Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

The cinnoline nucleus is a bicyclic ring and is an isosteric precursor to quinolone or isoquinoline. Cinnoline analogs are aromatic heterocyclic compounds having diverse therapeutic activities, such as antimicrobial, analgesic, anti-inflammatory, anti-tuberculosis, antimalarial, anticonvulsant, antioxidant, anticancer, antihypertensive, anti-anxiety, and other activities. This heterocyclic nucleus is attracting a lot of attention in medicinal chemistry and is used as a structural subunit in various compounds with attractive medicinal and chemical properties. In this review, we focus on the biological activities of cinnoline analogs with various substitutions.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298265037231119063008
2024-01-04
2025-01-21
Loading full text...

Full text loading...

References

  1. AroraP. AroraV. LambaH.S. WadhwaD. Importance of heterocyclic chemistry: A review.Int. J. Pharma Sci.2012329472954
    [Google Scholar]
  2. JampilekJ. Heterocycles in medicinal chemistry.Molecules20192421383910.3390/molecules2421383931731387
    [Google Scholar]
  3. AlagarsamyA. Textbook of Medicinal Chemistry3rd ed.20102436
    [Google Scholar]
  4. Al-MullaA.A. Review: Biological importance of heterocyclic compounds.Pharm. Chem20179141147
    [Google Scholar]
  5. LewgowdW. StanczakA. Cinnoline derivatives with biological activity.Arch. Pharm.20073402658010.1002/ardp.20050019417294399
    [Google Scholar]
  6. CastleN.R. Chemistry of Heterocyclic CompoundsJohn Wiley & Sons1973271231
    [Google Scholar]
  7. TonkR.K. BawaS. KumarD. Therapeutic potential of cinnoline core: A Comprehensive review.Mini Rev. Med. Chem.202020319621810.2174/138955751966619101109585831660825
    [Google Scholar]
  8. VinogradovaO.V. BalovaI.A. Methods for the synthesis of cinnolines (review).Chem. Heterocycl. Compd.200844550152210.1007/s10593‑008‑0070‑0
    [Google Scholar]
  9. KumariS. KishoreD. PaliwalS. ChauhanR. DwivediJ. MishraA. Transition metal-free one-pot synthesis of nitrogen-containing heterocycles.Mol. Divers.201620118523210.1007/s11030‑015‑9596‑026055184
    [Google Scholar]
  10. MuralirajanK. ChengC.H. Rhodium(III)-catalyzed synthesis of cinnolinium salts from azobenzenes and alkynes: Application to the synthesis of indoles and cinnolines.Chemistry201319206198620210.1002/chem.20130092223589402
    [Google Scholar]
  11. ZhaoD. WuQ. HuangX. SongF. LvT. YouJ. A general method to diverse cinnolines and cinnolinium salts.Chemistry201319206239624410.1002/chem.20130015523553746
    [Google Scholar]
  12. KiriazisA. RüfferT. JänttiS. LangH. Yli-KauhaluomaJ. Stereoselective aza Diels-Alder reaction on solid phase: A facile synthesis of hexahydrocinnoline derivatives.J. Comb. Chem.20079226326610.1021/cc060125l17348732
    [Google Scholar]
  13. MathewT. PappA.Á. PakniaF. FusteroS. Surya PrakashG.K. Benzodiazines: Recent synthetic advances.Chem. Soc. Rev.201746103060309410.1039/C7CS00082K28452390
    [Google Scholar]
  14. HaddadinM.J. ZerdanR.M.B. KurthM.J. FettingerJ.C. Efficient syntheses of the unknown quinolino[2,3-c]cinnolines; synthesis of neocryptolepines.Org. Lett.201012235502550510.1021/ol102376a21067220
    [Google Scholar]
  15. ZhangJ. ZhangC. ZhengZ. ZhouP. LiuW. Research progress of sulfoxonium ylides in the construction of five/six-membered nitrogen-containing heterocycles.Youji Huaxue20224292745275910.6023/cjoc202204002
    [Google Scholar]
