Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Heterocyclic compounds are the most common and diverse group of organic substances. Heterocyclic compounds are rapidly increasing in number as a result of intensive synthetic research as well as their value in other synthetic procedures. More than 90% of medications contain heterocyclic rings, and a wide range of medicinal chemistry applications make use of these substances. There are always unique characteristics of an efficient approach for creating newly discovered heterocyclic compounds and their moieties. Due to their biological effects, including those that are anti-cancer, anti-inflammatory, anti-fungal, anti-allergic, antibacterial, antiviral, and anticonvulsant, heterocyclic compounds are crucial to medicinal chemistry. Today's world population is generally suffering from various neurodegenerative diseases. Out of that, the most prevailing disease is Alzheimer's. There are many causes of Alzheimer's disease-like acetylcholinesterase enzyme, tau protein, amyloid aggregation, oxidative stress, phosphodiesterase, and others. In these cases, oxidative stress plays a very important role in the progression of this disease. To combat this oxidative stress various antioxidant-derived drugs have been used but the problem is that Alzheimer's progression cannot be targeted with a single target drug because of the other factors that are involved in its progression. So to overcome that, a drug targeting multiple targets has been synthesized by using the antioxidant in previous reports. These drugs are more potent and efficacious than single-target drugs. This review focused on various multi-target ligands to target oxidative stress.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/1570193X20666230711170721
2023-10-10
2025-01-21
Loading full text...

Full text loading...

References

  1. JeelaniI. ItayaK. AbeH. Total synthesis of hyalodendriol C.Heterocycles20211028157010.3987/COM‑21‑14480
    [Google Scholar]
  2. AhmedK. JeelaniI. Synthesis and in vitro antimicrobial screening of 3-acetyl-4-hydroxycoumarin hydrazones.Int. J. Pharm. Biol. Sci.2019910001005
    [Google Scholar]
  3. ItayaK. JeelaniI. AbeH. Total synthesis of urolithin C 3-glucuronide.Heterocycles2021103210.3987/COM‑20‑S(K)51
    [Google Scholar]
  4. KhanA. JasinskiJ.P. SmolenskiV.A. HotchkissE.P. KelleyP.T. ShalitZ.A. KaurM. PaulK. SharmaR. Enhancement in anti-tubercular activity of indole based thiosemicarbazones on complexation with copper(I) and silver(I) halides: Structure elucidation, evaluation and molecular modelling.Bioorg. Chem.20188030331810.1016/j.bioorg.2018.06.02729986180
    [Google Scholar]
  5. QadirT. AminA. SarkarD. SharmaP.K. A review on recent advances in the synthesis of aziridines and their applications in organic synthesis.Curr. Org. Chem.202125161868189310.2174/1385272825666210728100022
    [Google Scholar]
  6. JeelaniI. AbeH. NawazA. BhosaleM. AhmadS. JamadarA. AhmedK. QadirT. AminA. Kumar SharmaP. AbidiS. Anti-cancer potential of natural products containing (6H-dibenzo[b,d]pyran-6-one) framework using docking tools.Pak. J. Pharm. Sci.2021345Suppl.1995200234836872
    [Google Scholar]
  7. SapraR. PatelD. MeshramD. A mini-review: Recent developments of heterocyclic chemistry in some drug discovery scaffolds synthesis.J. Med. Chem. Sci202037178
    [Google Scholar]
  8. HigasioY.S. ShojiT. Heterocyclic compounds such as pyrroles, pyridines, pyrollidins, piperdines, indoles, imidazol and pyrazins.Appl. Catal. A Gen.20012211-219720710.1016/S0926‑860X(01)00815‑8
    [Google Scholar]
  9. BurS.K. PadwaA. The Pummerer reaction: methodology and strategy for the synthesis of heterocyclic compounds.Chem. Rev.200410452401243210.1021/cr020090l15137795
    [Google Scholar]
  10. SharmaP.K. QadirT. AminA. SarkarD. Synthesis of medicinally important indole derivatives: A review.Open Med. Chem. J.202115111610.2174/1874104502015010001
    [Google Scholar]
