Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Asciminib, also known as ACP-196, is the FDA-approved low-molecular ABL kinase inhibitor. The ABL kinase is a non-receptor tyrosine kinase that helps in cell growth and survival and is a key player in the development of chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). The BCR-ABL fusion protein, which is formed by chromosomal translocation in CML and Ph+ ALL, results in the constitutive activation of ABL kinase, leading to uncontrolled cell growth and proliferation. To have a high binding affinity for the active site of the enzyme, structural biology and computer-aided drug design (CADD) concepts were applied to the design of asciminib so that it could specifically target the ABL kinase enzyme. The drug was synthesized and characterized in a laboratory. In its pharmacological studies, it has shown that asciminib is a potent and selective inhibitor of ABL kinase. Phase I clinical trials assessed its safety and efficacy, revealing that it is effective against tumors while causing minimal discomfort to patients. In addition to this, it was able to induce apoptosis and a cytogenetic response as well as inhibit the proliferation of CML and Ph+ALL cells in patients with CML. As this trial gave a positive response, phase II and III trials were conducted. In that sense, asciminib has shown to be highly effective, with response rates of over 90% in patients with these diseases. The safety and efficacy of asciminib were also evaluated in combination with other drugs, such as tyrosine kinase inhibitors and immunomodulatory drugs, and the results were promising. Overall, the discovery and development of asciminib showed that by using the concepts of pharmacology and CADD, a drug with a 90% positive rate response can be developed with a high tolerance level and lower side effects.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298270515231010062046
2023-10-17
2025-01-21
Loading full text...

Full text loading...

References

  1. VardimanJ.W. Chronic myelogenous leukemia, BCR-ABL1+.Am. J. Clin. Pathol.2009132225026010.1309/AJCPUN89CXERVOVH19605820
    [Google Scholar]
  2. KantarjianH. O’BrienS. JabbourE. Garcia-ManeroG. Quintas-CardamaA. ShanJ. RiosM.B. RavandiF. FaderlS. KadiaT. BorthakurG. HuangX. ChamplinR. TalpazM. CortesJ. Improved survival in chronic myeloid leukemia since the introduction of imatinib therapy: A single-institution historical experience.Blood201211991981198710.1182/blood‑2011‑08‑35813522228624
    [Google Scholar]
  3. JabbourE. KantarjianH. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring.Am. J. Hematol.202095669170910.1002/ajh.2579232239758
    [Google Scholar]
  4. AuW.Y. CaguioaP.B. ChuahC. HsuS.C. JootarS. KimD.W. KweonI.Y. O’NeilW.M. SaikiaT.K. WangJ. Chronic myeloid leukemia in Asia.Int. J. Hematol.2009891142310.1007/s12185‑008‑0230‑019101781
    [Google Scholar]
  5. GanesanP. KumarL. Chronic myeloid leukemia in India.J. Glob. Oncol.201731647110.1200/JGO.2015.00266728717743
    [Google Scholar]
  6. KangZ. J. LiuY. F. XuL. Z. LongZ. J. HuangD. YangY. LiuB. FengJ. X. PanY. J. YanJ. S. The philadelphia chromosome in leukemogenesis.Chin. J. Cancer20163548
    [Google Scholar]
  7. BonifacioM. StagnoF. ScaffidiL. KramperaM. Di RaimondoF. Management of chronic myeloid leukemia in advanced phase.Front. Oncol.20199113210.3389/fonc.2019.0113231709190
    [Google Scholar]
  8. ElderderyA. Y. AlzahraniB. HamzaS. M. A. Mostafa-HedeabG. MokP. L. SubbiahS. K. CuO-TiO2-chitosan-berbamine nanocomposites induce apoptosis through the mitochondrial pathway with the expression of P53, BAX, and BCL-2 in the human K562 Cancer cell line.Bioinorg. Chem. Appl.202220229602725
    [Google Scholar]