  16. SatyanarayanaM. FengW. ChengL. LiuA.A. TsaiY.C. LiuL.F. LaVoieE.J. Syntheses and biological evaluation of topoisomerase I-targeting agents related to 11-[2-(N,N-dimethylamino)ethyl]-2,3-dimethoxy-8,9-methylenedioxy-11H-isoquino[4,3-c]cinnolin-12-one (ARC-31).Bioorg. Med. Chem.200816167824783110.1016/j.bmc.2008.06.04618676151
    [Google Scholar]
  17. DevineW. WoodringJ.L. SwaminathanU. AmataE. PatelG. ErathJ. RoncalN.E. LeeP.J. LeedS.E. RodriguezA. Mensa-WilmotK. SciottiR.J. PollastriM.P. Protozoan parasite growth inhibitors discovered by cross-screening yield potent scaffolds for lead discovery.J. Med. Chem.201558145522553710.1021/acs.jmedchem.5b0051526087257
    [Google Scholar]
  18. AlhambraC. BeckerC. BlakeT. ChangA.H.F. DamewoodJ.R.Jr DanielsT. DembofskyB.T. GurleyD.A. HallJ.E. HerzogK.J. HorchlerC.L. OhnmachtC.J. SchmiesingR.J. DudleyA. RibadeneiraM.D. KnappenbergerK.S. MaciagC. SteinM.M. ChopraM. LiuX.F. ChristianE.P. ArrizaJ.L. ChapdelaineM.J. Development and SAR of functionally selective allosteric modulators of GABAA receptors.Bioorg. Med. Chem.20111992927293810.1016/j.bmc.2011.03.03521498079
    [Google Scholar]
  19. BarlaamB. CadoganE. CampbellA. ColcloughN. DishingtonA. DurantS. GoldbergK. HassallL.A. HughesG.D. MacFaulP.A. McGuireT.M. PassM. PatelA. PearsonS. PetersenJ. PikeK.G. RobbG. StrattonN. XinG. ZhaiB. Discovery of a series of 3-cinnoline carboxamides as orally bioavailable, highly potent, and selective ATM inhibitors.ACS Med. Chem. Lett.20189880981410.1021/acsmedchemlett.8b0020030128072
    [Google Scholar]
  20. SzumilakM. Szulawska-MroczekA. KoprowskaK. StasiakM. LewgowdW. StanczakA. CzyzM. Synthesis and in vitro biological evaluation of new polyamine conjugates as potential anticancer drugs.Eur. J. Med. Chem.201045125744575110.1016/j.ejmech.2010.09.03220974504
    [Google Scholar]
  21. SzumilakM. LewgowdW. StanczakA. In silico ADME studies of polyamine conjugates as potential anticancer drugs.Acta Pol. Pharm.20167351191120029638059
    [Google Scholar]
  22. WiederholdN. Antifungal resistance: Current trends and future strategies to combat.Infect. Drug Resist.20171024925910.2147/IDR.S12491828919789
    [Google Scholar]
  23. VentolaC.L. The antibiotic resistance crisis: part 1: Causes and threats.P&T201540427728325859123
    [Google Scholar]
  24. Clinical PharmacologyAvailable from: https://www.rxlist.com/cinobac-drug.htm#clinpharm
  25. VargasF. ZoltanT. RivasC. RamirezA. CorderoT. DíazY. IzzoC. CárdenasY.M. LópezV. GómezL. OrtegaJ. FuentesA. Synthesis, primary photophysical and antibacterial properties of naphthyl ester cinoxacin and nalidixic acid derivatives.J. Photochem. Photobiol. B2008922839010.1016/j.jphotobiol.2008.05.00118562206
    [Google Scholar]
  26. RyuC.K. LeeJ.Y. Synthesis and antifungal activity of 6-hydroxycinnolines.Bioorg. Med. Chem. Lett.20061671850185310.1016/j.bmcl.2006.01.00516434193
    [Google Scholar]
  27. VikasS. DarbhamullaS. Synthesis, characterization and biological activities of substituted cinnoline culphonamides.Afr. Health Sci.20099427527821503181
    [Google Scholar]
  28. GautamN. ChourasiaO.P. Synthesis, antimicrobial and insecticidal activity of some new cinnoline based chalcones and cinnoline based pyrazoline derivatives Indian J. Chem. Br.201049830835
    [Google Scholar]
  29. UnnissaS.H. RaviT.K. Synthesis and screening of pyrazole-based cinnoline derivatives for its antitubercular and anti-fungal activity.J. Chem. Pharm. Res.20157957963
    [Google Scholar]
