Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

This review focuses on studying hydrogen bonds in triflamide derivatives, the supramolecular structures formed in a crystal, solution, and gas phase, and the relationship between structural, spectral and quantum chemical calculation data.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/1570193X20666230725103217
2023-09-20
2025-01-21
Loading full text...

Full text loading...

References

  1. HerschlagD. PinneyM.M. Hydrogen bonds: Simple after all?Biochemistry201857243338335210.1021/acs.biochem.8b0021729678112
    [Google Scholar]
  2. VladiloG. HassanaliA. Hydrogen bonds and life in the universe.Life20188112210.3390/life801000129301382
    [Google Scholar]
  3. van der LubbeS.C.C. Fonseca GuerraC. The nature of hydrogen bonds: A delineation of the role of different energy components on hydrogen bond strengths and lengths.Chem. Asian J.20191416asia.20190071710.1002/asia.20190071731241855
    [Google Scholar]
  4. TakahashiO. KohnoY. NishioM. Relevance of weak hydrogen bonds in the conformation of organic compounds and bioconjugates: Evidence from recent experimental data and high-level ab initio MO calculations.Chem. Rev.2010110106049607610.1021/cr100072x20550180
    [Google Scholar]
  5. GrabowskiS.J. What is the covalency of hydrogen bonding?Chem. Rev.201111142597262510.1021/cr800346f21322583
    [Google Scholar]
  6. PimentelG.C. McClellanA.L. Hydrogen bonding.Annu. Rev. Phys. Chem.197122134738510.1146/annurev.pc.22.100171.002023
    [Google Scholar]
  7. SterponeF. StirnemannG. HynesJ.T. LaageD. Water hydrogen-bond dynamics around amino acids: The key role of hydrophilic hydrogen-bond acceptor groups.J. Phys. Chem. B201011452083208910.1021/jp911979320085364
    [Google Scholar]
  8. HanoianP. SigalaP.A. HerschlagD. Hammes-SchifferS. Hydrogen bonding in the active site of ketosteroid isomerase: Electronic inductive effects and hydrogen bond coupling.Biochemistry20104948103391034810.1021/bi101428e21049962
    [Google Scholar]
  9. DesirajuG.R. SteinerT. The weak hydrogen bond in structural chemistry and biology.Oxford University Press1999
    [Google Scholar]
  10. BaggiG. BoiocchiM. FabbrizziL. MoscaL. Moderate and advanced intramolecular proton transfer in urea-anion hydrogen-bonded complexes.Chemistry201117349423943910.1002/chem.20110049021732438
    [Google Scholar]
  11. FirouziR. ShahbazianS. Seeking for ultrashort “non-bonded” hydrogen–hydrogen contacts in some rigid hydrocarbons and their chlorinated derivatives.Struct. Chem.20142541297130410.1007/s11224‑014‑0411‑9
    [Google Scholar]
  12. CukrowskiI. MattaC.F. Hydrogen–hydrogen bonding: A stabilizing interaction in strained chelating rings of metal complexes in aqueous phase.Chem. Phys. Lett.20104991-3666910.1016/j.cplett.2010.09.013
    [Google Scholar]
  13. Della PortaP. ZanasiR. MonacoG. Hydrogen-hydrogen bonding: The current density perspective.J. Comput. Chem.2015361070771610.1002/jcc.2384125689556
    [Google Scholar]
  14. SchmidbaurH. RaubenheimerH.G. DobrzańskaL. The gold–hydrogen bond, Au–H, and the hydrogen bond to gold, Au⋯H–X.Chem. Soc. Rev.201443134538010.1039/C3CS60251F23999756
    [Google Scholar]
  15. RizzatoS. BergèsJ. MasonS.A. AlbinatiA. KozelkaJ. Dispersion-driven hydrogen bonding: Predicted hydrogen bond between water and platinum(II) identified by neutron diffraction.Angew. Chem. Int. Ed.201049417440744310.1002/anie.20100189220602387
