Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

The secondary metabolites produced by fungi are an important resource for new drug development, and the biosynthesis of fungal secondary metabolites is closely related to the epigenetic status of the chromosomes in which their gene clusters are located. However, the induction of fungal silencing of gene expression is one of the challenges faced at this stage. Chemical epigenetic modification is a simple and effective method to regulate fungal metabolism by adding chemical epigenetic modifiers to the culture medium to activate silent metabolic pathways in the fungus, resulting in the production of cryptic natural products. This paper reviews the progress of research on increasing the chemical diversity of fungal secondary metabolites using chemical epigenetic modifications, with the aim of providing a reference for the in-depth study of fungal natural products.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298278037231122041718
2024-01-05
2025-01-21
Loading full text...

Full text loading...

References

  1. SanchezJ.F. SomozaA.D. KellerN.P. WangC.C.C. Advances in Aspergillus secondary metabolite research in the post-genomic era.Nat. Prod. Rep.201229335137110.1039/c2np00084a22228366
    [Google Scholar]
  2. AlyA.H. DebbabA. ProkschP. Fungal endophytes - secret producers of bioactive plant metabolites.Pharmazie201368749950523923629
    [Google Scholar]
  3. KusariS. HertweckC. SpitellerM. Chemical ecology of endophytic fungi: Origins of secondary metabolites.Chem. Biol.201219779279810.1016/j.chembiol.2012.06.00422840767
    [Google Scholar]
  4. PhukanH. MitraP.K. SaikiaM. Comparative study of Endophytic fungal metabolite isolated from black turmeric (Curcuma caesia roxb) in ROS associated Caenorhabditis elegans model system.World J. Pharm. Res.201847982
    [Google Scholar]
  5. GrossH. Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects.Appl. Microbiol. Biotechnol.200775226727710.1007/s00253‑007‑0900‑517340107
    [Google Scholar]
  6. ChiangY.M. ChangS.L. OakleyB.R. WangC.C.C. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms.Curr. Opin. Chem. Biol.201115113714310.1016/j.cbpa.2010.10.01121111669
    [Google Scholar]
  7. ScherlachK. HertweckC. Triggering cryptic natural product biosynthesis in microorganisms.Org. Biomol. Chem.2009791753176010.1039/b821578b19590766
    [Google Scholar]
  8. CichewiczR.H. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners.Nat. Prod. Rep.2010271112210.1039/B920860G20024091
    [Google Scholar]
  9. WilliamsR.B. HenriksonJ.C. HooverA.R. LeeA.E. CichewiczR.H. Epigenetic remodeling of the fungal secondary metabolome.Org. Biomol. Chem.20086111895189710.1039/b804701d18480899
    [Google Scholar]
  10. SunK. ZhuG. HaoJ. WangY. ZhuW. Chemical-epigenetic method to enhance the chemodiversity of the marine algicolous fungus, Aspergillus terreus OUCMDZ-2739.Tetrahedron2018741838710.1016/j.tet.2017.11.039
    [Google Scholar]
  11. SunK. ZhuG. HaoJ. WangY. ZhuW. Corrigendum to “Chemical-epigenetic method to enhance the chemodiversity of the marine algicolous fungus, Aspergillus terreus OUCMDZ-2739” [Tetrahedron 74 (2018) 83–87].Tetrahedron201874446465646610.1016/j.tet.2018.09.018
    [Google Scholar]
  12. LiC.Y. ChungY.M. WuY.C. HunyadiA. WangC.C.C. ChangF.R. Natural products development under epigenetic modulation in fungi.Phytochem. Rev.20201961323134010.1007/s11101‑020‑09684‑7
    [Google Scholar]
  13. Poças-FonsecaM.J. CabralC.G. Manfrão-NettoJ.H.C. Epigenetic manipulation of filamentous fungi for biotechnological applications: A systematic review.Biotechnol. Lett.202042688590410.1007/s10529‑020‑02871‑832246346
