Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

The last decades have witnessed significant advances in the synthesis of bioactive carbohydrates. As in all fields of organic synthesis, the search for more environmentally friendly alternative synthetic methods is a current and expanding concern. Consequently, electrochemical organic synthesis has emerged as an efficient and sustainable methodology. Herein, we present recent developments in the synthesis of glycosides and other carbohydrate derivatives using electrochemical methods. Diverse natural and synthetic -, -, and -glycosides were obtained using new approaches for the electrochemical activation of sugar precursors. The reported derivatives exhibited wide structural diversity on both the sugar moiety and the aglycone, revealing the great potential of the electrochemical methods.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298267514240104101246
2024-01-30
2025-01-21
Loading full text...

Full text loading...

References

  1. MiljkovicM. Carbohydrates: Synthesis, Mechanisms, and Stereoelectronic Effects.1st edNew York, NY, USASpringer-Verlag200910.1007/978‑0‑387‑92265‑2
    [Google Scholar]
  2. LindhorstT.K. Essentials of Carbohydrate Chemistry and Biochemistry.3rd edWeinheim, GermanyWiley-VCH2007
    [Google Scholar]
  3. RüdigerH. GabiusH-J. The biochemical basis and coding capacity of the sugar code.The Sugar Code: Fundamentals of Glycosciences. GabiusH-J. Weinheim, GermanyWiley-VCH2009314
    [Google Scholar]
  4. VarkiA. Biological roles of glycans.Glycobiology201727134910.1093/glycob/cww08627558841
    [Google Scholar]
  5. GalanM.C. JonesR.A. TranA.T. Recent developments of ionic liquids in Oligosaccharide synthesis: the sweet side of ionic liquids.Carbohydr. Res.2013375354610.1016/j.carres.2013.04.01123685038
    [Google Scholar]
  6. BertozziC.R. KiesslingL.L. Chemical glycobiology.Science200129155122357236410.1126/science.105982011269316
    [Google Scholar]
  7. MishraN. TiwariV.K. SchmidtR.R. Recent trends and challenges on carbohydrate-based molecular scaffolding: General consideration toward impact of carbohydrates in drug discovery and development.Carbohydrates in drug discovery and development: Synthesis and application. TiwariV.K. Cambridge, MA, USElsevier202016910.1016/B978‑0‑12‑816675‑8.00001‑4
    [Google Scholar]
  8. KoesterD.C. HolkenbrinkA. WerzD.B. Recent advances in the synthesis of carbohydrate mimetics.Synthesis20101932173242
    [Google Scholar]
  9. BernardiA. SattinS. Interfering with the sugar code: Ten years later.Eur. J. Org. Chem.20202020304652466310.1002/ejoc.202000155
    [Google Scholar]
  10. GabiusH.J. CudicM. DiercksT. KaltnerH. KopitzJ. MayoK.H. MurphyP.V. OscarsonS. RoyR. SchedlbauerA. ToegelS. RomeroA. What is the sugar code?ChemBioChem20222313e202100327e20210035110.1002/cbic.20210032734496130
    [Google Scholar]
  11. ErnstB. HartG.W. SinaýP. Carbohydrates in Chemistry and BiologyWILEY‐VCH Verlag GmbH200010.1002/9783527618255
    [Google Scholar]
  12. KarakM. HaldarA. TorikaiK. Current tools for chemical glycosylation: Where are we now?Trends Glycosci. Glycotechnol.2021331952014.7E10.4052/tigg.2014.7E
    [Google Scholar]
  13. AndreanaP.R. CrichD. Guidelines for O-Glycoside formation from first principles.ACS Cent. Sci.2021791454146210.1021/acscentsci.1c0059434584944