  9. Quintás-CardamaA. CortesJ. Molecular biology of bcr-abl1–positive chronic myeloid leukemia.Blood200911381619163010.1182/blood‑2008‑03‑14479018827185
    [Google Scholar]
  10. RéaD. HughesT. P. Development of asciminib, a novel allosteric inhibitor of BCR-ABL1.Crit. Rev. Oncol. Hematol.2022171103580
    [Google Scholar]
  11. Özgür YurttaşN. EşkazanA. E. Novel therapeutic approaches in chronic myeloid leukemia.Leuk Res.202091106337
    [Google Scholar]
  12. SilverR. T. WoolfS. H. Diger HehlmannR. AppelbaumF. R. AndersonJ. BennettC. GoldmanJ. M. GuilhotF. KantarjianH. M. LichtinA. E. An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: Developed for the american society of hematology.Blood1999945151736
    [Google Scholar]
  13. CamilleC.B. The use of hydroxyurea pretreatment in chronic myeloid leukemia in the current tyrosine kinase inhibitor Era.Haematologica2022107819401943
    [Google Scholar]
  14. WoessnerD.W. LimC.S. DeiningerM.W. Development of an effective therapy for chronic myelogenous leukemia.Cancer J.201117647748610.1097/PPO.0b013e318237e5b722157291
    [Google Scholar]
  15. García-GutiérrezV. Hernández-BoludaJ.C. Current treatment options for chronic myeloid leukemia patients failing second-generation tyrosine kinase inhibitors.J. Clin. Med.2020114
    [Google Scholar]
  16. Latremouille-ViauD. GuerinA. NitulescuR. GagnonP.S. JosephG.J. ChenL. Treatment patterns and healthcare costs among newly-diagnosed patients with chronic myeloid leukemia receiving dasatinib or nilotinib as first-line therapy in the United States.J. Med. Econ.2017201637110.1080/13696998.2016.122557827603674
    [Google Scholar]
  17. CortesJ.E. HochhausA. TakahashiN. LarsonR.A. IssaG.C. BombaciF. RamscarN. IfrahS. HughesT.P. Asciminib monotherapy for newly diagnosed chronic myeloid leukemia in chronic phase: The ASC4FIRST phase III trial.Futur. Oncol.2022183841614170
    [Google Scholar]
  18. BrümmendorfT.H. CortesJ.E. MilojkovicD. Gambacorti-PasseriniC. ClarkR.E. le CoutreP. Garcia-GutierrezV. ChuahC. KotaV. LiptonJ.H. RousselotP. MauroM.J. HochhausA. Hurtado MonroyR. LeipE. PurcellS. YverA. ViqueiraA. DeiningerM.W. Bosutinib versus imatinib for newly diagnosed chronic phase chronic myeloid leukemia: Final results from the BFORE trial.Leukemia20223671825183310.1038/s41375‑022‑01589‑y35643868
    [Google Scholar]
  19. WangZ. JiangL. YanH. XuZ. LuoP. Adverse events associated with nilotinib in chronic myeloid leukemia: Mechanisms and management strategies.Expert Rev. Clin. Pharmacol.2021144445456
    [Google Scholar]
  20. CortesJ. E. ApperleyJ. F. DeangeloD. J. DeiningerM. W. KotaV. K. RousselotP. Gambacorti-PasseriniC. Management of adverse events associated with bosutinib treatment of chronic-phase chronic myeloid leukemia: Expert panel review.J. Hematol. Oncol.2018111143
    [Google Scholar]
  21. HochhausA. BrecciaM. SaglioG. García-GutiérrezV. RéaD. JanssenJ. ApperleyJ. Expert opinion-management of chronic myeloid leukemia after resistance to second-generation tyrosine kinase inhibitors.Leukemia20203461495150210.1038/s41375‑020‑0842‑932366938
    [Google Scholar]
  22. BrecciaM. ColafigliG. ScalzulliE. MartelliM. Asciminib: An investigational agent for the treatment of chronic myeloid leukemia.Expert Opin. Investig. Drugs202130880381110.1080/13543784.2021.194186334130563
    [Google Scholar]
  23. YeungD.T. ShanmuganathanN. HughesT.P. Asciminib: A new therapeutic option in chronic-phase CML with treatment failure.Blood2022139243474347910.1182/blood.202101468935468180
    [Google Scholar]
  24. García-GutiérrezV An evaluation of asciminib for patients with chronic myeloid leukemia previously treated with ≥2 tyrosine kinase inhibitors.Expert Rev. Hematol.2022156477484
    [Google Scholar]