    [Google Scholar]
  16. JeffreyG.A. An introduction to hydrogen bonding.Oxford University Press1997
    [Google Scholar]
  17. MundlapatiV.R. GautamS. SahooD.K. GhoshA. BiswalH.S. Thioamide, a hydrogen bond acceptor in proteins and nucleic acids.J. Phys. Chem. Lett.20178184573457910.1021/acs.jpclett.7b0181028876948
    [Google Scholar]
  18. MphahleleM. MalulekaM. RhymanL. RamasamiP. MampaR. Spectroscopic, DFT, and XRD studies of hydrogen bonds in n-unsubstituted 2-aminobenzamides.Molecules20172218310.3390/molecules2201008328054998
    [Google Scholar]
  19. LiY. WangC.-S. Rapid evaluation of the binding energies between peptide amide and DNA baseJ. Comp. Chem20112765277310.1002/jcc.21856
    [Google Scholar]
  20. KirchnerB. SpickermannC. ReckienW. SchalleyC.A. Uncovering individual hydrogen bonds in rotaxanes by frequency shifts.J. Am. Chem. Soc.2010132248449410.1021/ja902628n20028099
    [Google Scholar]
  21. BaderR.F.W. Atoms in Molecules. A Quantum Theory.OxfordClarendron Press1990
    [Google Scholar]
  22. RaghavendraB. MandalP.K. ArunanE. Ab initio and AIM theoretical analysis of hydrogen-bond radius of HD (D = F, Cl, Br, CN, HO, HS and CCH) donors and some acceptors.Phys. Chem. Chem. Phys.20068455276528610.1039/b611033a19810406
    [Google Scholar]
  23. EbrahimiA. RoohiH. HabibiM. MohammadiM. VaziriR. Characterization of conformers of non-ionized proline on the basis of topological and NBO analyses: Can nitrogen be a donor of hydrogen bond?Chem. Phys.2006322328929710.1016/j.chemphys.2005.08.039
    [Google Scholar]
  24. SteinbornD. SchwiegerS. How strong are hydrogen bonds in metalla-beta-diketones?Chemistry200713349668967810.1002/chem.20070066617896335
    [Google Scholar]
  25. HouriezC. MasellaM. FerréN. Structural and atoms-in-molecules analysis of hydrogen-bond network around nitroxides in liquid water.J. Chem. Phys.20101331212450810.1063/1.347899920886951
    [Google Scholar]
  26. KorlyukovA.A. KhrustalevV.N. VologzhaninaA.V. LyssenkoK.A. NechaevM.S. AntipinM.Y. Bis(μ 2 -2-(dimethylamino)ethoxo- N, O, O )-di(phenolato- O )ditin(II): A high-resolution single-crystal X-ray diffraction and quantum chemical study.Acta Crystallogr. B201167431532310.1107/S010876811102269521775810
    [Google Scholar]
  27. NelyubinaY.V. PuntusL.N. LyssenkoK.A. The dark side of hydrogen bonds in the design of optical materials: A charge-density perspective.Chemistry201420102860286510.1002/chem.20130056624488449
    [Google Scholar]
  28. KumarP.S.V. RaghavendraV. SubramanianV. Bader’s theory of Atoms in Molecules (AIM) and its applications to chemical bonding.J. Chem. Sci.2016128101527153610.1007/s12039‑016‑1172‑3
    [Google Scholar]
  29. TemperiniC. CecchiA. ScozzafavaA. SupuranC.T. Carbonic anhydrase inhibitors. Sulfonamide diuretics revisited—old leads for new applications?Org. Biomol. Chem.20086142499250610.1039/b800767e18600270
    [Google Scholar]
  30. MoekerJ. PeatT.S. BornaghiL.F. VulloD. SupuranC.T. PoulsenS.A. Cyclic secondary sulfonamides: Unusually good inhibitors of cancer-related carbonic anhydrase enzymes.J. Med. Chem.20145783522353110.1021/jm500255y24689792
    [Google Scholar]
  31. SadawarteG. JagatapS. PatilM. JagrutV. RajputJ.D. Synthesis of substituted pyridine based sulphonamides as an antidiabetic agent.Eur. J. Chem.202112327928310.5155/eurjchem.12.3.279‑283.2118
    [Google Scholar]