    [Google Scholar]
  14. ToghueoR.M.K. SahalD. BoyomF.F. Recent advances in inducing endophytic fungal specialized metabolites using small molecule elicitors including epigenetic modifiers.Phytochemistry202017411233810.1016/j.phytochem.2020.11233832179305
    [Google Scholar]
  15. PillayL.C. NekatiL. MakhwitineP.J. NdlovuS.I. Epigenetic activation of silent biosynthetic gene clusters in endophytic fungi using small molecular modifiers.Front. Microbiol.20221381500810.3389/fmicb.2022.81500835237247
    [Google Scholar]
  16. ColeP.A. Chemical probes for histone-modifying enzymes.Nat. Chem. Biol.200841059059710.1038/nchembio.11118800048
    [Google Scholar]
  17. AsaiT. YamamotoT. OshimaY. Histone deacetylase inhibitor induced the production of three novel prenylated tryptophan analogs in the entomopathogenic fungus, Torrubiella luteorostrata. Tetrahedron Lett.201152527042704510.1016/j.tetlet.2011.10.020
    [Google Scholar]
  18. AdpressaD.A. StalheimK.J. ProteauP.J. LoesgenS. Unexpected biotransformation of the HDAC inhibitor vorinostat yields aniline-containing fungal metabolites.ACS Chem. Biol.20171271842184710.1021/acschembio.7b0026828530797
    [Google Scholar]
  19. TakahashiJ.A. TelesA.P.C. de Almeida Pinto BracarenseA. GomesD.C. Classical and epigenetic approaches to metabolite diversification in Filamentous fungi.Phytochem. Rev.201312477378910.1007/s11101‑013‑9305‑5
    [Google Scholar]
  20. ChenM. ZhangW. ShaoC.L. ChiZ.M. WangC.Y. DNA methyltransferase inhibitor induced fungal biosynthetic products: diethylene glycol phthalate ester oligomers from the marine-derived fungus Cochliobolus lunatus. Mar. Biotechnol. (NY)201618340941710.1007/s10126‑016‑9703‑y27245469
    [Google Scholar]
  21. TrojerP. BrandtnerE.M. BroschG. LoidlP. GalehrJ. LinzmaierR. HaasH. MairK. TribusM. GraessleS. Histone deacetylases in fungi: Novel members, new facts.Nucleic Acids Res.200331143971398110.1093/nar/gkg47312853613
    [Google Scholar]
  22. BroschG. LoidlP. GraessleS. Histone modifications and chromatin dynamics: A focus on Filamentous fungi.FEMS Microbiol. Rev.200832340943910.1111/j.1574‑6976.2007.00100.x18221488
    [Google Scholar]
  23. GrewalS.I.S. BonaduceM.J. KlarA.J.S. Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast.Genetics1998150256357610.1093/genetics/150.2.5639755190
    [Google Scholar]
  24. XueM. HouX. FuJ. ZhangJ. WangJ. ZhaoZ. XuD. LaiD. ZhouL. Recent advances in search of bioactive secondary metabolites from fungi triggered by chemical epigenetic modifiers.J. Fungi20239217210.3390/jof902017236836287
    [Google Scholar]
  25. BielM. WascholowskiV. GiannisA. Epigenetics--an epicenter of gene regulation: Histones and histone-modifying enzymes.Angew. Chem. Int. Ed.200544213186321610.1002/anie.20046134615898057
    [Google Scholar]
  26. HenriksonJ.C. HooverA.R. JoynerP.M. CichewiczR.H. A chemical epigenetics approach for engineering the in situbiosynthesis of a cryptic natural product from Aspergillus niger. Org. Biomol. Chem.20097343543810.1039/B819208A19156306
    [Google Scholar]
  27. VervoortH.C. DraškovićM. CrewsP. Histone deacetylase inhibitors as a tool to up-regulate new fungal biosynthetic products: isolation of EGM-556, a cyclodepsipeptide, from Microascus sp.Org. Lett.201113341041310.1021/ol102719921174394
    [Google Scholar]
  28. MooreJ.M. BradshawE. SeipkeR.F. HutchingsM.I. McArthurM. Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria.Methods Enzymol.201251736738510.1016/B978‑0‑12‑404634‑4.00018‑823084948
    [Google Scholar]