  11. ZhangB. StuderA. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors.Chem. Soc. Rev.201544113505352110.1039/C5CS00083A25882084
    [Google Scholar]
  12. MahmoodR.M.U. AljamaliN.M. Synthesis, spectral investigation, and microbial studying of pyridine-heterocyclic compounds.Eur. J. Mol. Clin. Med.2020744444453
    [Google Scholar]
  13. MidyaS.P. LandgeV.G. SahooM.K. RanaJ. BalaramanE. Cobalt-catalyzed acceptorless dehydrogenative coupling of aminoalcohols with alcohols: direct access to pyrrole, pyridine and pyrazine derivatives.Chem. Commun. (Camb.)2018541909310.1039/C7CC07427A29211066
    [Google Scholar]
  14. ChaucerP. SharmaP.K. Study of thiazines as potential anticancer agents.Plant Arch.20202031993202
    [Google Scholar]
  15. ZhangH. LiuC. Synthesis and properties of furan/thiophene substituted difluoroboron β-diketonate derivatives bearing a triphenylamine moiety.Dyes Pigments201714314315010.1016/j.dyepig.2017.04.022
    [Google Scholar]
  16. RaychevD. GuskovaO. SeifertG. SommerJ.U. Conformational and electronic properties of small benzothiadiazole-cored oligomers with aryl flanking units: Thiophene versus Furan.Comput. Mater. Sci.201712628729810.1016/j.commatsci.2016.09.044
    [Google Scholar]
  17. HossainM. NandaA.K. A review on heterocyclic: Synthesis and their application in medicinal chemistry of imidazole moiety.Science201868394
    [Google Scholar]
  18. JampilekJ. Heterocycles in medicinal chemistry.Molecules20192421383910.3390/molecules2421383931731387
    [Google Scholar]
  19. JiY. FanY. LiuK. KongD. LuJ. Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds.Water Res.2015871910.1016/j.watres.2015.09.00526378726
    [Google Scholar]
  20. PanchalN.B. PatelP.H. ChhipaN.M. ParmarR.S. Acridine a versatile heterocyclic moiety as anticancer agent.Int. J. Pharm. Sci. Res.20201147394748
    [Google Scholar]
  21. Marín-OcampoL. VelozaL.A. AboniaR. Sepúlveda-AriasJ.C. Anti-inflammatory activity of triazine derivatives: A systematic review.Eur. J. Med. Chem.201916243544710.1016/j.ejmech.2018.11.02730469039
    [Google Scholar]
  22. CampanatiM. VaccariA. PiccoloO. Environment-friendly synthesis of nitrogen-containing heterocyclic compounds.Catal. Today2000603-428929510.1016/S0920‑5861(00)00345‑X
    [Google Scholar]
  23. VekariyaR.H. PatelK.D. PrajapatiN.P. PatelH.D. Phenacyl bromide: A versatile organic intermediate for the synthesis of heterocyclic compounds.Synth. Commun.201848131505153310.1080/00397911.2017.1329440
    [Google Scholar]
  24. QadirT. AminA. SharmaP.K. JeelaniI. AbeH. A review on medicinally important heterocyclic compounds.Open Med Chem J202210.2174/18741045‑v16‑e2202280
    [Google Scholar]
  25. Abdel-WahabB.F. ShaabanS. El-HitiG.A. Synthesis of sulfur-containing heterocycles via ring enlargement.Mol. Divers.201822251754210.1007/s11030‑017‑9810‑329388031
    [Google Scholar]
  26. FengM. TangB. LiangS.H. JiangX. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry.Curr. Top. Med. Chem.201616111200121610.2174/156802661566615091511174126369815
    [Google Scholar]
  27. SarohaS.C. SharmaP.K. Study of heterocyclic ring systems: Biopharmaceutical applications of substituted 4H-1,4-benzothiazine and piperazine.Phys. Conf.2020153110.1088/1742‑6596/1531/1/012094
    [Google Scholar]
  28. SharmaS. SharmaK. PathakS. KumarM. SharmaP.K. Synthesis of medicinally important quinazolines and their derivatives: A review.Open Med. Chem. J.202014110812110.2174/1874104502014010108
    [Google Scholar]
  29. SharmaP.K. AminA. KumarM. A review: medicinally important nitrogen sulphur containing heterocycles.Open Med. Chem. J.2020141496410.2174/1874104502014010049
    [Google Scholar]
  30. SharmaP.K. AminA. KumarM. Synthetic methods of medicinally important heterocycles-thiazines: A review.Open Med. Chem. J.2020141718210.2174/1874104502014010071
    [Google Scholar]