  32. BrennerV. GloaguenE. MonsM. Rationalizing the diversity of amide–amide H-bonding in peptides using the natural bond orbital method.Phys. Chem. Chem. Phys.20192144246012461910.1039/C9CP03825F31670335
    [Google Scholar]
  33. SereikaitėV. JensenT.M.T. BartlingC.R.O. JemthP. PlessS.A. StrømgaardK. Probing backbone hydrogen bonds in proteins by amide-to-ester mutations.ChemBioChem201819202136214510.1002/cbic.20180035030073762
    [Google Scholar]
  34. AsanoA. NumataS. YamadaT. MinouraK. DoiM. Conformational properties of ascydiacyclamide analogues with cyclic α-amino acids instead of oxazoline residues.Bioorg. Med. Chem.201725246554656210.1016/j.bmc.2017.10.02929097029
    [Google Scholar]
  35. AbrahamM.H. AbrahamR.J. A simple and facile NMR method for the determination of hydrogen bonding by amide N–H protons in protein models and other compounds.New J. Chem.201741146064606610.1039/C7NJ01044C
    [Google Scholar]
  36. ShainyanB.A. TolstikovaL.L. Trifluoromethanesulfonamides and related compounds.Chem. Rev.2013113169973310.1021/cr300220h23167801
    [Google Scholar]
  37. ShainyanB.A. Unsaturated derivatives of trifluoromethanesulfonamide.Eur. J. Org. Chem.2018201827-283594360810.1002/ejoc.201800130
    [Google Scholar]
  38. MoskalikM.Y. AstakhovaV.V. Triflamides and triflimides: Synthesis and applications.Molecules20222716520110.3390/molecules2716520136014447
    [Google Scholar]
  39. OkamotoH. ItaniK. YamajiM. KonishiH. OtaH. Excited-state intramolecular proton transfer (ESIPT) fluorescence from 3-amidophthalimides displaying RGBY emission in the solid state.Tetrahedron Lett.201859438839110.1016/j.tetlet.2017.12.049
    [Google Scholar]
  40. DulceA.P. OmarG.G. CecilioÁ.T. Exploring the binding mode of triflamide derivatives at the active site of Topo I and Topo II enzymes: In silico analysis and precise molecular docking.J. Chem. Sci.20201321507010.1007/s12039‑020‑1750‑2
    [Google Scholar]
  41. YagupolskiiL.M. ShelyazhenkoS.V. MaletinaI.I. PetrikV.N. RusanovE.B. ChernegaA.N. The aza curtius rearrangement.Eur. J. Org. Chem.2001200171225123310.1002/1099‑0690(200104)2001:7<1225::AID‑EJOC1225>3.0.CO;2‑6
    [Google Scholar]
  42. LiS. ZhangJ. LiH. FengL. JiaoP. Preparation and application of amino phosphine ligands bearing spiro[indane-1,2′-pyrrolidine] backbone.J. Org. Chem.201984159460947310.1021/acs.joc.9b0087531242729
    [Google Scholar]
  43. TakeshimaA. KanoT. MaruokaK. Synthesis of phenylcyclopropane-based secondary amine catalysts and their applications in enamine catalysis.Org. Lett.201921198071807410.1021/acs.orglett.9b0307031513419
    [Google Scholar]
  44. SurowiecM. CustelceanR. SurowiecK. BartschR.A. Alkali metal cation complexation by 1,3-alternate, mono-ionisable calix[4]arene-benzocrown-6 compounds.Supramol. Chem.2015271-2596410.1080/10610278.2014.904869
    [Google Scholar]
  45. Carme PampínM. EstévezJ.C. EstévezR.J. MaestroM. CastedoL. Heck-mediated synthesis and photochemically induced cyclization of [2-(2-styrylphenyl)ethyl]carbamic acid ethyl esters and 2-styryl-benzoic acid methyl esters: Total synthesis of naphtho[2,1f]isoquinolines (2-azachrysenes).Tetrahedron200359367231724310.1016/S0040‑4020(03)01073‑1
    [Google Scholar]
  46. ArseniyadisS. ValleixA. WagnerA. MioskowskiC. Kinetic resolution of amines: A highly enantioselective and chemoselective acetylating agent with a unique solvent-induced reversal of stereoselectivity.Angew. Chem. Int. Ed.200443253314331710.1002/anie.20045395615213962