  29. TriastutiA. VansteelandtM. BarakatF. TrinelM. JargeatP. FabreN. Amasifuen GuerraC.A. MejiaK. ValentinA. HaddadM. How histone deacetylase inhibitors alter the secondary metabolites of Botryosphaeria mamane, an endophytic fungus isolated from Bixa orellana. Chem. Biodivers.2019164e180048510.1002/cbdv.20180048530636097
    [Google Scholar]
  30. ZutzC. GacekA. SulyokM. WagnerM. StraussJ. RychliK. Small chemical chromatin effectors alter secondary metabolite production in Aspergillus clavatus. Toxins20135101723174110.3390/toxins510172324105402
    [Google Scholar]
  31. HeX. ZhangZ. CheQ. ZhuT. GuQ. LiD. Varilactones and wortmannilactones produced by Penicillium variabile cultured with histone deacetylase inhibitor.Arch. Pharm. Res.2018411576310.1007/s12272‑017‑0982‑229124659
    [Google Scholar]
  32. ZhaoM. YuanL.Y. GuoD.L. YeY. Da-WaZ.M. WangX.L. MaF.W. ChenL. GuY.C. DingL.S. ZhouY. Bioactive halogenated dihydroisocoumarins produced by the endophytic fungus Lachnum palmae isolated from Przewalskia tangutica. Phytochemistry20181489710310.1016/j.phytochem.2018.01.01829421516
    [Google Scholar]
  33. ZhangZ. HeX. WuG. LiuC. LuC. GuQ. CheQ. ZhuT. ZhangG. LiD. Aniline-tetramic acids from the deep-sea-derived fungus cladosporium sphaerospermum L3P3 cultured with the HDAC inhibitor SAHA.J. Nat. Prod.20188171651165710.1021/acs.jnatprod.8b0028929985604
    [Google Scholar]
  34. WuG. SunX. YuG. WangW. ZhuT. GuQ. LiD. Cladosins A-E, hybrid polyketides from a deep-sea-derived fungus, Cladosporium sphaerospermum. J. Nat. Prod.201477227027510.1021/np400833x24499327
    [Google Scholar]
  35. LiuW. WangL. WangB. XuY. ZhuG. LanM. ZhuW. SunK. Diketopiperazine and diphenylether derivatives from marine algae-derived aspergillus versicolor OUCMDZ-2738 by epigenetic activation.Mar. Drugs2018171610.3390/md1701000630583513
    [Google Scholar]
  36. ZhangS. FangH. YinC. WeiC. HuJ. ZhangY. Antimicrobial metabolites produced by penicillium mallochii CCH01 isolated from the gut of Ectropis oblique, cultivated in the presence of a histone deacetylase inhibitor.Front. Microbiol.201910218610.3389/fmicb.2019.0218631632360
    [Google Scholar]
  37. AsaiT. MoritaS. TaniguchiT. MondeK. OshimaY. Epigenetic stimulation of polyketide production in Chaetomium cancroideum by an NAD + -dependent HDAC inhibitor.Org. Biomol. Chem.201614264665110.1039/C5OB01595B26549741
    [Google Scholar]
  38. AsaiT. TaniguchiT. YamamotoT. MondeK. OshimaY. Structures of spiroindicumides A and B, unprecedented carbon skeletal spirolactones, and determination of the absolute configuration by vibrational circular dichroism exciton approach.Org. Lett.201315174320432310.1021/ol401741z23972233
    [Google Scholar]
  39. LiJ. LiL. SiY. JiangX. GuoL. CheY. Virgatolides A-C, benzannulated spiroketals from the plant endophytic fungus Pestalotiopsis virgatula. Org. Lett.201113102670267310.1021/ol200770k21495643
    [Google Scholar]
  40. FengY. WangL. NiuS. LiL. SiY. LiuX. CheY. Naphthalenones from a Perenniporia sp. inhabiting the larva of a phytophagous weevil, Euops chinesis.J. Nat. Prod.20127571339134510.1021/np300263u22731892
    [Google Scholar]
  41. LiG. KusariS. GolzC. LaatschH. StrohmannC. SpitellerM. Epigenetic modulation of endophytic Eupenicillium sp. LG41 by a histone deacetylase inhibitor for production of decalin-containing compounds.J. Nat. Prod.201780498398810.1021/acs.jnatprod.6b0099728333449
    [Google Scholar]
  42. El-HawaryS. SayedA. MohammedR. HassanH. ZakiM. RatebM. MohammedT. AminE. AbdelmohsenU. Epigenetic modifiers induce bioactive phenolic metabolites in the marine-derived fungus Penicillium brevicompactum. Mar. Drugs201816825310.3390/md1608025330061488