  31. StopschinskiB.E. DiamondM.I. The prion model for progression and diversity of neurodegenerative diseases.Lancet Neurol.201716432333210.1016/S1474‑4422(17)30037‑628238712
    [Google Scholar]
  32. MarešováP. MohelskáH. DolejšJ. KučaK. Socio-economic aspects of Alzheimer’s disease.Curr. Alzheimer Res.201512990391110.2174/15672050120915101911144826510983
    [Google Scholar]
  33. FrancisP.T. The interplay of neurotransmitters in Alzheimer’s disease.CNS Spectr.200510S186910.1017/S109285290001416416273023
    [Google Scholar]
  34. SelkoeD.J. The molecular pathology of Alzheimer’s disease.Neuron19916448749810.1016/0896‑6273(91)90052‑21673054
    [Google Scholar]
  35. AlghamdiS. AsifM. Role of pyridazine analogs as acetylcholinesterase inhibitor: An approach for management of Alzheimer’s disease.Eurasian Chem. Commun.20213435442
    [Google Scholar]
  36. GandhiS. AbramovA.Y. Mechanism of oxidative stress in neurodegeneration.Oxid. Med. Cell. Longev.2012201211110.1155/2012/42801022685618
    [Google Scholar]
  37. ZemekF. DrtinovaL. NepovimovaE. SepsovaV. KorabecnyJ. KlimesJ. KucaK. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine.Expert Opin. Drug Saf.201413675977424845946
    [Google Scholar]
  38. van der StaayF.J. RuttenK. BärfackerL. DeVryJ. ErbC. HeckrothH. KarthausD. TersteegenA. van KampenM. BloklandA. PrickaertsJ. ReymannK.G. SchröderU.H. HendrixM. The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents.Neuropharmacology200855590891810.1016/j.neuropharm.2008.07.00518674549
    [Google Scholar]
  39. HatamiM. MortazaviM. BaseriZ. KhaniB. RahimiM. BabaeiS. Antioxidant compounds in the treatment of Alzheimer's disease: Natural, hybrid, and synthetic products.Evid. Based Complement. Alternat. Med.20232023805646210.1155/2023/805646236865743
    [Google Scholar]
  40. CobleyJ.N. FiorelloM.L. BaileyD.M. 13 reasons why the brain is susceptible to oxidative stress.Redox Biol.20181549050310.1016/j.redox.2018.01.00829413961
    [Google Scholar]
  41. BealM.F. ChiluwalJ. CalingasanN.Y. MilneG.L. ShchepinovM.S. TapiasV. Isotope-reinforced polyunsaturated fatty acids improve Parkinson’s disease-like phenotype in rats overexpressing α-synuclein.Acta Neuropathol. Commun.20208122010.1186/s40478‑020‑01090‑633308320
    [Google Scholar]
  42. TapiasV. McCoyJ.L. GreenamyreJ.T. Phenothiazine normalizes the NADH/NAD+ ratio, maintains mitochondrial integrity and protects the nigrostriatal dopamine system in a chronic rotenone model of Parkinson’s disease.Redox Biol.20192410116410.1016/j.redox.2019.10116430925294
    [Google Scholar]
  43. RitchieC.W. MolinuevoJ.L. TruyenL. SatlinA. Van der GeytenS. LovestoneS. Development of interventions for the secondary prevention of Alzheimer’s dementia: the European Prevention of Alzheimer’s Dementia (EPAD) project.Lancet Psychiatry20163217918610.1016/S2215‑0366(15)00454‑X26683239
    [Google Scholar]
  44. SchinderA.F. OlsonE.C. SpitzerN.C. MontalM. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity.J. Neurosci.199616196125613310.1523/JNEUROSCI.16‑19‑06125.19968815895
    [Google Scholar]
  45. FiruziO. MiriR. TavakkoliM. SasoL. Antioxidant therapy: current status and future prospects.Curr. Med. Chem.201118253871388810.2174/09298671180341436821824100
    [Google Scholar]
  46. García-OstaA. Cuadrado-TejedorM. García-BarrosoC. OyarzábalJ. FrancoR. Phosphodiesterases as therapeutic targets for Alzheimer’s disease.ACS Chem. Neurosci.201231183284410.1021/cn300090723173065
    [Google Scholar]
  47. ZhangC. ZhouQ. WuX.N. HuangY.D. ZhouJ. LaiZ. WuY. LuoH.B. Discovery of novel PDE9A inhibitors with antioxidant activities for treatment of Alzheimer’s disease.J. Enzyme Inhib. Med. Chem.201833126027010.1080/14756366.2017.141231529271265
    [Google Scholar]
  48. XuP. ZhangM. ShengR. MaY. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ 1–42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease.Eur. J. Med. Chem.201712717418610.1016/j.ejmech.2016.12.04528061347
    [Google Scholar]