  30. OoA.M. NorM.N.M. LwinO.M. SimbakN. Mohd AdnanL.H. RaoU.S.M. Immunomodulatory effects of apigenin, luteolin, and quercetin through natural killer cell cytokine secretion.J. Appl. Pharm. Sci.2022120912112610.7324/JAPS.2022.120914
    [Google Scholar]
  31. ParasuramanP. ShanmugarajanR.S. AravazhiT. NehruK. MathiazhagaT. RajakumariR. Synthesis, characterization and antimicrobial evaluation of some substituted 4-aminocinnoline-3-carboxamide derivatives.Int. J. Pharm. Life Sci.2012314301436
    [Google Scholar]
  32. VarshneyS. SaxenaV. Design, synthesis, characterization and biological evaluation of some novel cinnolo piperazine derivatives.Int. J. Pharm. Pharm. Sci.20146245248
    [Google Scholar]
  33. PankajM. AnilM. VikasS. AbhishekS. Synthesis, biological evaluation and comparative study of some cinnoline derivatives.Pharma. Biosci. J.20164748010.20510/ukjpb/4/i3/108391
    [Google Scholar]
  34. DawadiS. BoshoffH.I.M. ParkS.W. SchnappingerD. AldrichC.C. Conformationally constrained cinnolinone nucleoside analogues as siderophore biosynthesis inhibitors for tuberculosis.ACS Med. Chem. Lett.20189438639110.1021/acsmedchemlett.8b0009029670706
    [Google Scholar]
  35. GlinkaT. LomovskayaO. BostianK. WallaceD.M. Polybasic bacterial efflux pump inhibitors and their therapeutic uses.WO Patent 2008141010A22008
  36. SonyS. GeorgeM. JosephL. Concise. Review on Cinnoline and Its Biological. Activities.Int. J. Adv. Res.201810161021
    [Google Scholar]
  37. UnnissaS.H. RajanD. Drug design, development and biological screening of pyridazine derivatives.J. Chem. Pharm. Res.201689991004
    [Google Scholar]
  38. ChaudharyJ. PatelK. PatelC.N. Synthesis and biological screening of some cinnoline derivatives.Int. J. Univers. Pharm. Biol. Sci.20143128140
    [Google Scholar]
  39. TonkR.K. BawaS. ChawlaG. DeoraG.S. KumarS. RathoreV. MulakayalaN. RajaramA. KalleA.M. AfzalO. Synthesis and pharmacological evaluation of pyrazolo[4,3-c]cinnoline derivatives as potential anti-inflammatory and antibacterial agents.Eur. J. Med. Chem.20125717618410.1016/j.ejmech.2012.08.04523059546
    [Google Scholar]
  40. LunnissC. EldredC. AstonN. CravenA. GohilK. JudkinsB. KeelingS. RanshawL. RobinsonE. ShipleyT. TrivediN. Addressing species specific metabolism and solubility issues in a quinoline series of oral PDE4 inhibitors.Bioorg. Med. Chem. Lett.201020113714010.1016/j.bmcl.2009.11.01019932963
    [Google Scholar]
  41. HouslayM.D. SchaferP. ZhangK.Y.J. Keynote review: Phosphodiesterase-4 as a therapeutic target.Drug Discov. Today200510221503151910.1016/S1359‑6446(05)03622‑616257373
    [Google Scholar]
  42. GomtsyanA. BayburtE.K. SchmidtR.G. ZhengG.Z. PernerR.J. DidomenicoS. KoenigJ.R. TurnerS. JinkersonT. DrizinI. HannickS.M. MacriB.S. McDonaldH.A. HonoreP. WismerC.T. MarshK.C. WetterJ. StewartK.D. OieT. JarvisM.F. SurowyC.S. FaltynekC.R. LeeC.H. Novel transient receptor potential vanilloid 1 receptor antagonists for the treatment of pain: Structure-activity relationships for ureas with quinoline, isoquinoline, quinazoline, phthalazine, quinoxaline, and cinnoline moieties.J. Med. Chem.200548374475210.1021/jm049295815689158
    [Google Scholar]
  43. Di PaoloJ.A. HuangT. BalazsM. BarbosaJ. BarckK.H. BravoB.J. CaranoR.A.D. DarrowJ. DaviesD.R. DeForgeL.E. DiehlL. FerrandoR. GallionS.L. GiannettiA.M. GriblingP. HurezV. HymowitzS.G. JonesR. KropfJ.E. LeeW.P. MaciejewskiP.M. MitchellS.A. RongH. StakerB.L. WhitneyJ.A. YehS. YoungW.B. YuC. ZhangJ. ReifK. CurrieK.S. Specific Btk inhibition suppresses B cell– and myeloid cell–mediated arthritis.Nat. Chem. Biol.201171415010.1038/nchembio.48121113169