    [Google Scholar]
  14. StreetyX.S. ObikeJ.C. TownsendS.D. A Hitchhiker’s guide to problem selection in carbohydrate synthesis.ACS Cent. Sci.2023971285129610.1021/acscentsci.3c0050737521800
    [Google Scholar]
  15. WiebeA. GieshoffT. MöhleS. RodrigoE. ZirbesM. WaldvogelS.R. Electrifying organic synthesis.Angew. Chem. Int. Ed.201857205594561910.1002/anie.20171106029292849
    [Google Scholar]
  16. SchottenC. NichollsT.P. BourneR.A. KapurN. NguyenB.N. WillansC.E. Making electrochemistry easily accessible to the synthetic chemist.Green Chem.202022113358337510.1039/D0GC01247E
    [Google Scholar]
  17. KingstonC. PalkowitzM.D. TakahiraY. VantouroutJ.C. PetersB.K. KawamataY. BaranP.S. A survival guide for the “Electro-curious”.Acc. Chem. Res.2020531728310.1021/acs.accounts.9b0053931823612
    [Google Scholar]
  18. JörissenJ. SpeiserB. Preparative electrolysis on the laboratory scale.Organic electrosynthesis. HammerichO. SpeiserB. Boca Raton, USCRC Press2016265329
    [Google Scholar]
  19. MöhleS. ZirbesM. RodrigoE. GieshoffT. WiebeA. WaldvogelS.R. Modern electrochemical aspects for the synthesis of value‐added organic products.Angew. Chem. Int. Ed.201857216018604110.1002/anie.20171273229359378
    [Google Scholar]
  20. ShatskiyA. LundbergH. KärkäsM.D. Organic electrosynthesis: Applications in complex molecule synthesis.ChemElectroChem20196164067409210.1002/celc.201900435
    [Google Scholar]
  21. YanM. KawamataY. BaranP.S. Synthetic organic electrochemistry: Calling all engineers.Angew. Chem. Int. Ed.201857164149415510.1002/anie.20170758428834012
    [Google Scholar]
  22. GargS. SohalH.S. MalhiD.S. KaurM. SinghK. SharmaA. MutrejaV. ThakurD. KaurL. Electrochemical method: A green approach for the synthesis of organic compounds.Curr. Org. Chem.2022261089991910.2174/1385272826666220516113152
    [Google Scholar]
  23. Frontana-UribeB.A. LittleR.D. IbanezJ.G. PalmaA. Vasquez-MedranoR. Organic electrosynthesis: A promising green methodology in organic chemistry.Green Chem.201012122099211910.1039/c0gc00382d
    [Google Scholar]
  24. BeilS.B. PollokD. WaldvogelS.R. Reproducibility in electroorganic synthesis—myths and misunderstandings.Angew. Chem. Int. Ed.20216027147501475910.1002/anie.20201454433428811
    [Google Scholar]
  25. YaoN. WangH.B. HuY.L. Recent progress on electrochemical application of room-temperature ionic liquids.Mini Rev. Org. Chem.201714323725410.2174/1570193X14666170420115644
    [Google Scholar]
  26. MarraA. ScherrmannM-C. Electrochemical glycosylation.Carbohydrate Chemistry Chemical and biological approaches. RauterA.P. LindhorstT.K. QueneauY. London, UKThe Royal Society of Chemistry2014Vol. 4016017710.1039/9781849739986‑00160
    [Google Scholar]
  27. ManmodeS. MatsumotoK. NokamiT. ItohT. Electrochemical methods as enabling tools for glycosylation.Asian J. Org. Chem.2018791719172910.1002/ajoc.201800302
    [Google Scholar]
  28. NokamiT. SaitoK. YoshidaJ. Synthetic carbohydrate research based on organic electrochemistry.Carbohydr. Res.20123631610.1016/j.carres.2012.09.02323089173
    [Google Scholar]
  29. NokamiT. Electrochemical glycosylation.Glycoforum2022253A8
    [Google Scholar]
  30. MorzyckiJ.W. ŁotowskiZ. SiergiejczykL. WałejkoP. WitkowskiS. KowalskiJ. PłoszyńskaJ. SobkowiakA. A selective electrochemical method of glycosylation of 3β-hydroxy-Δ5-steroids.Carbohydr. Res.201034581051105510.1016/j.carres.2010.03.01820371036