  49. YangX. QiangX. LiY. LuoL. XuR. ZhengY. CaoZ. TanZ. DengY. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease.Bioorg. Chem.20177130531410.1016/j.bioorg.2017.02.01628267984
    [Google Scholar]
  50. LuC. ZhouQ. YanJ. DuZ. HuangL. LiX. A novel series of tacrine–selegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.20136274575310.1016/j.ejmech.2013.01.03923454517
    [Google Scholar]
  51. SunY. ChenJ. ChenX. HuangL. LiX. Inhibition of cholinesterase and monoamine oxidase-B activity by Tacrine–Homoisoflavonoid hybrids.Bioorg. Med. Chem.201321237406741710.1016/j.bmc.2013.09.05024128814
    [Google Scholar]
  52. MaoF. HuangL. LuoZ. LiuA. LuC. XieZ. LiX. O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: Multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation.Bioorg. Med. Chem.201220195884589210.1016/j.bmc.2012.07.04522944335
    [Google Scholar]
  53. ChandK. AlsoghierH.M. ChavesS. SantosM.A. Tacrine-(hydroxybenzoyl-pyridone) hybrids as potential multifunctional anti-Alzheimer’s agents: AChE inhibition, antioxidant activity and metal chelating capacity.J. Inorg. Biochem.201616326627710.1016/j.jinorgbio.2016.05.00527235273
    [Google Scholar]
  54. JameelE. MeenaP. MaqboolM. KumarJ. AhmedW. MumtazuddinS. TiwariM. HodaN. JayaramB. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents.Eur. J. Med. Chem.2017136365110.1016/j.ejmech.2017.04.06428478343
    [Google Scholar]
  55. Fernández-BachillerM.I. PérezC. González-MuñozG.C. CondeS. LópezM.G. VillarroyaM. GarcíaA.G. Rodríguez-FrancoM.I. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties.J. Med. Chem.201053134927493710.1021/jm100329q20545360
    [Google Scholar]
  56. Rodríguez-FrancoM.I. Fernández-BachillerM.I. PérezC. Hernández-LedesmaB. BartoloméB. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties.J. Med. Chem.200649245946210.1021/jm050746d16420031
    [Google Scholar]
  57. MaoF. ChenJ. ZhouQ. LuoZ. HuangL. LiX. Novel tacrine–ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity.Bioorg. Med. Chem. Lett.201323246737674210.1016/j.bmcl.2013.10.03424220172
    [Google Scholar]
  58. XieS.S. WangX. JiangN. YuW. WangK.D.G. LanJ.S. LiZ.R. KongL.Y. Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease.Eur. J. Med. Chem.20159515316510.1016/j.ejmech.2015.03.04025812965
    [Google Scholar]
  59. ZhuJ. YangH. ChenY. LinH. LiQ. MoJ. BianY. PeiY. SunH. Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease.J. Enzyme Inhib. Med. Chem.201833149650610.1080/14756366.2018.143069129405075
    [Google Scholar]
  60. JeřábekJ. UliassiE. GuidottiL. KorábečnýJ. SoukupO. SepsovaV. HrabinovaM. KučaK. BartoliniM. Peña-AltamiraL.E. PetrallaS. MontiB. RobertiM. BolognesiM.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease.Eur. J. Med. Chem.201712725026210.1016/j.ejmech.2016.12.04828064079
    [Google Scholar]
  61. GirekM. SzymańskiP. Tacrine hybrids as multi-target-directed ligands in Alzheimer’s disease: Influence of chemical structures on biological activities.Chem. Pap.2018121
    [Google Scholar]
  62. Pérez-ArealesF.J. Di PietroO. EspargaróA. Vallverdú-QueraltA. GaldeanoC. RagusaI.M. ViaynaE. GuillouC. ClosM.V. PérezB. SabatéR. Lamuela-RaventósR.M. LuqueF.J. Muñoz-TorreroD. Shogaol–huprine hybrids: Dual antioxidant and anticholinesterase agents with β-amyloid and tau anti-aggregating properties.Bioorg. Med. Chem.201422195298530710.1016/j.bmc.2014.07.05325156301
    [Google Scholar]
  63. Pérez-ArealesF.J. BetariN. ViaynaA. PontC. EspargaróA. BartoliniM. De SimoneA. Rinaldi AlvarengaJ.F. PérezB. SabateR. Lamuela-RaventósR.M. AndrisanoV. LuqueF.J. Muñoz-TorreroD. Design, synthesis and multitarget biological profiling of second-generation anti-Alzheimer rhein–huprine hybrids.Future Med. Chem.201791096598110.4155/fmc‑2017‑004928632395
    [Google Scholar]
  64. PisaniL. CattoM. GiangrecoI. LeonettiF. NicolottiO. StefanachiA. CellamareS. CarottiA. Design, synthesis, and biological evaluation of coumarin derivatives tethered to an edrophonium-like fragment as highly potent and selective dual binding site acetylcholinesterase inhibitors.Chem. Med. Chem.2010591616163010.1002/cmdc.20100021020677317