    [Google Scholar]
  44. LawsonJ.D. SabatM. SmithC. WangH. ChenY.K. KanouniT. Cinnoline derivatives as as btk inhibitors.WO Patent 2013148603A12013
  45. SmithC.R. DouganD.R. KomandlaM. KanouniT. KnightB. LawsonJ.D. SabatM. TaylorE.R. VuP. WyrickC. Fragment-based discovery of a small molecule inhibitor of bruton’s tyrosine kinase.J. Med. Chem.201558145437544410.1021/acs.jmedchem.5b0073426087137
    [Google Scholar]
  46. CrocettiL. GiovannoniM.P. SchepetkinI.A. QuinnM.T. KhlebnikovA.I. CilibrizziA. PiazV.D. GrazianoA. VergelliC. Design, synthesis and evaluation of N-benzoylindazole derivatives and analogues as inhibitors of human neutrophil elastase.Bioorg. Med. Chem.201119154460447210.1016/j.bmc.2011.06.03621741848
    [Google Scholar]
  47. CrocettiL. SchepetkinI.A. CilibrizziA. GrazianoA. VergelliC. GiomiD. KhlebnikovA.I. QuinnM.T. GiovannoniM.P. Optimization of N-benzoylindazole derivatives as inhibitors of human neutrophil elastase.J. Med. Chem.201356156259627210.1021/jm400742j23844670
    [Google Scholar]
  48. GiovannoniM.P. SchepetkinI.A. CrocettiL. CicianiG. CilibrizziA. GuerriniG. KhlebnikovA.I. QuinnM.T. VergelliC. Cinnoline derivatives as human neutrophil elastase inhibitors.J. Enzyme Inhib. Med. Chem.201631462863910.3109/14756366.2015.105771826194018
    [Google Scholar]
  49. KalyaniG. SrinivasB. SastryK.V. VijayaK. Synthesis of novel cinnoline fused mannich bases: Pharmacological evaluation of antibacterial, analgesic and anti-inflammatory activity.Int. J. Pharm. Chem. Res.20179515520
    [Google Scholar]
  50. SinghA. Nargund. Synthesis and pharmacological evaluation of 6-sulphnamido cinnoline for pharmacological and antibacterial activity. Int. J. Curnt. Tren. Pharm. Res.20153510231029
    [Google Scholar]
  51. TonkR.K. BawaS. ChawlaG. KumarS. GuptaH. AfzalO. Pyrazole incorporated 1,2-diazanaphthalene derivatives: Synthesis and in-vivo pharmacological screening as anti-inflammatory and analgesic agents.Afr. J. Pharm. Pharmacol.20126425433
    [Google Scholar]
  52. WollM.G. AmedzoL. BabuS. BarrazaS.J. BhattacharyyaA. KarpG.M. MazzottiA.R. NarasimhanJ. PatelJ. TurpoA. Preparation of heteroaryl compounds for treating Huntington’s disease.WO Patent 2018226622A12018
    [Google Scholar]
  53. BeshoreD.C. KudukS.D. Pyrazolo[4,3-c] Cinnolin-3-One Derivatives as M1 receptor positive allosteric modulators and their preparation, pharmaceutical compositions and use in the treatment of diseases.WO Patent 2010096338A12010
  54. AmerA.M. El-FarargyA.F. YousifN.M. FayedA.A. Synthesis and pharmacological activities of some dibenzopyrazolocinnolines and dibenzopyridazinoquinoxalines.Chem. Heterocycl. Compd.201147110110710.1007/s10593‑011‑0726‑z
    [Google Scholar]
  55. HatcherJ.M. ChoiH.G. AlessiD.R. GrayN.S. Small-molecule inhibitors of LRRK2.Adv. Neurobiol.20171424126410.1007/978‑3‑319‑49969‑7_1328353288
    [Google Scholar]
  56. AubeleD.L. UsgarofaloA.W. BowersS. UstruongA.P. UsyeX.M. FranziniM. AdlerM. UsnietzR.J. UsprobstG. Preparation of cinnoline derivatives as inhibitors of LRRK2 Kinase Activity.WO Patent 2012162254A12012
  57. GarofaloA.W. AdlerM. AubeleD.L. BowersS. FranziniM. GoldbachE. LorentzenC. NeitzR.J. ProbstG.D. QuinnK.P. SantiagoP. ShamH.L. TamD. TruongA.P. YeX.M. RenZ. Novel cinnoline-based inhibitors of LRRK2 kinase activity.Bioorg. Med. Chem. Lett.2013231717410.1016/j.bmcl.2012.11.02123219325