    [Google Scholar]
  31. TomkielA.M. BrzezinskiK. ŁotowskiZ. SiergiejczykL. WałejkoP. WitkowskiS. KowalskiJ. PłoszyńskaJ. SobkowiakA. MorzyckiJ.W. Electrochemical synthesis of glycoconjugates of 3β-hydroxy-Δ5-steroids by using non-activated sugars and steroidal thioethers.Tetrahedron201369428904891310.1016/j.tet.2013.07.106
    [Google Scholar]
  32. TomkielA.M. KowalskiJ. PłoszyńskaJ. SiergiejczykL. ŁotowskiZ. SobkowiakA. MorzyckiJ.W. Electrochemical synthesis of glycoconjugates from activated sterol derivatives.Steroids201482606710.1016/j.steroids.2014.01.00724486463
    [Google Scholar]
  33. TomkielA.M. BiedrzyckiA. PłoszyńskaJ. NarógD. SobkowiakA. MorzyckiJ.W. 3α,5α-Cyclocholestan-6β-yl ethers as donors of the cholesterol moiety for the electrochemical synthesis of cholesterol glycoconjugates.Beilstein J. Org. Chem.20151116216810.3762/bjoc.11.1625815065
    [Google Scholar]
  34. TomkielA.M. SiergiejczykL. NarógD. PłoszyńskaJ. SobkowiakA. MorzyckiJ.W. Electrochemical cholesterylation of sugars with cholesteryl diphenylphosphate.Steroids2017117445110.1016/j.steroids.2016.05.01127263439
    [Google Scholar]
  35. ManmodeS. KatoM. IchiyanagiT. NokamiT. ItohT. Automated electrochemical assembly of the β‐(1,3)‐β‐(1,6)‐glucan hexasaccharide using thioglucoside building blocks.Asian J. Org. Chem.2018791802180510.1002/ajoc.201800345
    [Google Scholar]
  36. ManmodeS. TanabeS. YamamotoT. SasakiN. NokamiT. ItohT. Electrochemical glycosylation as an enabling tool for the stereoselective synthesis of cyclic oligosaccharides.ChemistryOpen20198786987210.1002/open.20190018531309034
    [Google Scholar]
  37. IsodaY. KitamuraK. TakahashiS. NokamiT. ItohT. Electrochemical glycosylation as an enabling tool for the stereoselective synthesis of cyclic Oligosaccharides.ChemElectroChem201964149415210.1002/celc.201900215
    [Google Scholar]
  38. YanoK. ItohT. NokamiT. Total synthesis of Myc-IV(C16:0, S) via automated electrochemical assembly.Carbohydr. Res.202049210801810802310.1016/j.carres.2020.10801832339812
    [Google Scholar]
  39. LiuM. LiuK.M. XiongD.C. ZhangH. LiT. LiB. QinX. BaiJ. YeX.S. Stereoselective electro‐2‐deoxyglycosylation from glycals.Angew. Chem. Int. Ed.20205935152041520810.1002/anie.20200611532394599
    [Google Scholar]
  40. ShibuyaA. KatoM. SaitoA. ManmodeS. NishikoriN. ItohT. NagakiA. NokamiT. Stereoselective electro-2-deoxyglycosylation from glycals.Eur. J. Org. Chem.2022e20220013510.1002/ejoc.202200135
    [Google Scholar]
  41. BennettC.S. GalanM.C. Methods for 2-deoxyglycoside synthesis.Chem. Rev.2018118177931798510.1021/acs.chemrev.7b0073129953219
    [Google Scholar]
  42. De LederkremerR.M. MarinoC. Deoxy sugars: Occurrence and synthesis.Advances in Carbohydrate Chemistry and Biochemistry. HortonD. New York, USAcademic Press2007Vol. 61143215
    [Google Scholar]
  43. MengS. LiX. ZhuJ. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides.Tetrahedron20218813214013218210.1016/j.tet.2021.132140
    [Google Scholar]
  44. LevyD.E. Strategies towards C-Glycosides.The Organic Chemistry of Sugars. LevyD.E. FugediP. Boca Raton, FL, USCRC Press200510.1201/9781420027952.ch7
    [Google Scholar]
  45. Brito-AriasM. Synthesis and Characterization of Glycosides.New York, NY, USASpringer2007
    [Google Scholar]