    [Google Scholar]
  43. InoueM. SuzukiR. SakaguchiN. LiZ. TakedaT. OgiharaY. JiangB.Y. ChenY. Selective induction of cell death in cancer cells by gallic acid.Biol. Pharm. Bull.199518111526153010.1248/bpb.18.15268593472
    [Google Scholar]
  44. ZhenX. GongT. WenY.H. YanD.J. ChenJ.J. ZhuP. Chrysoxanthones A–C, three new xanthone–chromanone heterdimers from sponge-associated Penicillium chrysogenum HLS111 treated with histone deacetylase inhibitor.Mar. Drugs2018161035710.3390/md1610035730275353
    [Google Scholar]
  45. El-ElimatT. FigueroaM. RajaH.A. GrafT.N. SwansonS.M. FalkinhamJ.O.III WaniM.C. PearceC.J. OberliesN.H. Biosynthetically distinct cytotoxic polyketides from Setophoma terrestris. Eur. J. Org. Chem.20152015110912110.1002/ejoc.20140298425574154
    [Google Scholar]
  46. ShengS. LiY. XiangH.Y. LiuY. WangY.D. KongL-P. DuG. HuQ-F. ChenY-J. WangW-G. Histone deacetylase inhibitor induced lipase inhibitors from endophytic Phomopsis sp. 0391.Rec. Nat. Prod.2019141424710.25135/rnp.134.19.01.1243
    [Google Scholar]
  47. SingalR. GinderG.D. DNA Methylation.Blood199993124059407010.1182/blood.V93.12.405910361102
    [Google Scholar]
  48. ZhouY. CambareriE. KinseyJ. DNA methylation inhibits expression and transposition of the Neurospora Tad retrotransposon.Mol. Genet. Genom.2001265474875410.1007/s00438010047211459196
    [Google Scholar]
  49. WangX. Sena FilhoJ.G. HooverA.R. KingJ.B. EllisT.K. PowellD.R. CichewiczR.H. Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an atlantic-forest-soil-derived Penicillium citreonigrum. J. Nat. Prod.201073594294810.1021/np100142h20450206
    [Google Scholar]
  50. LiuD.Z. LiangB.W. LiX.F. LiuQ. Induced production of new diterpenoids in the fungus Penicillium funiculosum. Nat. Prod. Commun.2014951934578X140090010.1177/1934578X140090050225026698
    [Google Scholar]
  51. FischK.M. GillaspyA.F. GipsonM. HenriksonJ.C. HooverA.R. JacksonL. NajarF.Z. WägeleH. CichewiczR.H. Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J. Ind. Microbiol. Biotechnol.20093691199121310.1007/s10295‑009‑0601‑419521728
    [Google Scholar]
  52. HeX. ZhangZ. ChenY. CheQ. ZhuT. GuQ. LiD. Varitatin A, a highly modified fatty acid amide from Penicillium variabile cultured with a DNA methyltransferase inhibitor.J. Nat. Prod.201578112841284510.1021/acs.jnatprod.5b0074226561719
    [Google Scholar]
  53. QadriM. NalliY. JainS.K. ChaubeyA. AliA. StrobelG.A. VishwakarmaR.A. Riyaz-Ul-HassanS. An insight into the secondary metabolism of Muscodor yucatanensis: Small-molecule epigenetic modifiers induce expression of secondary metabolism-related genes and production of new metabolites in the endophyte.Microb. Ecol.201773495496510.1007/s00248‑016‑0901‑y27924400
    [Google Scholar]
  54. YuG. WangQ. LiuS. ZhangX. CheQ. ZhangG. ZhuT. GuQ. LiD. Methylsulfonylated polyketides produced by Neosartorya udagawae HDN13-313 via exogenous addition of small molecules.J. Nat. Prod.2019824998100110.1021/acs.jnatprod.9b0003530785753
    [Google Scholar]
  55. GuoD.L. QiuL. FengD. HeX. LiX.H. CaoZ.X. GuY.C. MeiL. DengF. DengY. Three new ɑ-pyrone derivatives induced by chemical epigenetic manipulation of Penicillium herquei, an endophytic fungus isolated from Cordyceps sinensis.Nat. Prod. Res.202034795896410.1080/14786419.2018.154497430600715
    [Google Scholar]
  56. XiongZ.Q. YangY.Y. ZhaoN. WangY. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media.BMC Microbiol.20131317110.1186/1471‑2180‑13‑7123537181
    [Google Scholar]
  57. InglisD.O. BinkleyJ. SkrzypekM.S. ArnaudM.B. CerqueiraG.C. ShahP. WymoreF. WortmanJ.R. SherlockG. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae.BMC Microbiol.20131319110.1186/1471‑2180‑13‑9123617571