    [Google Scholar]
  58. ZagórskaA. PartykaA. BuckiA. GawalskaxA. CzopekA. PawłowskiM. Phosphodiesterase 10 inhibitors - novel perspectives for psychiatric and neurodegenerative drug discovery.Curr. Med. Chem.201825293455348110.2174/092986732566618030911062929521210
    [Google Scholar]
  59. HuE. KunzR.K. RumfeltS. ChenN. BürliR. LiC. AndrewsK.L. ZhangJ. ChmaitS. KoganJ. LindstromM. HitchcockS.A. TreanorJ. Discovery of potent, selective, and metabolically stable 4-(pyridin-3-yl)cinnolines as novel phosphodiesterase 10A (PDE10A) inhibitors.Bioorg. Med. Chem. Lett.20122262262226510.1016/j.bmcl.2012.01.08622365755
    [Google Scholar]
  60. YangH. MurigiF.N. WangZ. LiJ. JinH. TuZ. Synthesis and in vitro characterization of cinnoline and benzimidazole analogues as phosphodiesterase 10A inhibitors.Bioorg. Med. Chem. Lett.201525491992410.1016/j.bmcl.2014.12.05425592707
    [Google Scholar]
  61. HuE. KunzR.K. RumfeltS. AndrewsK.L. LiC. HitchcockS.A. LindstromM. TreanorJ. Use of structure based design to increase selectivity of pyridyl-cinnoline phosphodiesterase 10A (PDE10A) inhibitors against phosphodiesterase 3 (PDE3).Bioorg. Med. Chem. Lett.201222226938694210.1016/j.bmcl.2012.09.01023044369
    [Google Scholar]
  62. GenesteH. DrescherK. JakobC. LaplancheL. OchseM. TorrentM. Novel, potent, selective, and brain penetrant phosphodiesterase 10A inhibitors.Bioorg. Med. Chem. Lett.201929340641210.1016/j.bmcl.2018.12.02930587449
    [Google Scholar]
  63. TianS. LiuY. WanC. WanJ.P. HaoG. Catalyst-free cascade annulation of enaminones and aryl diazonium tetrafluoroboronates for cinnoline synthesis and the anti-inflammatory activity study.J. Org. Chem.20238842433244210.1021/acs.joc.2c0285836753776
    [Google Scholar]
  64. JosefK.A. AimoneL.D. LyonsJ. RaddatzR. HudkinsR.L. Synthesis of constrained benzocinnolinone analogues of CEP-26401 (irdabisant) as potent, selective histamine H3 receptor inverse agonists.Bioorg. Med. Chem. Lett.201222124198420210.1016/j.bmcl.2012.04.00122617490
    [Google Scholar]
  65. SolomonV.R. TallapragadaV.J. ChebibM. JohnstonG.A.R. HanrahanJ.R. GABA allosteric modulators: An overview of recent developments in non-benzodiazepine modulators.Eur. J. Med. Chem.201917143446110.1016/j.ejmech.2019.03.04330928713
    [Google Scholar]
  66. ChapdelaineM.J. OhnmachtC.J. BeckerC. ChangH-F. DembofskyB.T.U.S. Preparation of novel cinnoline compounds for treating anxiety, depression and cognition disorders.U.S. Patent 20070142328A12007
  67. JucaiteA. CselényiZ. LappalainenJ. McCarthyD.J. LeeC.M. NybergS. VarnäsK. StenkronaP. HalldinC. CrossA. FardeL. GABAA receptor occupancy by subtype selective GABAAα2,3 modulators: PET studies in humans.Psychopharmacology2017234470771610.1007/s00213‑016‑4506‑428013354
    [Google Scholar]
  68. ChenX. JacobsG. de KamM. JaegerJ. LappalainenJ. MaruffP. SmithM.A. CrossA.J. CohenA. van GervenJ. The central nervous system effects of the partial GABA-Aα 2,3 -selective receptor modulator AZD7325 in comparison with lorazepam in healthy males.Br. J. Clin. Pharmacol.20147861298131410.1111/bcp.1241324802722
    [Google Scholar]
  69. te BeekE.T. ChenX. JacobsG.E. NahonK.J. de KamM.L. LappalainenJ. CrossA.J. van GervenJ.M.A. HayJ.L. The effects of the nonselective benzodiazepine lorazepam and the α 2 /α 3 subunit-selective GABA A receptor modulators AZD7325 and AZD6280 on plasma prolactin levels.Clin. Pharmacol. Drug Dev.20154214915410.1002/cpdd.13427128218
    [Google Scholar]
