen-3(2)one 1,1-dioxides, along with their reported utilities.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/1570193X21666230906141749
2023-09-26
2025-01-21
Loading full text...

Full text loading...

References

  1. ChenH. LiuL. HuangT. ChenJ. ChenT. Direct dehydrogenation for the synthesis of α, β‐unsaturated carbonyl compounds.Adv. Synth. Catal.2020362163332334610.1002/adsc.202000454
    [Google Scholar]
  2. HossainM. DasU. DimmockJ.R. Recent advances in α,β-unsaturated carbonyl compounds as mitochondrial toxins.Eur. J. Med. Chem.201918311168710.1016/j.ejmech.2019.11168731539776
    [Google Scholar]
  3. AmslingerS. The tunable functionality of α,β-unsaturated carbonyl compounds enables their differential application in biological systems.ChemMedChem20105335135610.1002/cmdc.20090049920112330
    [Google Scholar]
  4. BagS. GhoshS. TulsanR. SoodA. ZhouW. SchifoneC. FosterM. LeVineH.III TörökB. TörökM. Design, synthesis and biological activity of multifunctional α,β-unsaturated carbonyl scaffolds for Alzheimer’s disease.Bioorg. Med. Chem. Lett.20132392614261810.1016/j.bmcl.2013.02.10323540646
    [Google Scholar]
  5. LeeJ.I. Synthetic approaches to (Z )‐Thioaurones.Bull. Korean Chem. Soc.20214291210121910.1002/bkcs.12345
    [Google Scholar]
  6. HallgasB. PatonayT. Kiss-SzikszaiA. DobosZ. HollósyF. ErősD. ŐrfiL. KériG. IdeiM. Comparison of measured and calculated lipophilicity of substituted aurones and related compounds.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2004801222923510.1016/j.jchromb.2003.11.02114751791
    [Google Scholar]
  7. RéamonnL.S.S. O’SullivanW.I. Configuration of 2-arylmethylene-2,3-dihydro-5-methylbenzo[b]thiophen-3-ones.J. Chem. Soc., Perkin Trans. 1197791009101210.1039/P19770001009
    [Google Scholar]
  8. LanfryM. Thiophènes.—Sur un S. Dioxy-thionaphtène.Compt Rend.1912154519
    [Google Scholar]
  9. MustafaA. ZayedS.M.A.D. Reactions with Mercaptans. IV. Reaction of aromatic thiols with 3(2H)-Thianaphthenone-1,1-dioxides and 2-Benzylidene-3(2H)-thianaphthenone-1-1-dioxide.J. Am. Chem. Soc.195779133500350210.1021/ja01570a053
    [Google Scholar]
  10. MustafaA. SallamM.M. Experiments with 2-Arylidene-3(2H)-thianaphthenone-1,1-dioxides. II. Reactions of p-Thiocresol and of Grignard Reagents with 2-Arylidene-3(2H)-thianaphthenone-1,1-dioxides.J. Am. Chem. Soc.19598181980198310.1021/ja01517a048
    [Google Scholar]
  11. XuB. SheibaniE. LiuP. ZhangJ. TianH. VlachopoulosN. BoschlooG. KlooL. HagfeldtA. SunL. Carbazole-based hole-transport materials for efficient solid-state dye-sensitized solar cells and perovskite solar cells.Adv. Mater.201426386629663410.1002/adma.20140241525124337
    [Google Scholar]
  12. LeungM. ChangC.C. WuM.H. ChuangK.H. LeeJ.H. ShiehS.J. LinS.C. ChiuC.F. 6-N,N-diphenylaminobenzofuran-derived pyran containing fluorescent dyes: A new class of high-brightness red-light-emitting dopants for OLED.Org. Lett.20068122623262610.1021/ol060803c16737329
    [Google Scholar]
  13. NingZ. TianH. Triarylamine: A promising core unit for efficient photovoltaic materials.Chem. Commun.2009375483549510.1039/b908802d19753339
    [Google Scholar]
  14. BakhouchM. Es-SounniB. NakkabiA. El YazidiM. Thioaurones: Recent advances in synthesis, reactivity, and biological activity.Mini Rev. Org. Chem.202118331332710.2174/1570193X17999200719135019
    [Google Scholar]
  15. BhagwatA.A. MohbiyaD.R. AvhadK.C. SekarN. Viscosity-active D-π-A chromophores derived from benzo[b]thiophen-3(2H)-one 1,1-dioxide (BTD): Synthesis, photophysical, and NLO properties.Spectrochim. Acta A Mol. Biomol. Spectrosc.201820324425710.1016/j.saa.2018.05.10129874635
    [Google Scholar]
  16. SobolevA. ZhalubovskisR. FranssenM.C.R. ViganteB. ChekavichusB. DubursG. de GrootA. Candida rugosa lipase-catalyzed kinetic resolution of 3-(isobutyryloxy)methyl 4-[2-(Difluoromethoxy)phenyl]-2-methyl-5,5-dioxo-1,4-dihydrobenzothieno[3,2-b]pyridine-3-carboxylate.Chem. Heterocycl. Compd.200440793193710.1023/B:COHC.0000044578.17992.95
    [Google Scholar]
  17. KöttnerL. SchildhauerM. WiedbraukS. MayerP. DubeH. Oxidized hemithioindigo photoswitches—influence of oxidation state on (Photo)physical and photochemical properties.Chemistry20202647107121071810.1002/chem.20200217632485011
    [Google Scholar]