    [Google Scholar]
  47. de BoerS.Y. GloaguenY. ReekJ.N.H. LutzM. van der VlugtJ.I. N–H bond activation by palladium(ii) and copper(i) complexes featuring a reactive bidentate PN-ligand.Dalton Trans.20124137112761128310.1039/c2dt31009k22740179
    [Google Scholar]
  48. OlivaA.I. SimónL. MuñizF.M. SanzF. MoránJ.R. Aminopyridine-benzoxanthene enantioselective receptor for sulfonylamino acids.Org. Lett.2004671155115710.1021/ol049933g15040746
    [Google Scholar]
  49. OlivaA.I. SimónL. MuñizF.M. SanzF. MoránJ.R. Enantioselective lutidine-tetrahydrobenzoxanthene receptors for carboxylic acids.Eur. J. Org. Chem.2004200481698170210.1002/ejoc.200300790
    [Google Scholar]
  50. BosnidouA.E. MuñizK. MuÇiz, K. Intermolecular radical C(sp3)-H amination under iodine catalysis.Angew. Chem. Int. Ed.201958227485748910.1002/anie.20190167330888107
    [Google Scholar]
  51. WangY. LiY. FanY. WangZ. TangY. Palladium-catalyzed denitrogenative functionalizations of benzotriazoles with alkenes and 1,3-dienes.Chem. Commun. (Camb.)20175387118731187610.1039/C7CC07543J29043306
    [Google Scholar]
  52. ChuL. WangX.C. MooreC.E. RheingoldA.L. YuJ.Q. Pd-catalyzed enantioselective C-H iodination: Asymmetric synthesis of chiral diarylmethylamines.J. Am. Chem. Soc.201313544163441634710.1021/ja408864c24151991
    [Google Scholar]
  53. GonzálezJ.M. CendónB. MascareñasJ.L. GulíasM. Kinetic resolution of allyltriflamides through a pd-catalyzed c–h functionalization with allenes: Asymmetric assembly of tetrahydropyridines.J. Am. Chem. Soc.2021143103747375210.1021/jacs.1c0192933651598
    [Google Scholar]
  54. ZhaoJ. HuangH.G. LiW. LiuW.B. FeCl 2 -Mediated regioselective aminochlorination and aminoazidation of styrenes with trifluoromethanesulfonyl azide.Org. Lett.202123135102510610.1021/acs.orglett.1c0164234156853
    [Google Scholar]
  55. ChuL. XiaoK.J. YuJ.Q. Room-temperature enantioselective C–H iodination via kinetic resolution.Science2014346620845145510.1126/science.125853825342799
    [Google Scholar]
  56. YangM. SuB. WangY. ChenK. JiangX. ZhangY.F. ZhangX.S. ChenG. ChengY. CaoZ. GuoQ.Y. WangL. ShiZ.J. Silver-catalysed direct amination of unactivated C–H bonds of functionalized molecules.Nat. Commun.201451470710.1038/ncomms570725140832
    [Google Scholar]
  57. ZhangZ. WangJ. LiJ. YangF. LiuG. TangW. HeW. FuJ.J. ShenY.H. LiA. ZhangW.D. Total synthesis and stereochemical assignment of delavatine A: Rh-catalyzed asymmetric hydrogenation of indene-type tetrasubstituted olefins and kinetic resolution through Pd-catalyzed triflamide-directed C–H olefination.J. Am. Chem. Soc.2017139155558556710.1021/jacs.7b0171828271887
    [Google Scholar]
  58. LaughlinR.G. The basicity of aliphatic sulfonamides.J. Am. Chem. Soc.196789174268427110.1021/ja00993a003
    [Google Scholar]
  59. KimuraM. HouraiS. Methyl 5-chloro-2-[(trifluoromethyl)sulf-onyl]aminobenzoate.Acta Crystallogr. Sect. E Struct. Rep. Online20056111o3944o394510.1107/S1600536805034902
    [Google Scholar]
  60. SeoaneA. ComanescuC. CasanovaN. García-FandiñoR. DizX. MascareñasJ.L. GulíasM. Rhodium‐catalyzed annulation of ortho ‐alkenyl anilides with alkynes: Formation of unexpected naphthalene adducts.Angew. Chem. Int. Ed.20195861700170410.1002/anie.20181174730507055
    [Google Scholar]
  61. FernándezL.E. Ben AltabefA. FantoniA.C. VarettiE.L. Infrared and Raman spectra and ab initio calculations for normal and deuterated trifluoromethanesulfonamide.Spectrochim. Acta A Mol. Biomol. Spectrosc.199753218919710.1016/S1386‑1425(97)83025‑9