  70. ArtelsmairM. GuC. LewisR.J. ElmoreC.S. Synthesis of C-14 labeled GABA A α2/α3 selective partial agonists and the investigation of late-occurring and long-circulating metabolites of GABA A receptor modulator AZD7325.J. Labelled Comp. Radiopharm.201861541542610.1002/jlcr.360229314165
    [Google Scholar]
  71. GuC. ArtelsmairM. ElmoreC.S. LewisR.J. DavisP. HallJ.E. DembofskyB.T. ChristophG. SmithM.A. ChapdelaineM. SunzelM. Late-occurring and long-circulating metabolites of GABA A α 2,3 receptor modulator AZD7325 involving metabolic cyclization and aromatization: Relevance to MIST analysis and application for patient compliance.Drug Metab. Dispos.201846330331510.1124/dmd.117.07887329311137
    [Google Scholar]
  72. AlvaradoM. BarcelóM. CarroL. MasaguerC.F. RaviñaE. Synthesis and biological evaluation of new quinazoline and cinnoline derivatives as potential atypical antipsychotics.Chem. Biodivers.20063110611710.1002/cbdv.20069000117193223
    [Google Scholar]
  73. SzumilakM. StanczakA. Cinnoline scaffold—a molecular heart of medicinal chemistry?Molecules20192412227110.3390/molecules2412227131216762
    [Google Scholar]
  74. YuY. SinghS.K. LiuA. LiT.K. LiuL.F. LaVoieE.J. Substituted dibenzo[ c,h ]cinnolines: Topoisomerase I-targeting anticancer agents.Bioorg. Med. Chem.20031171475149110.1016/S0968‑0896(02)00604‑112628673
    [Google Scholar]
  75. RuchelmanA.L. SinghS.K. WuX. RayA. YangJ.M. LiT.K. LiuA. LiuL.F. LaVoieE.J. Diaza- and triazachrysenes: potent topoisomerase-targeting agents with exceptional antitumor activity against the human tumor xenograft, MDA-MB-435.Bioorg. Med. Chem. Lett.200212223333333610.1016/S0960‑894X(02)00737‑012392745
    [Google Scholar]
  76. RuchelmanA. SinghS.K. RayA. WuX. YangJ.M. ZhouN. LiuA. LiuL.F. LaVoieE.J. 11H-Isoquino[4,3-c]cinnolin-12-ones novel anticancer agents with potent topoisomerase I-targeting activity and cytotoxicity.Bioorg. Med. Chem.200412479580610.1016/j.bmc.2003.10.06114759740
    [Google Scholar]
  77. FengW. SatyanarayanaM. TsaiY. LiuA.A. LiuL.F. LaVoieE.J. Facile formation of hydrophilic derivatives of 5H-8,9-dimethoxy-5-[2-(N,N-dimethylamino)ethyl]-2,3-methylenedioxydibenzo[c,h][1,6]naphthyridin-6-one (ARC-111) and its 12-aza analog via quaternary ammonium intermediates.Bioorg. Med. Chem. Lett.200818123570357210.1016/j.bmcl.2008.05.00518511275
    [Google Scholar]
  78. ZoidisG. SosicA. Da RosS. GattoB. SissiC. PalluottoF. CarottiA. CattoM. Indenocinnoline derivatives as G-quadruplex binders, topoisomerase IIα inhibitors and antiproliferative agents.Bioorg. Med. Chem.20172592625263410.1016/j.bmc.2017.03.01928342691
    [Google Scholar]
  79. BorowskiE. StefanskaB. DzieduszyckaM. CybulskiM. SzelejewskiW. ObukowiczJ. Bontemps-GraczM. Preparation of asymmetrically substituted anthrapyridazone derivatives as cytostatics.WO Patent 2012141604A12012
  80. BorowskiE. StefanskaB. DzieduszyckaM. CybulskiM. SzelejewskiW. ObukowiczJ. Bontemps-GraczM. WysockaM. MazerskiJ. PundaP. Asymmetrically substituted anthrapyridazone derivatives as cytostatics.U.S. Patent 9096536B22015
  81. StefańskaB. ArciemiukM. Bontemps-GraczM.M. DzieduszyckaM. KupiecA. MartelliS. BorowskiE. Synthesis and biological evaluation of 2,7-Dihydro-3H-dibenzo[de,h]cinnoline-3,7-dione derivatives, a novel group of anticancer agents active on a multidrug resistant cell line.Bioorg. Med. Chem.200311456157210.1016/S0968‑0896(02)00425‑X12538021
    [Google Scholar]