    [Google Scholar]
  65. KhoobiM. EmamiS. DehghanG. ForoumadiA. RamazaniA. ShafieeA. Synthesis and free radical scavenging activity of coumarin derivatives containing a 2-methylbenzothiazoline motif.Arch. Pharm. (Weinheim)2011344958859410.1002/ardp.20100027121887798
    [Google Scholar]
  66. AnandP. SinghB. SinghN. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease.Bioorg. Med. Chem.20122031175118010.1016/j.bmc.2011.12.04222257528
    [Google Scholar]
  67. RadićZ. ReinerE. TaylorP. Role of the peripheral anionic site on acetylcholinesterase: Inhibition by substrates and coumarin derivatives.Mol. Pharmacol.1991391981041987454
    [Google Scholar]
  68. CattoM. PisaniL. LeonettiF. NicolottiO. PesceP. StefanachiA. CellamareS. CarottiA. Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase.Bioorg. Med. Chem.201321114615210.1016/j.bmc.2012.10.04523199476
    [Google Scholar]
  69. CattoM. NicolottiO. LeonettiF. CarottiA. FaviaA.D. Soto-OteroR. Méndez-ÁlvarezE. CarottiA. Structural insights into monoamine oxidase inhibitory potency and selectivity of 7-substituted coumarins from ligand- and target-based approaches.J. Med. Chem.200649164912492510.1021/jm060183l16884303
    [Google Scholar]
  70. AlipourM. KhoobiM. ForoumadiA. NadriH. MoradiA. SakhtemanA. GhandiM. ShafieeA. Novel coumarin derivatives bearing N-benzyl pyridinium moiety: Potent and dual binding site acetylcholinesterase inhibitors.Bioorg. Med. Chem.201220247214722210.1016/j.bmc.2012.08.05223140986
    [Google Scholar]
  71. RazaviS.F. KhoobiM. NadriH. SakhtemanA. MoradiA. EmamiS. ForoumadiA. ShafieeA. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors.Eur. J. Med. Chem.20136425225910.1016/j.ejmech.2013.03.02123644208
    [Google Scholar]
  72. AlipourM. KhoobiM. NadriH. SakhtemanA. MoradiA. GhandiM. Synthesis of some new 3‐C oumaranone and coumarin derivatives as dual inhibitors of acetyl‐and butyrylcholinesterase.Arch. Pharm. (Weinheim)2013346857758710.1002/ardp.20130008023852709
    [Google Scholar]
  73. PajouheshH. LenzG.R. Medicinal chemical properties of successful central nervous system drugs.NeuroRx20052454155310.1602/neurorx.2.4.54116489364
    [Google Scholar]
  74. AsadipourA. AlipourM. JafariM. KhoobiM. EmamiS. NadriH. SakhtemanA. MoradiA. SheibaniV. Homayouni MoghadamF. ShafieeA. ForoumadiA. Novel coumarin-3-carboxamides bearing N-benzylpiperidine moiety as potent acetylcholinesterase inhibitors.Eur. J. Med. Chem.20137062363010.1016/j.ejmech.2013.10.02424211638
    [Google Scholar]
  75. KhoobiM. AlipourM. SakhtemanA. NadriH. MoradiA. GhandiM. EmamiS. ForoumadiA. ShafieeA. Design, synthesis, biological evaluation and docking study of 5-oxo-4,5-dihydropyrano[3,2-c]chromene derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors.Eur. J. Med. Chem.20136826026910.1016/j.ejmech.2013.07.03823988409
    [Google Scholar]
  76. PudloM. LuzetV. IsmaïliL. TomassoliI. IutzelerA. RefouveletB. Quinolone–benzylpiperidine derivatives as novel acetylcholinesterase inhibitor and antioxidant hybrids for Alzheimer Disease.Bioorg. Med. Chem.20142282496250710.1016/j.bmc.2014.02.04624657052
    [Google Scholar]
  77. DetsiA. BouloumbasiD. ProusisK.C. KoufakiM. AthanasellisG. MelagrakiG. AfantitisA. Igglessi-MarkopoulouO. KontogiorgisC. Hadjipavlou-LitinaD.J. Design and synthesis of novel quinolinone-3-aminoamides and their α-lipoic acid adducts as antioxidant and anti-inflammatory agents.J. Med. Chem.200750102450245810.1021/jm061173n17444626
    [Google Scholar]
  78. NaitoY. YoshikawaT. TanigawaT. SakuraiK. YamasakiK. UchidaM. KondoM. Hydroxyl radical scavenging by rebamipide and related compounds: Electron paramagnetic resonance study.Free Radic. Biol. Med.199518111712310.1016/0891‑5849(94)00110‑67896165
    [Google Scholar]