  25. SmithG. ApperleyJ. MilojkovicD. CrossN.C.P. ForoniL. ByrneJ. GoringeA. RaoA. KhorashadJ. de LavalladeH. MeadA.J. OsborneW. PlummerC. JonesG. CoplandM. A British Society for Haematology Guideline on the diagnosis and management of chronic myeloid leukaemia.Br. J. Haematol.2020191217119310.1111/bjh.1697132734668
    [Google Scholar]
  26. SchoepferJ. JahnkeW. BerelliniG. BuonamiciS. CotestaS. Cowan-JacobS.W. DoddS. DrueckesP. FabbroD. GabrielT. GroellJ.M. GrotzfeldR.M. HassanA.Q. HenryC. IyerV. JonesD. LombardoF. LooA. ManleyP.W. PelléX. RummelG. SalemB. WarmuthM. WylieA.A. ZollerT. MarzinzikA.L. FuretP. Discovery of Asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1.J. Med. Chem.201861188120813510.1021/acs.jmedchem.8b0104030137981
    [Google Scholar]
  27. CarofiglioF. TrisciuzziD. GambacortaN. LeonettiF. StefanachiA. NicolottiO. Bcr-Abl allosteric inhibitors: Where we are and where we are going to.Molecules202025184210
    [Google Scholar]
  28. National Library of Medicine (US)National Center for Biotechnology Information.Available from:https://www.ncbi.nlm.nih.gov/ 2022
  29. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  30. TizD. B. BagnoliL. RosatiO. MariniF. SancinetoL. SantiC. New halogen-containing drugs approved by FDA in 2021: An overview on their syntheses and pharmaceutical use.Molecules20222751643
    [Google Scholar]
  31. EideC.A. ZabriskieM.S. Savage StevensS.L. AntelopeO. VelloreN.A. ThanH. SchultzA.R. ClairP. BowlerA.D. PomicterA.D. YanD. SeninaA.V. QiangW. KelleyT.W. SzankasiP. HeinrichM.C. TynerJ.W. ReaD. CayuelaJ.M. KimD.W. TognonC.E. O’HareT. DrukerB.J. DeiningerM.W. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants.Cancer Cell2019364431443.e510.1016/j.ccell.2019.08.00431543464
    [Google Scholar]
  32. EadieL.N. SaundersV.A. BranfordS. WhiteD.L. HughesT.P. The new allosteric inhibitor asciminib is susceptible to resistance mediated by ABCB1 and ABCG2 overexpression in vitro .Oncotarget2018917134231343710.18632/oncotarget.2439329568367
    [Google Scholar]
  33. HochM. ZackJ. QuinlanM. HuthF. ForteS. DoddS. AimoneP. Hourcade-PotelleretF. Pharmacokinetics of asciminib when taken with imatinib or with food.Clin. Pharmacol. Drug Dev.202211220721910.1002/cpdd.101934609077
    [Google Scholar]
  34. LiY.F. CombesF.P. HochM. LorenzoS. SyS.K.B. HoY.Y. Population pharmacokinetics of asciminib in tyrosine kinase inhibitor-treated patients with philadelphia chromosome-positive chronic myeloid leukemia in chronic and acute phases.Clin. Pharmacokinet.202261101393140310.1007/s40262‑022‑01148‑935764773
    [Google Scholar]
  35. HochM. SatoM. ZackJ. QuinlanM. SenguptaT. AllepuzA. AimoneP. Hourcade-PotelleretF. PharmaN. K. K. ElsnerC. Pharmacokinetics of asciminib in individuals with hepatic or renal impairment.J. Clin. Pharmacol.202161111454146510.1002/jcph.1926
    [Google Scholar]
  36. HochM. HuthF. SatoM. SenguptaT. QuinlanM. DoddS. KapoorS. Hourcade-PotelleretF. Pharmacokinetics of asciminib in the presence of CYP3A or P‐gp inhibitors, CYP3A inducers, and acid‐reducing agents.Clin. Transl. Sci.20221571698171210.1111/cts.1328535616006
    [Google Scholar]
  37. MonestimeS. Al SagheerT. TadrosM. Asciminib (Scemblix): A third-line treatment option for chronic myeloid leukemia in chronic phase with or without T315I mutation.Am. J. Health Syst. Pharm.2023802364310.1093/ajhp/zxac28636197958
    [Google Scholar]
  38. Asciminib: Uses, Interactions, Mechanism of Action. DrugBank OnlineAvailable from:https://go.drugbank.com/drugs/DB12597 2022
  39. CHMPCommittee for Medicinal Products for Human Use (CHMP) Assessment Report.Available from:https://www.ema.europa.eu/en/committees/committee-medicinal-products-human-use-chmp 2022