  46. HussainN. HussainA. Advances in Pd-catalyzed C–C bond formation in carbohydrates and their applications in the synthesis of natural products and medicinally relevant molecules.RSC Adv.20211154343693439110.1039/D1RA06351K35497292
    [Google Scholar]
  47. YangY. YuB. Recent advances in the chemical synthesis of C -glycosides.Chem. Rev.201711719122811235610.1021/acs.chemrev.7b0023428915018
    [Google Scholar]
  48. XuG. MoellerK.D. Anodic coupling reactions and the synthesis of C-glycosides.Org. Lett.201012112590259310.1021/ol100800u20462275
    [Google Scholar]
  49. SmithJ.A. MoellerK.D. Oxidative cyclizations, the synthesis of aryl-substituted C-glycosides, and the role of the second electron transfer step.Org. Lett.201315225818582110.1021/ol402826z24199843
    [Google Scholar]
  50. SarsharM. BehzadiP. AmbrosiC. ZagagliaC. PalamaraA.T. ScribanoD. FimH and anti-adhesive therapeutics: A disarming strategy against uropathogens.Antibiotics20209739741310.3390/antibiotics907039732664222
    [Google Scholar]
  51. SmithJ.A. XuG. FengR. JanetkaJ.W. MoellerK.D. C‐glycosides, array‐based addressable libraries, and the versatility of constant current electrochemistry.Electroanalysis201628112808281710.1002/elan.201600200
    [Google Scholar]
  52. LianG. ZhangX. YuB. Thioglycosides in carbohydrate research.Carbohydr. Res.2015403132210.1016/j.carres.2014.06.00925015586
    [Google Scholar]
  53. AguileraB. Jiménez-BarberoJ. Fernández-MayoralasA. Conformational differences between Fuc(α1–3)GlcNAc and its thioglycoside analogue.Carbohydr. Res.19983081-2192710.1016/S0008‑6215(98)00066‑49675354
    [Google Scholar]
  54. BuckinghamJ. BrazierJ.A. FisherJ. CosstickR. Incorporation of a S-glycosidic linkage into a glyconucleoside changes the conformational preference of both furanose sugars.Carbohydr. Res.20073421162210.1016/j.carres.2006.11.00717145047
    [Google Scholar]
  55. DriguezH. Thiooligosaccharides in glycobiology.Top. Curr. Chem.19971878511610.1007/BFb0119254
    [Google Scholar]
  56. QiaoM. ZhangL. JiaoR. ZhangS. LiB. ZhangX. Chemical and enzymatic synthesis of S-linked sugars and glycoconjugates.Tetrahedron20218113192010.1016/j.tet.2020.131920
    [Google Scholar]
  57. ZhuM. AlamiM. MessaoudiS. Electrochemical nickel-catalyzed Migita cross-coupling of 1-thiosugars with aryl, alkenyl and alkynyl bromides.Chem. Commun.202056324464446710.1039/D0CC01126F32196023
    [Google Scholar]
  58. OkamotoK. ShojiT. TsutsuiM. ShidaN. ChibaK. Electrochemical nickel-catalyzed Migita cross-coupling of 1-thiosugars with aryl, alkenyl and alkynyl bromides.Chemistry201824179021790510.1002/chem.20180428530216580
    [Google Scholar]
  59. OkamotoK. TsutsuiM. MorizumiH. KitanoY. ChibaK. Electrochemical synthesis of imino‐ C ‐nucleosides by “reactivity switching” methodology for in situ generated glycoside donors.Eur. J. Org. Chem.20212021172479248410.1002/ejoc.202100106
    [Google Scholar]
  60. ShojiT. KimS. ChibaK. Synthesis of azanucleosides by anodic oxidation in a lithium perchlorate–nitroalkane medium and diversification at the 4′‐nitrogen position.Angew. Chem. Int. Ed.201756144011401410.1002/anie.20170054728266101
    [Google Scholar]
  61. LiuM. LuoZ.X. LiT. XiongD.C. YeX.S. Electrochemical trifluoromethylation of glycals.J. Org. Chem.20218622161871619410.1021/acs.joc.1c0131834435785
    [Google Scholar]