    [Google Scholar]
  58. BrakhageA.A. Regulation of fungal secondary metabolism.Nat. Rev. Microbiol.2013111213210.1038/nrmicro291623178386
    [Google Scholar]
  59. LimF.Y. SanchezJ.F. WangC.C.C. KellerN.P. Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi.Methods Enzymol.201251730332410.1016/B978‑0‑12‑404634‑4.00015‑223084945
    [Google Scholar]
  60. ShwabE.K. BokJ.W. TribusM. GalehrJ. GraessleS. KellerN.P. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot. Cell2007691656166410.1128/EC.00186‑0717616629
    [Google Scholar]
  61. BokJ.W. ChiangY.M. SzewczykE. Reyes-DominguezY. DavidsonA.D. SanchezJ.F. LoH.C. WatanabeK. StraussJ. OakleyB.R. WangC.C.C. KellerN.P. Chromatin-level regulation of biosynthetic gene clusters.Nat. Chem. Biol.20095746246410.1038/nchembio.17719448638
    [Google Scholar]
  62. BirchP.R.J. SimsP.F.G. BrodaP. A reporter system for analysis of regulatable promoter functions in the basidiomycete fungus Phanerochaete chrysosporium.J. Appl. Microbiol.199885341742410.1046/j.1365‑2672.1998.853468.x9750271
    [Google Scholar]
  63. Ul-HassanS.R. StrobelG.A. BoothE. KnightonB. FloerchingerC. SearsJ. Modulation of volatile organic compound formation in the Mycodiesel-producing endophyte Hypoxylon sp. CI-4.Microbiology2012158246547310.1099/mic.0.054643‑022096148
    [Google Scholar]
  64. AsaiT. ChungY.M. SakuraiH. OzekiT. ChangF.R. YamashitaK. OshimaY. Tenuipyrone, a novel skeletal polyketide from the Entomopathogenic fungus, Isaria tenuipes, cultivated in the presence of epigenetic modifiers.Org. Lett.201214251351510.1021/ol203097b22201477
    [Google Scholar]
  65. WangQ. YuanF. PanQ. LiM. WangG. ZhaoJ. TangK. Isolation and functional analysis of the Catharanthus roseus deacetylvindoline-4-O-acetyltransferase gene promoter.Plant Cell Rep.201029218519210.1007/s00299‑009‑0811‑220035334
    [Google Scholar]
  66. WuJ.S. YaoG.S. ShiX.H. RehmanS.U. XuY. FuX.M. ZhangX.L. LiuY. WangC.Y. Epigenetic agents trigger the production of bioactive nucleoside derivatives and bisabolane sesquiterpenes from the marine-derived fungus Aspergillus versicolor. Front. Microbiol.2020118510.3389/fmicb.2020.0008532082294
    [Google Scholar]
  67. IgboeliH.A. MarchbankD.H. CorreaH. OveryD. KerrR.G. Discovery of primarolides A and B from marine fungus Asteromyces cruciatus using osmotic stress and treatment with suberoylanilide hydroxamic acid.Mar. Drugs201917843510.3390/md1708043531344982
    [Google Scholar]
  68. González-MenéndezV. Pérez-BonillaM. Pérez-VictoriaI. MartínJ. MuñozF. ReyesF. TormoJ. GenilloudO. Multicomponent analysis of the differential induction of secondary metabolite profiles in fungal endophytes.Molecules201621223410.3390/molecules2102023426901184
    [Google Scholar]
  69. PfannenstielB.T. KellerN.P. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi.Biotechnol. Adv.201937610734510.1016/j.biotechadv.2019.02.00130738111
    [Google Scholar]
  70. BindS. BindS. SharmaA.K. ChaturvediP. Epigenetic modification: A key tool for secondary metabolite production in microorganisms.Front. Microbiol.20221378410910.3389/fmicb.2022.78410935495688
    [Google Scholar]
  71. Pinedo-RivillaC. AleuJ. Durán-PatrónR. Cryptic metabolites from marine-derived microorganisms using OSMAC and epigenetic approaches.Mar. Drugs20222028410.3390/md2002008435200614
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298278037231122041718
Loading
/content/journals/mroc/10.2174/0118756298278037231122041718
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test