  40. TranP. HannaI. EggimannF.K. SchoepferJ. RayT. ZhuB. WangL. PriessP. TianX. Hourcade-PotelleretF. EinolfH.J. Disposition of asciminib, a potent BCR-ABL1 tyrosine kinase inhibitor, in healthy male subjects.Xenobiotica202050216017910.1080/00498254.2019.159444931006307
    [Google Scholar]
  41. KumarV. SinghP. GuptaS.K. AliV. VermaM. Transport and metabolism of tyrosine kinase inhibitors associated with chronic myeloid leukemia therapy: A review.Mol. Cell. Biochem.202247741261127910.1007/s11010‑022‑04376‑635129779
    [Google Scholar]
  42. HochM. SenguptaT. Pharmacokinetic drug interactions of asciminib with the sensitive cytochrome P450 probe substrates midazolam, warfarin, and repaglinide in healthy participants.Clin. Transl. Sci.202214061514061416
    [Google Scholar]
  43. HIGHLIGHTS OF PRESCRIBING INFORMATION These Highlights Do Not Include All the Information Needed to Use SCEMBLIX ® Safely and EffectivelyAvailable from:https://www.novartis.com/us-en/sites/novartis_us/files/scemblix.pdf 2022
  44. LiuY. ZhangM. TsaiC.J. JangH. NussinovR. Allosteric regulation of autoinhibition and activation of c-Abl.Comput. Struct. Biotechnol. J.2022204257427010.1016/j.csbj.2022.08.01436051879
    [Google Scholar]
  45. WangJ.Y.J. The capable ABL: what is its biological function?Mol. Cell. Biol.20143471188119710.1128/MCB.01454‑1324421390
    [Google Scholar]
  46. ChoiE.J. Asciminib: The first-in-class allosteric inhibitor of BCR:ABL1 kinase.Blood Res.202358S1S29S3610.5045/br.2023.202301736891575
    [Google Scholar]
  47. SkoraL. MestanJ. FabbroD. JahnkeW. GrzesiekS. NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors.Proc. Natl. Acad. Sci.201311047E4437E444510.1073/pnas.131471211024191057
    [Google Scholar]
  48. ManleyP. W. BarysL. Cowan-JacobS. W. The specificity of asciminib, a potential treatment for chronic myeloid leukemia, as a myristate-pocket binding abl inhibitor and analysis of its interactions with mutant forms of BCR-ABL1 kinase.Leuk. Res.202098106458
    [Google Scholar]
  49. Garcia-GutiérrezV. LunaA. Alonso-DominguezJ. M. EstradaN. BoqueC. XicoyB. GiraldoP. AngonaA. Alvarez-LarránA. Sanchez-GuijoF. Safety and efficacy of asciminib treatment in chronic myeloid leukemia patients in real-life clinical practice.Blood Cancer J.202111216
    [Google Scholar]
  50. European Medicines AgencyScemblix.Available from:https://www.ema.europa.eu/en/medicines/human/EPAR/scemblix#:~:text=the%20European%20Union.-,Overview,has%20few%20or%20no%20symptoms). 2022
  51. Scemblix FDA Approval HistoryAvailable from:https://www.drugs.com/history/scemblix.html 2021
  52. LucíaP.-L.C.B. SeninM.A. XicoyB. GiraldoP. LopezR.P. NuñoC.R. De l.HN. CasteráE.M. Garcia-HernandezC. DiazA.S. SteegmannJ.L. PatrV.G. Toxicity of asciminib in real clinical practice; Analysis of side effects and cross-intolerance with tyrosine kinase inhibitors.Bood2022401
    [Google Scholar]
  53. Mayo Clinic Asciminib (Oral Route).Available from:https://www.mayoclinic.org/drugs-supplements/asciminib-oral-route/proper-use/drg-20524758
  54. Solid state forms of asciminib and processes for the preparation thereofW.O. Patent 2021154980A12021
  55. ChemoExpertsAsciminib (Scemblix®) Is a Treatment Regimen for Chronic Myeloid Leukemia (CML).Available from:https://www.chemoexperts.com/asciminib-chronic-myeloid-leukemia-cml.html 2022
  56. HochF.P.C.M. LorenzoS. HoY-Y. SherwinK.B. Exposure-efficacy analysis of asciminib in philadelphia chromosome-positive chronic myeloid leukemia in chronic phase.Clin. Trial. Clin. Pharmacol. Ther.2022112510401050
    [Google Scholar]
  57. OrugantiB. LindahlE. YangJ. AmiriW. RahimullahR. FriedmanR. Allosteric enhancement of the BCR-Abl1 kinase inhibition activity of nilotinib by cobinding of asciminib.J. Biol. Chem.2022298810223810.1016/j.jbc.2022.10223835809644
    [Google Scholar]