  79. AllmangC. WurthL. KrolA. The selenium to selenoprotein pathway in eukaryotes: More molecular partners than anticipated.Biochim. Biophys. Acta, Gen. Subj.20091790111415142310.1016/j.bbagen.2009.03.00319285539
    [Google Scholar]
  80. WilsonS.R. ZuckerP.A. HuangR.R.C. SpectorA. Development of synthetic compounds with glutathione peroxidase activity.J. Am. Chem. Soc.1989111155936593910.1021/ja00197a065
    [Google Scholar]
  81. XieL. ZhengW. XinN. XieJ.W. WangT. WangZ.Y. Ebselen inhibits iron-induced tau phosphorylation by attenuating DMT1 up-regulation and cellular iron uptake.Neurochem. Int.201261333434010.1016/j.neuint.2012.05.01622634399
    [Google Scholar]
  82. LuoZ. ShengJ. SunY. LuC. YanJ. LiuA. LuoH. HuangL. LiX. Synthesis and evaluation of multi-target-directed ligands against Alzheimer’s disease based on the fusion of donepezil and ebselen.J. Med. Chem.201356229089909910.1021/jm401047q24160297
    [Google Scholar]
  83. LuoZ. LiangL. ShengJ. PangY. LiJ. HuangL. LiX. Synthesis and biological evaluation of a new series of ebselen derivatives as glutathione peroxidase (GPx) mimics and cholinesterase inhibitors against Alzheimer’s disease.Bioorg. Med. Chem.20142241355136110.1016/j.bmc.2013.12.06624461494
    [Google Scholar]
  84. LuoX.T. WangC.M. LiuY. HuangZ.G. New multifunctional melatonin-derived benzylpyridinium bromides with potent cholinergic, antioxidant, and neuroprotective properties as innovative drugs for Alzheimer’s disease.Eur. J. Med. Chem.201510330231110.1016/j.ejmech.2015.08.05226363866
    [Google Scholar]
  85. RamosE. EgeaJ. de los RíosC. Marco-ContellesJ. RomeroA. Melatonin as a versatile molecule to design novel multitarget hybrids against neurodegeneration.Future Med. Chem.20179876578010.4155/fmc‑2017‑001428498717
    [Google Scholar]
  86. NguyenT. HambyA. MassaS.M. Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’s disease mouse model.Proc. Natl. Acad. Sci. USA200510233118401184510.1073/pnas.050217710216087879
    [Google Scholar]
  87. WuM.Y. EstebanG. BrogiS. ShionoyaM. WangL. CampianiG. UnzetaM. InokuchiT. ButiniS. Marco-ContellesJ. Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation.Eur. J. Med. Chem.201612186487910.1016/j.ejmech.2015.10.00126471320
    [Google Scholar]
  88. PratiF. BergaminiC. FatoR. SoukupO. KorabecnyJ. AndrisanoV. BartoliniM. BolognesiM.L. Novel 8-hydroxyquinoline derivatives as multitarget compounds for the treatment of Alzheimer′s disease.ChemMedChem201611121284129510.1002/cmdc.20160001426880501
    [Google Scholar]
  89. KorábečnýJ. NepovimováE. CikánkováT. ŠpilovskáK. VaškováL. MezeiováE. KučaK. HroudováJ. Newly developed drugs for Alzheimer’s disease in relation to energy metabolism, cholinergic and monoaminergic neurotransmission.Neuroscience201837019120610.1016/j.neuroscience.2017.06.03428673719
    [Google Scholar]
  90. WangZ.M. CaiP. LiuQ.H. XuD.Q. YangX.L. WuJ.J. KongL.Y. WangX.B. Rational modification of donepezil as multifunctional acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.201612328229710.1016/j.ejmech.2016.07.05227484514
    [Google Scholar]
  91. Castañeda-ArriagaR. Alvarez-IdaboyJ.R. Lipoic acid and dihydrolipoic acid. A comprehensive theoretical study of their antioxidant activity supported by available experimental kinetic data.J. Chem. Inf. Model.20145461642165210.1021/ci500213p24881907
    [Google Scholar]
  92. EstradaM. PérezC. SorianoE. LauriniE. RomanoM. PriclS. Morales-GarcíaJ.A. Pérez-CastilloA. Rodríguez-FrancoM.I. New neurogenic lipoic-based hybrids as innovative Alzheimer’s drugs with σ-1 agonism and β-secretase inhibition.Future Med. Chem.20168111191120710.4155/fmc‑2016‑003627402296
    [Google Scholar]
  93. RosiniM. SimoniE. BartoliniM. TarozziA. MateraR. MilelliA. HreliaP. AndrisanoV. BolognesiM.L. MelchiorreC. Exploiting the lipoic acid structure in the search for novel multitarget ligands against Alzheimer’s disease.Eur. J. Med. Chem.201146115435544210.1016/j.ejmech.2011.09.00121924801