  82. ParrinoB. CarboneA. MuscarellaM. SpanòV. MontalbanoA. BarrajaP. SalvadorA. VedaldiD. CirrincioneG. DianaP. 11 H -Pyrido[3′,2′:4,5]pyrrolo[3,2- c ]cinnoline and Pyrido[3′,2′:4,5]pyrrolo[1,2- c ][1,2,3]benzotriazine: Two new ring systems with antitumor activity.J. Med. Chem.201457229495951110.1021/jm501244f25317694
    [Google Scholar]
  83. PikeK.G. BarlaamB.C. Preparation of Cinnolin-4-amine compounds as ATM kinase inhibitors and their use in treating cancer.WO Patent 2017162605A12017
  84. PikeK.G. BarlaamB.C. Preparation of 1,3-Dihydroimidazo[4,5-c]Cinnolin-2-Ones for the treatment and prevention of cancer.WO Patent 2019057757A12019
  85. HumeD.A. MacDonaldK.P.A. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling.Blood201211981810182010.1182/blood‑2011‑09‑37921422186992
    [Google Scholar]
  86. DalyK. Del ValleD. ScottD. YeQ. Preparation of cinnolinecarboxamides as colony stimulating factor 1 receptor (CSF-1R) kinase inhibitors.WO Patent 2009136191A12009
  87. ScottD.A. DakinL.A. Del ValleD.J. Bruce DieboldR. DrewL. GeroT.W. OgoeC.A. OmerC.A. RepikG. ThakurK. YeQ. ZhengX. 3-Amido-4-anilinocinnolines as a novel class of CSF-1R inhibitor.Bioorg. Med. Chem. Lett.20112151382138410.1016/j.bmcl.2011.01.03321295474
    [Google Scholar]
  88. ScottD.A. DakinL.A. DalyK. Del ValleD.J. DieboldR.B. DrewL. EzhuthachanJ. GeroT.W. OgoeC.A. OmerC.A. RedmondS.P. RepikG. ThakurK. YeQ. ZhengX. Mitigation of cardiovascular toxicity in a series of CSF-1R inhibitors, and the identification of AZD7507.Bioorg. Med. Chem. Lett.201323164591459610.1016/j.bmcl.2013.06.03123842474
    [Google Scholar]
  89. ParizadehS.M. Jafarzadeh-EsfehaniR. Fazilat-PanahD. HassanianS.M. ShahidsalesS. KhazaeiM. ParizadehS.M.R. Ghayour-MobarhanM. FernsG.A. AvanA. The potential therapeutic and prognostic impacts of the c‐MET/HGF signaling pathway in colorectal cancer.IUBMB Life201971780281110.1002/iub.206331116909
    [Google Scholar]
  90. GongP. ZhaoY. LiuY. ZhaiX. Quinoline and cinnoline compounds as c-Met kinase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of hyperplastic diseases.CN Patent 102643268A2012
  91. LiS. ZhaoY. WangK. GaoY. HanJ. CuiB. GongP. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors.Bioorg. Med. Chem.201321112843285510.1016/j.bmc.2013.04.01323628470
    [Google Scholar]
  92. MoharebR.M. Al FaroukF.O. WardakhanW.W. Uses of dimedone for the synthesis of new heterocyclic derivatives with anti-tumor, c-Met, tyrosine, and Pim-1 kinases inhibitions.Med. Chem. Res.20182781984200310.1007/s00044‑018‑2208‑7
    [Google Scholar]
  93. Dang ThiT.A. DecuyperL. Thi PhuongH. Vu NgocD. Thanh NguyenH. Thanh NguyenT. Do HuyT. Huy NguyenH. D’hoogheM. Van NguyenT. Synthesis and cytotoxic evaluation of novel dihydrobenzo[h]cinnoline-5,6-diones.Tetrahedron Lett.201556435855585810.1016/j.tetlet.2015.08.084
    [Google Scholar]
  94. Al-zagameemA.S. El-AbadelahM.M. ZihlifM.A. NaffaR.G. Al-SmadiM.L. MubarakM.S. Synthesis and bioassay of novel substituted pyrano[2,3- f ]cinnoline-2-ones.J. Heterocycl. Chem.20165361771177710.1002/jhet.2482
    [Google Scholar]
  95. AwadE.D. El-AbadelahM.M. MatarS. ZihlifM.A. NaffaR.G. Al-MomaniE.Q. MubarakM.S. Synthesis and biological activity of some 3-(4-(substituted)-piperazin-1-yl)cinnolines.Molecules201117122723910.3390/molecules1701022722205089
    [Google Scholar]
  96. MoharebR. MoustafaH. Use of 2-aminoprop-1-ene-1,1,3-tricarbonitrile for the synthesis of tetrahydronaphthalene, hexahydroisoquinoline and hexahydrocinnoline derivatives with potential antitumor activities.Acta Pharm.2011611516210.2478/v10007‑011‑0001‑y21406343