    [Google Scholar]
  62. VorontsovaL.G. Crystal and molecular structure of methanesulfonamide.J. Struct. Chem.19677227527710.1007/BF00744308
    [Google Scholar]
  63. HaasA. KlareC. BetzP. BruckmannJ. KrügerC. TsayY.H. AubkeF. Acyclic sulfur−nitrogen compounds. syntheses and crystal and molecular structures of bis((trifluoro-methyl) sulfonyl)amine ((CF3SO2)2NH), magnesium hexaaquo bis((trifluoromethyl)sulfonyl)amide dihydrate ([mg(h2o) 6 ][(cf 3 so 2 ) 2 n] 2 ·2h 2 o), and bis(bis(fluorosulfonyl)amino)sulfur ((fso 2 ) 2 nsn(so 2 f) 2 ).Inorg. Chem.19963571918192510.1021/ic9507934
    [Google Scholar]
  64. FritschiS. VasellaA. Synthesis ofn,n-disubstituted lactone hydrazonesvia (sulfonylimino)-ethers.Helv. Chim. Acta19917482024203410.1002/hlca.19910740837
    [Google Scholar]
  65. MeshcheryakovV.I. MoskalikM.Y. KellingA. SchildeU. UshakovI.A. ShainyanB.A. Oxymethylation of trifluoromethanesulfonamide with paraformaldehyde in ethyl acetate.Russ. J. Org. Chem.200844231131610.1134/S1070428008020206
    [Google Scholar]
  66. SterkhovaI.V. ShainyanB.A. Trifluoromethanesulfonamide: X-ray single-crystal determination and quantum chemical calculations.J. Phys. Org. Chem.201528748548910.1002/poc.3441
    [Google Scholar]
  67. ShainyanB.A. ChipaninaN.N. OznobikhinaL.P. The basicity of sulfonamides and carboxamides. Theoretical and experimental analysis and effect of fluorinated substituent.J. Phys. Org. Chem.201225973874710.1002/poc.2910
    [Google Scholar]
  68. DobyshevaL.V. ChausovF.F. Hydrogen‐bond peculiarities in nitrilotris‐(methylenephosphonato)‐three‐aqua‐iron(ii) from xrd experiment and dft calculation.ChemistrySelect2023812e20220504010.1002/slct.202205040
    [Google Scholar]
  69. SiskosM. ChoudharyM. GerothanassisI. Hydrogen atomic positions of O–H···O hydrogen bonds in solution and in the solid state: the synergy of quantum chemical calculations with 1h-nmr chemical shifts and X-ray diffraction methods.Molecules201722341510.3390/molecules2203041528272366
    [Google Scholar]
  70. ChipaninaN.N. SherstyannikovaL.V. DanilevichY.S. TurchaninovV.K. ShainyanB.A. IR spectra of trifluoromethanesulfonamide and its self-associates in the gas phase.Russ. J. Gen. Chem.200474458258510.1023/B:RUGC.0000031861.73702.f5
    [Google Scholar]
  71. ChipaninaN.N. SherstyannikovaL.V. SterkhovaI.V. AksamentovaT.N. TurchaninovV.K. ShainyanB.A. Self-association of trifluoromethanesulfonamide in inert solvents.Russ. J. Gen. Chem.200575687688210.1007/s11176‑005‑0339‑2
    [Google Scholar]
  72. ChipaninaN.N. SherstyannikovaL.V. TurchaninovV.K. ShainyanB.A. Self-association of N-methyltrifluoromethane-sulfonamide in the gas phase and in inert solvents.Russ. J. Gen. Chem.200474101538154210.1007/s11176‑005‑0051‑2
    [Google Scholar]
  73. ChipaninaN.N. SherstyannikovaL.V. SterkhovaI.V. TurchaninovV.K. ShainyanB.A. Energy of formation of an acyclic N-methyltrifluoromethanesulfonamide dimer.Russ. J. Gen. Chem.200575226827110.1007/s11176‑005‑0211‑4
    [Google Scholar]
  74. NishioM. Weak hydrogen bonds.encyclopedia of supramolecular chemistry.New York200410.1081/E‑ESMC‑120012764
    [Google Scholar]
  75. DenisovG.S. SmolyanskiyA.L. Sheikh-ZadeM.I. Spectroscopic study of the dimerization of halogen-substituted acetic acid.Russ. J. Appl. Spect1981343470475
    [Google Scholar]