  18. AnderssonM.A. AllenmarkS.G. Asymmetric sulfoxidation catalyzed by a vanadium bromoperoxidase: Substrate requirements of the catalyst.Tetrahedron19985450152931530410.1016/S0040‑4020(98)00956‑9
    [Google Scholar]
  19. AdamW. HadjiarapoglouL. NestlerB. Dimethyldioxirane epoxidation of α,β-unsaturated ketones, acids and esters.Tetrahedron Lett.199031333133410.1016/S0040‑4039(00)94547‑7
    [Google Scholar]
  20. AdamW. GolschD. HadjiarapoglouL. LévaiA. NemesC. PatonayT. Dioxirane oxidation of (Z)-1-thioaurones, (E)-3-arylidene-1-thiochroman-4-ones and (E)-3-arylidene-1-thioflavan-4-ones.Tetrahedron19945046131131312010.1016/S0040‑4020(01)89320‑0
    [Google Scholar]
  21. BenferrahaN. HammadiaM. VillemincD. Heterogeneous Catalyst BaO-KF: Dry synthesis of thioaurones as cytotoxics agents under focused microwaves irradiation.J. Chem. Pharm. Res.20168117582
    [Google Scholar]
  22. PradhanT.K. DeA. Application of directed metalation in synthesis. Part 7: Synthesis of suitably functionalised benzo[b]thiophenes as key intermediates in the synthesis of benzothienopyranones.Tetrahedron Lett.20054691493149510.1016/j.tetlet.2005.01.038
    [Google Scholar]
  23. LeeJ.I. One-pot synthesis of (Z)-Thioaurones from N-Methoxy-N-methyl 2-mercaptobenzamide and arylethynyllithiums.J. Korean Chem. Soc.2019635398402
    [Google Scholar]
  24. WadsworthD.H. DettyM.R. Regiochemical control of the addition of aryl selenols and aryl thiols to the triple bond of arylpropiolates. Synthesis of seleno- and thioflavones and seleno- and thioaurones.J. Org. Chem.198045234611461510.1021/jo01311a013
    [Google Scholar]
  25. UkaiS. HiroseK. KayanoM. Synthesis and biological activity of sulfur containing derivatives of chalcone. IV. A novel method for the synthesis of thioaurones (author’s transl).Yakugaku Zasshi197595329930310.1248/yakushi1947.95.3_2991171180
    [Google Scholar]
  26. NguyenT.B. RetailleauP. Cooperative activating effect of tertiary amine/DMSO on elemental sulfur: Direct access to thioaurones from 2′-nitrochalcones under mild conditions.Org. Lett.201820118618910.1021/acs.orglett.7b0354729219319
    [Google Scholar]
  27. SomogyiL. Transformation of 1-thioflavonoids by oxidation and dehydrogenation.Synth. Commun.199929111857187210.1080/00397919908086175
    [Google Scholar]
  28. AwadS.B. Abdul-MalikN.F. Studies on Benzo[b]thiophen derivatives. Synthesis and reactions of 2-p-substituted Benzoylbenzo[b]thiophen-3(2H)ones.Aust. J. Chem.197528360160510.1071/CH9750601
    [Google Scholar]
  29. KamilaS. MukherjeeC. PradhanT.K. DeA. Synthetic studies in sulfur heterocycles. One-pot synthesis of “thioaurones” and their conversion into [1] benzothieno[3,2-b]pyrans via tandem reactions.ARKIVOC200624560
    [Google Scholar]
  30. HadjiarapoglouL. SchankK. Reactions of 2,3-dihydro-2-phenyliodonium-3-oxo-benzo[b] thiolenide-1,1-dioxide.Tetrahedron Lett.198930486673667610.1016/S0040‑4039(00)70647‑2
    [Google Scholar]
  31. SomogyiL. Elimination, ring-contraction, and fragmentation reactions of 1-thioflavanone 1-oxides.Cancer J. Chem.20017971159116510.1139/v01‑096
    [Google Scholar]
  32. MustafaA. AskerW. KhattabS. El Din SobhyM.E. FleifelA.M. Abu-ElazayemK. Action of grignard reagents. XVII. 1 action of organomagnesium compounds on 5-Arylidene derivatives of 3-arylrhodanines, of 3-p-Tolyl-2,4-thiazolidinedione and on 2-Arylidene-3(2H)-4,5-benzthianaphthenone-1,1-dioxides.J. Am. Chem. Soc.19608282029203210.1021/ja01493a044
    [Google Scholar]
  33. DubureR.R. ViganteB.A. OzolsY.Y. DuburG.Y. RozentaleG.I. 1,4-Dihydrobenzothieno[3,2-b]pyridine-5,5-dioxides.Chem. Heterocycl. Compd.198622111267127110.1007/BF00471815
    [Google Scholar]
  34. CekavicusB. ViganteB. RucinsM. BirkmaneK. PetrovaM. BelyakovS. ZukaL. PlotnieceA. PajusteK. GostevaM. SobolevA. Contrasting behaviour of NBS towards 1,4-dihydrobenzothieno[3,2-b]pyridine 5,5-dioxides and 4,5-dihydro-1H-indeno[1,2-b]pyridines.Tetrahedron.201369265550555710.1016/j.tet.2013.04.060
    [Google Scholar]
  35. MustafaA. SidkyM.M. ZayedS.M.A.D. AbdoW.M. Organophosphorus compounds—VIII.Tetrahedron.196824134725473110.1016/S0040‑4020(01)98668‑5
    [Google Scholar]
/content/journals/mroc/10.2174/1570193X21666230906141749
Loading
/content/journals/mroc/10.2174/1570193X21666230906141749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test