    [Google Scholar]
  94. IrannejadH. AminiM. KhodagholiF. AnsariN. TusiS.K. SharifzadehM. ShafieeA. Synthesis and in vitro evaluation of novel 1,2,4-triazine derivatives as neuroprotective agents.Bioorg. Med. Chem.201018124224423010.1016/j.bmc.2010.04.09720510620
    [Google Scholar]
  95. MeenaP. NemayshV. KhatriM. ManralA. LuthraP.M. TiwariM. Synthesis, biological evaluation and molecular docking study of novel piperidine and piperazine derivatives as multi-targeted agents to treat Alzheimer’s disease.Bioorg. Med. Chem.20152351135114810.1016/j.bmc.2014.12.05725624107
    [Google Scholar]
  96. Estrada ValenciaM. Herrera-ArozamenaC. de AndrésL. PérezC. Morales-GarcíaJ.A. Pérez-CastilloA. RamosE. RomeroA. ViñaD. YáñezM. LauriniE. PriclS. Rodríguez-FrancoM.I. Neurogenic and neuroprotective donepezil-flavonoid hybrids with sigma-1 affinity and inhibition of key enzymes in Alzheimer’s disease.Eur. J. Med. Chem.201815653455310.1016/j.ejmech.2018.07.02630025348
    [Google Scholar]
  97. DiasK.S.T. de PaulaC.T. dos SantosT. SouzaI.N.O. BoniM.S. GuimarãesM.J.R. da SilvaF.M.R. CastroN.G. NevesG.A. VelosoC.C. CoelhoM.M. de MeloI.S.F. GiustiF.C.V. Giusti-PaivaA. da SilvaM.L. DardenneL.E. GuedesI.A. PruccoliL. MorroniF. TarozziA. ViegasC.Jr Design, synthesis and evaluation of novel feruloyl-donepezil hybrids as potential multitarget drugs for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.201713044045710.1016/j.ejmech.2017.02.04328282613
    [Google Scholar]
  98. CaiP. FangS.Q. YangH.L. YangX.L. LiuQ.H. KongL.Y. WangX.B. Donepezil-butylated hydroxytoluene (BHT) hybrids as Anti-Alzheimer’s disease agents with cholinergic, antioxidant, and neuroprotective properties.Eur. J. Med. Chem.201815716117610.1016/j.ejmech.2018.08.00530096650
    [Google Scholar]
  99. CaiP. FangS.Q. YangX.L. WuJ.J. LiuQ.H. HongH. WangX.B. KongL.Y. Rational design and multibiological profiling of novel donepezil–trolox hybrids against Alzheimer’s disease, with cholinergic, antioxidant, neuroprotective, and cognition enhancing properties.ACS Chem. Neurosci.20178112496251110.1021/acschemneuro.7b0025728806057
    [Google Scholar]
  100. XiaoG. LiY. QiangX. XuR. ZhengY. CaoZ. LuoL. YangX. SangZ. SuF. DengY. Design, synthesis and biological evaluation of 4′-aminochalcone-rivastigmine hybrids as multifunctional agents for the treatment of Alzheimer’s disease.Bioorg. Med. Chem.20172531030104110.1016/j.bmc.2016.12.01328011206
    [Google Scholar]
  101. WangL. WangY. TianY. ShangJ. SunX. ChenH. WangH. TanW. Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors.Bioorg. Med. Chem.201725136037110.1016/j.bmc.2016.11.00227856236
    [Google Scholar]
  102. NesiG. ChenQ. SestitoS. DigiacomoM. YangX. WangS. PiR. RapposelliS. Nature-based molecules combined with rivastigmine: A symbiotic approach for the synthesis of new agents against Alzheimer’s disease.Eur. J. Med. Chem.201714123223910.1016/j.ejmech.2017.10.00629031070
    [Google Scholar]
  103. ChenZ. DigiacomoM. TuY. GuQ. WangS. YangX. ChuJ. ChenQ. HanY. ChenJ. NesiG. SestitoS. MacchiaM. RapposelliS. PiR. Discovery of novel rivastigmine-hydroxycinnamic acid hybrids as multi-targeted agents for Alzheimer’s disease.Eur. J. Med. Chem.201712578479210.1016/j.ejmech.2016.09.05227736684
    [Google Scholar]
  104. Jalili-BalehL. ForootanfarH. KüçükkılınçT.T. NadriH. AbdolahiZ. AmeriA. JafariM. AyazgokB. BaeeriM. RahimifardM. Abbas BukhariS.N. AbdollahiM. GanjaliM.R. EmamiS. KhoobiM. ForoumadiA. Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds.Eur. J. Med. Chem.201815260061410.1016/j.ejmech.2018.04.05829763808
    [Google Scholar]
  105. XuQ.X. HuY. LiG.Y. XuW. ZhangY.T. YangX.W. Multi-target anti-alzheimer activities of four prenylated compounds from Psoralea fructus. Molecules201823361410.3390/molecules2303061429518051
    [Google Scholar]
  106. KaurA. MannS. KaurA. PriyadarshiN. GoyalB. SinghalN.K. GoyalD. Multi-target-directed triazole derivatives as promising agents for the treatment of Alzheimer’s Disease.Bioorg. Chem.20198757258410.1016/j.bioorg.2019.03.05830928879