  76. WolfsI. DesseynH.O. Modelling the vibrational behaviour of the cyclic carboxylic acid dimer. SQM force field of the formic acid dimer.J. Mol. Struct. Theochem.19963601-3819710.1016/0166‑1280(95)04366‑7
    [Google Scholar]
  77. DaviesM. ThomasD.K. Energies and entropies of association for amides in benzene solutions. Part II.J. Phys. Chem.195660676777010.1021/j150540a014
    [Google Scholar]
  78. GauthierM. GauthierM. BelangerA. KapferB. VassortG. ArmandM. Polymer electrolyte. Reviews 2.Elsevier1989
    [Google Scholar]
  79. ForopoulosJ.Jr DesMarteauD.D. Synthesis, properties, and reactions of bis((trifluoromethyl)sulfonyl) imide, (CF3SO2)2NH.Inorg. Chem.198423233720372310.1021/ic00191a011
    [Google Scholar]
  80. ZakZ. RuzickaA. KristZ. ŽákZ. RůžičkaA. MichotC. Structures of bis(fluorosulfonyl)imide HN(SO2F)2, bis(trifluoromethylsulfonyl)imide HN(SO2CF3)2, and their potassium salts at 150 K.Z. Kristallogr. Cryst. Mater.1998213421722210.1524/zkri.1998.213.4.217
    [Google Scholar]
  81. ReyI. JohanssonP. LindgrenJ. LassèguesJ.C. GrondinJ. ServantL. Spectroscopic and theoretical study of (CF3SO2)2N- (TFSI-) and (CF3SO2)2NH (HTFSI).J. Phys. Chem. A1998102193249325810.1021/jp980375v
    [Google Scholar]
  82. ChipaninaN.N. SterkhovaI.V. AksamentovaT.N. SherstyannikovaL.V. KukharevaV.A. ShainyanB.A. Structure of bis(trifluoromethanesulfonyl)imide in inert and protophilic media.Russ. J. Gen. Chem.200878122363237310.1134/S1070363208120128
    [Google Scholar]
  83. ShainyanB.A. MeshcheryakovV.I. SterkhovaI.V. Cyclization of trifluoro-N-(prop-2-yn-1-yl)methanesulfonamides to N-(hydroxymethyl)-1,2,3-triazoles.Russ. J. Org. Chem.20165271032103510.1134/S1070428016070198
    [Google Scholar]
  84. ShainyanB.A. ChipaninaN.N. OznobikhinaL.P. MeshcheryakovV.I. Acid-base properties and supramolecular structure of N -[(hydroxymethyl)triazolyl]triflamides: DFT, ab initio, and FTIR study.J. Phys. Org. Chem.2017305e362310.1002/poc.3623
    [Google Scholar]
  85. SterkhovaI.V. MescheryakovV.I. ChipaninaN.N. KukharevaV.A. AksamentovaT.N. TurchaninovV.K. ShainyanB.A. Structure and intramolecular hydrogen bonds in Bis(trifluoromethylsulfonylamino)methane and N-[(trifluoromethylsulfonyl)aminomethyl]acetamide.Russ. J. Gen. Chem.200676458358910.1134/S1070363206040165
    [Google Scholar]
  86. GordonA.J. FordR.A. The chemist’s companion: A handbook of practical data.1st edTechniques, and References1972
    [Google Scholar]
  87. ShainyanB.A. SterkhovaI.V. 2,5-diphenyl-1,4-(trifluoromethylsulfonyl)piperazine from N-(2-bromo-2-phenylethyl)trifluoromethanesulfonamide.Russ. J. Org. Chem.201046111743174410.1134/S1070428010110229
    [Google Scholar]
  88. MoskalikM.Y. ShainyanB.A. AstakhovaV.V. SchildeU. Oxidative addition of trifluoromethanesulfonamide to cycloalkadienes.Tetrahedron201369270571110.1016/j.tet.2012.10.099
    [Google Scholar]
  89. ChipaninaN.N. AksamentovaT.N. SherstyannikovaL.V. SterkhovaI.V. ShainyanB.A. TurchaninovV.K. Molecular structure of complexes with bifurcated hydrogen bond: iii. solvate h-complexes formed by trifluoromethanesulfonamide and its cyclic dimer.Russ. J. Org. Chem.200541101415142010.1007/s11178‑005‑0360‑2
    [Google Scholar]
  90. SterkhovaI.V. MoskalikM.Y. ShainyanB.A. Experimental and theoretical investigation of self-association in inert environment of new triflamide derivatives.Russ. J. Org. Chem.201349111594159910.1134/S1070428013110055