  58. WylieA.A. SchoepferJ. JahnkeW. Cowan-JacobS.W. LooA. FuretP. MarzinzikA.L. PelleX. DonovanJ. ZhuW. BuonamiciS. HassanA.Q. LombardoF. IyerV. PalmerM. BerelliniG. DoddS. ThohanS. BitterH. BranfordS. RossD.M. HughesT.P. PetruzzelliL. VanasseK.G. WarmuthM. HofmannF. KeenN.J. SellersW.R. The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1.Nature2017543764773373710.1038/nature2170228329763
    [Google Scholar]
  59. QiangW. AntelopeO. ZabriskieM.S. PomicterA.D. VelloreN.A. SzankasiP. ReaD. CayuelaJ.M. KelleyT.W. DeiningerM.W. Mechanisms of resistance to the BCR-ABL1 allosteric inhibitor asciminib.Leukemia2017311228442847
    [Google Scholar]
  60. GleixnerK.V. FilikY. BergerD. SchewzikC. StefanzlG. SadovnikI. Degenfeld-SchonburgL. EisenwortG. Schneeweiss-GleixnerM. ByrgazovK. Asciminib and ponatinib exert synergistic anti-neoplastic effects on cml cells expressing BCR-ABL1 T315i-compound mutations.Am. J. Cancer Res.202111944704484
    [Google Scholar]
  61. El RashedyA.A. Appiah-KubiP. SolimanM.E.S. a synergistic combination against chronic myeloid leukemia: an intra-molecular mechanism of communication in bcr-abl1 resistance.Protein J.201938214215010.1007/s10930‑019‑09820‑z30877503
    [Google Scholar]
  62. ElrashedyA.A. The in silico investigation of the perplexity of synergistic duality: Inter-molecular mechanisms of communication in bcr–abl.Anticancer Agents Med Chem.2019191316421650
    [Google Scholar]
  63. CortesJ. LangF. Third-line therapy for chronic myeloid leukemia: current status and future directions.J. Hematol. Oncol.202114144
    [Google Scholar]
  64. ChungJ. AriyoshiT. YonedaT. KagawaY. KawakitaY. MakiA. Pharmacological and clinical profile of asciminib hydrochloride, a novel first-in-class tyrosine kinase inhibitor specifically targeting ABL myristoyl pocket.Nippon Yakurigaku Zasshi2023158327328110.1254/fpj.2215637121712
    [Google Scholar]
  65. MattielloL. PucciG. MarchettiF. DiederichM. GonfloniS. Asciminib mitigates DNA damage stress signaling induced by cyclophosphamide in the ovary.Int. J. Mol. Sci.2021223139510.3390/ijms2203139533573271
    [Google Scholar]
  66. HanH.J. JangH.J. YooY. KimT.S. KimJ.W. KimD.D.H. In vitro evidence of double blockade of asciminib with reduced dose of ATP-binding pocket inhibitors in the treatment of chronic myeloid leukemia harboring abl1 kinase domain mutation.Blood2022140Suppl. 19588958910.1182/blood‑2022‑165593
    [Google Scholar]
  67. HughesT.P. MauroM.J. CortesJ.E. MinamiH. ReaD. DeAngeloD.J. BrecciaM. GohY.T. TalpazM. HochhausA. le CoutreP. OttmannO. HeinrichM.C. SteegmannJ.L. DeiningerM.W.N. JanssenJ.J.W.M. MahonF.X. MinamiY. YeungD. RossD.M. TallmanM.S. ParkJ.H. DrukerB.J. HyndsD. DuanY. MeilleC. Hourcade-PotelleretF. VanasseK.G. LangF. KimD.W. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure.N. Engl. J. Med.2019381242315232610.1056/NEJMoa190232831826340
    [Google Scholar]
  68. TomassettiS. LeeJ. QingX. A case of chronic myelogenous leukemia with the T315I mutation who progressed to myeloid blast phase and was successfully treated with asciminib.Clin. Case Rep.20221011e647810.1002/ccr3.647836381034
    [Google Scholar]
  69. Scemblix (Asciminib) for the Treatment of Chronic Myeloid LeukaemiaAvailable from:https://www.novartis.com/news/media-releases/novartis-scemblix-novel-mechanism-action-approved-european-commission-adult-patients-chronic-myeloid-leukemia 2021
  70. RoskoskiR.Jr Targeting BCR-Abl in the treatment of Philadelphia-chromosome positive chronic myelogenous leukemia.Pharmacol. Res.202217810615610.1016/j.phrs.2022.10615635257901
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298270515231010062046
Loading
/content/journals/mroc/10.2174/0118756298270515231010062046
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test