    [Google Scholar]
  107. OsmaniyeD. SağlıkB.N. Acar ÇevikU. LeventS. Kaya ÇavuşoğluB. ÖzkayY. KaplancıklıZ.A. TuranG. Synthesis and AChE inhibitory activity of novel thiazolylhydrazone derivatives.Molecules20192413239210.3390/molecules2413239231261693
    [Google Scholar]
  108. AbdallaM.M. Al-OmarM.A. Al-SalahiR.A. AmrA.G.E. SabryeN.M. A new investigation for some steroidal derivatives as anti-Alzheimer agents.Int. J. Biol. Macromol.2012511-2566310.1016/j.ijbiomac.2012.04.01222542854
    [Google Scholar]
  109. AttabyF.A. Abdel-FattahA.M. ShaifL.M. ElsayedM.M. Anti-Alzheimer and anti-COX-2 activities of the newly synthesized 2,3′-bipyridine derivatives.Phosphorus Sulfur Silicon Relat. Elem.2009185112913910.1080/10426500902717333
    [Google Scholar]
  110. Gülçinİ. TrofimovB. KayaR. TaslimiP. SobeninaL. SchmidtE. PetrovaO. MalyshevaS. GusarovaN. FarzaliyevV. SujayevA. AlwaselS. SupuranC.T. Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds – Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties.Bioorg. Chem.202010310417110.1016/j.bioorg.2020.10417132891857
    [Google Scholar]
  111. RastegariA. NadriH. MahdaviM. MoradiA. MirfazliS.S. EdrakiN. MoghadamF.H. LarijaniB. AkbarzadehT. SaeediM. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives.Bioorg. Chem.20198339140110.1016/j.bioorg.2018.10.06530412794
    [Google Scholar]
  112. AttabyF. Abdel-FattahA. ShaifL. ElsayedM. Reactions, anti-Alzheimer and anti COX-2 activities of the newly synthesized 2-substituted thienopyridines.Curr. Org. Chem.200913161654166310.2174/138527209789578135
    [Google Scholar]
  113. LatifA. BibiS. AliS. AmmaraA. AhmadM. KhanA. Al-HarrasiA. UllahF. AliM. New multitarget directed benzimidazole‐2‐thiol‐based heterocycles as prospective anti‐radical and anti‐Alzheimer 's agents.Drug Dev. Res.202182220721610.1002/ddr.2174032897587
    [Google Scholar]
  114. HusainA. Balushi KA. AkhtarM.J. KhanS.A. Coumarin linked heterocyclic hybrids: A promising approach to develop multi target drugs for Alzheimer’s disease.J. Mol. Struct.2021124113061810.1016/j.molstruc.2021.130618
    [Google Scholar]
  115. TopcuA. SaralS. OzturkA. SaralO. KayaA.K. The effect of the calcium channel blocker nimodipine on hippocampal BDNF/Ach levels in rats with experimental cognitive impairment.Neurol. Res.202345654455310.1080/01616412.2022.216445236598971
    [Google Scholar]
  116. ButterfieldD.A. MattsonM.P. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer’s disease.Neurobiol. Dis.202013810479510.1016/j.nbd.2020.10479532036033
    [Google Scholar]
  117. SharmaA. WeberD. RaupbachJ. DakalT.C. FließbachK. RamirezA. GruneT. WüllnerU. Advanced glycation end products and protein carbonyl levels in plasma reveal sex-specific differences in Parkinson’s and Alzheimer’s Disease.Redox Biol.20203410154610.1016/j.redox.2020.10154632460130
    [Google Scholar]
  118. Calvo-RodriguezM. García-RodríguezC. VillalobosC. NúñezL. Role of toll like receptor 4 in Alzheimer’s Disease.Front. Immunol.202011158810.3389/fimmu.2020.0158832983082
    [Google Scholar]
  119. HighamJ.P. HidalgoS. BuhlE. HodgeJ.J.L. Restoration of olfactory memory in Drosophila overexpressing human alzheimer’s disease associated tau by manipulation of L-Type Ca2+ Channels.Front. Cell. Neurosci.20191340910.3389/fncel.2019.0040931551716
    [Google Scholar]
  120. ZhengZ. WuK. RuanQ. LiD. LiuW. WangM. LiY. XiaJ. YangD. GuoJ. Suppression of selective voltage-gated calcium channels alleviates neuronal degeneration and dysfunction through glutathione s-transferase-mediated oxidative stress resistance in a Caenorhabditis elegans model of Alzheimer’s disease.Oxid. Med. Cell. Longev.2022202211910.1155/2022/828763336600949
    [Google Scholar]
/content/journals/mroc/10.2174/1570193X20666230711170721
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test