    [Google Scholar]
  91. MoskalikM.Y. AstakhovaV.V. UshakovI.A. ShainyanB.A. Oxidative addition of trifluoromethanesulfonamide to cycloocta-1,3-diene. Ring contraction rearrangement.Russ. J. Org. Chem.201450344544610.1134/S1070428014030269
    [Google Scholar]
  92. SterkhovaI.V. MoskalikM.Y. ShainyanB.A. Conformations and self-association of trifluoro-N-(3-formylcyclohept-2-en-1-yl)methanesulfonamide.Russ. J. Org. Chem.201450333734110.1134/S1070428014030051
    [Google Scholar]
  93. TolstikovaL.L. ShainyanB.A. SterkhovaI.V. BelovezhetsL.A. N, N′-Bis(trifluoromethanesulfonyl) dicarboxylic acid amides.Russ. J. Org. Chem.2020561636710.1134/S107042802001011X
    [Google Scholar]
  94. GaninA.S. MoskalikM.Y. AstakhovaV.V. SterkhovaI.V. ShainyanB.A. Heterocyclization and solvent interception upon oxidative triflamidation of allyl ethers, amines and silanes.Tetrahedron2020763313137410.1016/j.tet.2020.131374
    [Google Scholar]
  95. OchiaiM. YamaneS. HoqueM.M. SaitoM. MiyamotoK. Metal-free α-CH amination of ethers with hypervalent sulfonylimino-λ3-bromane that acts as an active nitrenoid.Chem. Commun. (Camb.)201248435280528210.1039/c2cc31523h22526599
    [Google Scholar]
  96. ChipaninaN.N. OznobikhinaL.P. SterkhovaI.V. GaninA.S. ShainyanB.A. New oxyalkyl derivatives of trifluoromethanesulfonamide: Dynamic rivalry between different types of chain and cyclic associates in different phase states.J. Mol. Struct.2020121912853410.1016/j.molstruc.2020.128534
    [Google Scholar]
  97. ShainyanB.A. TolstikovaL.L. SterkhovaI.V. Unusual [2+2]-cycloaddition of carbodiimides to N-alkenylidenetriflamides.Tetrahedron Lett.201657394440444210.1016/j.tetlet.2016.08.078
    [Google Scholar]
  98. SterkhovaI.V. ChipaninaN.N. OznobikhinaL.P. TolstikovaL.L. ShainyanB.A. Supramolecular structure of the product of unusual [2C=C + 2C=N] cycloaddition of dicyclohexylcarbodiimide to N-(3-methylbut-2-en-1-ylidene)triflamide.J. Mol. Struct.2022125013167610.1016/j.molstruc.2021.131676
    [Google Scholar]
  99. MoskalikM.Y. ShainyanB.A. UshakovI.A. SterkhovaI.V. AstakhovaV.V. Oxidant effect, skeletal rearrangements and solvent interception in oxidative triflamidation of norbornene and 2,5-norbornadiene.Tetrahedron2020761113101810.1016/j.tet.2020.131018
    [Google Scholar]
  100. ShainyanB.A. MeshcheryakovV.I. SterkhovaI.V. A convenient synthesis and structure of N-trifluoromethylsulfonylamidines.Tetrahedron201571417906791010.1016/j.tet.2015.08.008
    [Google Scholar]
  101. ShainyanB.A. ChipaninaN.N. OznobikhinaL.P. SterkhovaI.V. MoskalikM.Y. AstakhovaV.V. GaninA.S. Supramolecular structure and tautomerism of trifluoromethanesulfonamidines.Struct. Chem.202334113915210.1007/s11224‑022‑02032‑9
    [Google Scholar]
  102. ShainyanB.A. ChipaninaN.N. OznobikhinaL.P. SterkhovaI.V. AstakhovaV.V. MoskalikM.Y. Supramolecular structure and isomeric transformations of N-t-butyl-N′-trifluoromethanesulfonacetamidine.Struct. Chem.in press10.1007/s11224‑023‑02127‑x
    [Google Scholar]
  103. SterkhovaI.V. FedorovaT.E. MoskalikM.Y. Conformational analysis and study of hydrogen bonding of iodobicycloheptanyl-N′-(trifluoromethanesulfonyl)acetimidamides.Russ. J. Gen. Chem.202191580781310.1134/S107036322105008X
    [Google Scholar]
/content/journals/mroc/10.2174/1570193X20666230725103217
Loading
/content/journals/mroc/10.2174/1570193X20666230725103217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test