    [Google Scholar]
  97. UnnissaS.H. RoseS. Drug design, development and screening of pyrazolo pyridazine as potential agent for treatment of breast cancer.J. Chem. Pharm. Res.20157966971
    [Google Scholar]
  98. Al-QtaitatM.A. El-AbadelahM.M. SabriS.S. MatarS.A. HammadH.M. MubarakM.S. Synthesis, characterization, and bioactivity of novel bicinnolines having 1‐piperazinyl moieties.J. Heterocycl. Chem.201956115816410.1002/jhet.3390
    [Google Scholar]
  99. SteinP. DainesR. SprousD. O’GradyH. Preparation of cyclic hydrazone compounds and their use in inhibiting taste and treating diabetes and other disorders.WO Patent 2010132615A12010
  100. Garcia CollazoA.M. KochE.K. LofstedtA.J. ChengA. HanssonT.F. ZamaratskiE. Preparation of quinolines, indazoles, and their analogs as thyroid receptor agonists.WO Patent 2007003419A12007
  101. BetschartC. CotestaS. HintermannS. WagnerJ. RoyB.L. GerspacherM. Von MattA. Preparation of 4-aryl-butane-1,3-diamides as orexin receptors antagonists.WO Patent 2011073316A12011
  102. AissaouiH. BossC. GudeM. KobersteinR. SifferlenT. Preparation of azetidine compounds as orexin receptor antagonists.WO Patent 2008020405A22008
  103. AissaouiH. BossC. BrotschiC. KobersteinR. SiegristR. SierlenT. TrachselD. WilliamsJ.T. Preparation of phenethylamide derivatives and their heterocyclic analogs as orexin receptor antagonists.WO Patent 2010044054A12010
  104. ChaiW. LetavicM.A. LyK.S. PippelD.J. RudolphD.A. SappeyK.C. SavallB.M. ShahC.R. ShiremanB.T. Soyode-JohnsonA. Preparation of disubstituted octahydropyrrolo[3,4-c]pyrroles as orexin receptor modulators.WO Patent 2011050198A12011
  105. LetavicM. RudolphD.A. SavallB.M. ShiremanB.T. SwansonD. Disubstituted octahydropyrrolo[3,4-c]pyrroles as orexin receptor modulators and their preparation.WO Patent 2012145581A12012
  106. RuscheJ.R. PeetN.P. HopperA.T. Preparation of 6-aminohexanoic acid derivatives as HDAC inhibitors.WO Patent 2010028192A12010
  107. HuB. UnwallaR. ColliniM. QuinetE. FeingoldI. Goos-NilssonA. WihelmssonA. NambiP. WrobelJ. Discovery and SAR of cinnolines/quinolines as liver X receptor (LXR) agonists with binding selectivity for LXRβ.Bioorg. Med. Chem.200917103519352710.1016/j.bmc.2009.04.01219394832
    [Google Scholar]
  108. ZhaoJ. HanS. KimS.H. WangS. ZhuY. Preparation of nitrogen containing bicyclic compounds as somatostatin modulators, especially SSTR2 agonists, and their therapeutic use.WO Patent 2018013676A12018
  109. AbouzidK. ShoumanS. Design, synthesis and in vitro antitumor activity of 4-aminoquinoline and 4-aminoquinazoline derivatives targeting EGFR tyrosine kinase.Bioorg. Med. Chem.200816167543755110.1016/j.bmc.2008.07.03818678492
    [Google Scholar]
  110. KalbfleischJ.J. RodriguezA.L. LeiX. WeissK. BlobaumA.L. BoutaudO. NiswenderC.M. LindsleyC.W. Persistent challenges in the development of an mGlu7 PAM in vivo tool compound: The discovery of VU6046980.Bioorg. Med. Chem. Lett.2023801512910610.1016/j.bmcl.2022.12910636528230
    [Google Scholar]
  111. TianC. YangC. WuT. LuM. ChenY. YangY. LiuX. LingY. DengM. JiaY. ZhouY. Discovery of cinnoline derivatives as potent PI3K inhibitors with antiproliferative activity.Bioorg. Med. Chem. Lett.20214812827110.1016/j.bmcl.2021.12827134284105
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298265037231119063008
Loading
/content/journals/mroc/10.2174/0118756298265037231119063008
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test