  62. LuoZ.X. LiuM. LiT. XiongD.C. YeX.S. Electrochemical bromination of glycals.Front. Chem.2021979669010.3389/fchem.2021.79669035004613
    [Google Scholar]
  63. VedovatoV. VanbroekhovenK. PantD. HelsenJ. Electrosynthesis of biobased chemicals using carbohydrates as a feedstock.Molecules202025163712374910.3390/molecules2516371232823995
    [Google Scholar]
  64. RagauskasA.J. WilliamsC.K. DavisonB.H. BritovsekG. CairneyJ. EckertC.A. FrederickW.J.Jr HallettJ.P. LeakD.J. LiottaC.L. MielenzJ.R. MurphyR. TemplerR. TschaplinskiT. The path forward for biofuels and biomaterials.Science2006311576048448910.1126/science.111473616439654
    [Google Scholar]
  65. ZhangQ. WanZ. YuI.K.M. TsangD.C.W. Sustainable production of high-value gluconic acid and glucaric acid through oxidation of biomass-derived glucose: A critical review.J. Clean. Prod.202131212774510.1016/j.jclepro.2021.127745
    [Google Scholar]
  66. MehtiöT. ToivariM. WiebeM.G. HarlinA. PenttiläM. KoivulaA. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals.Crit. Rev. Biotechnol.201636590491610.3109/07388551.2015.106018926177333
    [Google Scholar]
  67. MangiameliM.F. GonzálezJ.C. BellúS. BertoniF. SalaL.F. Redox and complexation chemistry of the CrVI/CrV-d-glucaric acid system.Dalton Trans.201443249242925410.1039/c4dt00717d24816781
    [Google Scholar]
  68. LiuW.J. XuZ. ZhaoD. PanX.Q. LiH.C. HuX. FanZ.Y. WangW.K. ZhaoG.H. JinS. HuberG.W. YuH.Q. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis.Nat. Commun.202011126510.1038/s41467‑019‑14157‑331937783
    [Google Scholar]
  69. BarraganJ.T.C. KogikoskiS.Jr da SilvaE.T.S.G. KubotaL.T. Insight into the electro-oxidation mechanism of glucose and other carbohydrates by CuO-based electrodes.Anal. Chem.20189053357336510.1021/acs.analchem.7b0496329424228
    [Google Scholar]
  70. HandaY. WatanabeK. ChiharaK. KatsunoE. HoribaT. InoueM. KomabaS. The mechanism of electro-catalytic oxidation of glucose on manganese dioxide electrode used for amperometric glucose detection.J. Electrochem. Soc.201816511H742H74910.1149/2.0781811jes
    [Google Scholar]
  71. KapetanovićE. BeilS.B. Site‐Selective electrochemical oxidation of carbohydrates.ChemElectroChem20231022e20230041110.1002/celc.202300411
    [Google Scholar]
  72. HoladeY. GuesmiH. FilholJ.S. WangQ. PhamT. RabahJ. MaisonhauteE. BonniolV. ServatK. TingryS. CornuD. KokohK.B. NappornT.W. MinteerS.D. Deciphering the electrocatalytic reactivity of glucose anomers at bare gold electrocatalysts for biomass-fueled electrosynthesis.ACS Catal.20221220125631257110.1021/acscatal.2c03399
    [Google Scholar]
  73. OpalloM. DolinskaJ. Glucose electrooxidation.Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. WandeltK. AmsterdamElsevier2018633642
    [Google Scholar]
  74. ZhouH. RenY. YaoB. LiZ. XuM. MaL. KongX. ZhengL. ShaoM. DuanH. Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations.Nat. Commun.2023141562110.1038/s41467‑023‑41497‑y37699949
    [Google Scholar]
  75. ListratovaA.V. SbeiN. VoskressenskyL.G. Catalytic electrosynthesis of N, O ‐heterocycles – recent advances.Eur. J. Org. Chem.20202020142012202710.1002/ejoc.201901635
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298267514240104101246
Loading
/content/journals/mroc/10.2174/0118756298267514240104101246
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test